
N S 7 - 1 5 3 4 8
TDA Progress Report 42-87 July-September 1986

Software Development for the VLA-GDSCC Telemetry
Array Project

H. W. Cooper
Radio Frequency and Microwave Subsystems Section

L. R . Hileman
Telos Corp.

Software for the VLA-GDSCC Telemetry Array (VGTA) Project is being developed
in a new manner. Within the Radio Frequency and Microwave Subsystems Section, most
microprocessor software has been developed using Intel hardware and software develop-
ment systems. The VGTA software, however, is being developed using IBM PCs running
consumer-oriented software. Utility software and procedures have been generated which
allow the software developed on the IBM PCs to be transferred and run on a multibus
8086 computer.

1. Introduction
Intel was the only supplier of development hardware and

software when the Radio Frequency and Microwave Subsys-
tems Section first began using the Intel 8080 microprocessor
for the control of electronic equipment. Over the years, several
groups within the section have continued investing in and
upgrading their Intel software development products.

While the Intel development system did serve its purpose,
it was not a general purpose system in that both the hardware
and the software were unique to Intel. New employees needed
training on the system, and the system could not be used
beyond the development of software because the Intel devel-
opment system hardware could not be used as a target system.

II. Software Development for Parkes-CDSCC
Telemetry Array (PCTA)

The PCTA Project (Ref. 11, forerunner to the VGTA
Project, used integral microprocessor computers to perform
the monitor and control function of all of its electronic assem-
blies. In addition, an “array controller” performed as a message
switcher by interfacing two CRT terminals to the various
assemblies. While the assemblies all ran ROM-based firmware,
the array controller contained floppy disk drives which ran the
CPM-86 operating system that enabled the array controller to
read and execute command sequences from the floppy disks.

When the PCTA project was started, the implementing
group did not have the required Intel development equipment.

174

https://ntrs.nasa.gov/search.jsp?R=19870005915 2020-03-20T12:23:43+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42838789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

As an alternative. the PCTA software. written in Pascal, was
developed in the “array controller” computer which ran the
CPM-86 operating system. This procedure totally eliminated
the need for Intel development products. While this method
worked, it had difficulties. The Pascal MT+86 compiler errors
were numerous, and much time was spent finding work-
arounds for them. In addition, claims for easy ROM program-
mability using Pascal MT+86 were unfounded, and assembly
language and 8087 support was poor. The system was floppy-
disk based, resulting in slow compilation times. One applica-
tion program exceeded 64K in size, which required a com-
plicated work-around in order to run a ROM-based system.

111. VLA-GDSCC Telemetry Array
(VGTA) Method

What was needed was a hardware/software development
method which was cost effective, well supported, free of
errors, and efficient. After considering various options, the
IBM PC system was selected since it used the same micro-
processor, and because of the large availability of off the shelf
software.

Given the development hardware, Microsoft “C,” a high-
level programming language, was selected for the following
reasons:

(1) Microsoft wrote the operating system for the ISM PC
and would be expected to be capable of writing a “C”
compiler for it.

“C” is a high-level structured language presently very
popular in industry and in universities. The language
includes a large standard library which performs most
needed functions including port I/O, string functions,
and memory management. The only problem initially
noted with Microsoft “C” was its lack of real-time
interrupt support, which has been solved by the devel-
opment of JPL Software routines.

(3) Microsoft “C” supports code and data memory require-
ments larger than 64K, and also provides 8087 numeric
data processor support.

(4) Microsoft also supplies a compatible macro assembler
and symbolic debugger, both compatible with their
“C” compiler.

(5) The Microsoft products are well supported and are
available off the shelf.

Once the development method was chosen, the main
problem was how to make software designed t o run on an
IBM PC run on an 8086 multibus system. Microsoft “C”
didn’t make any claim to ROM programmability of their

code, and Microsoft “C” runs under the PC DOS operating
system. The problems to be solved included how to transfer
the code from the IBM PC to the 8086 computer, how to
debug the software, and how to handle real-time interrupts.
These problems have been solved through the use of utility
software written at JPL. The utility software is used to trans-
fer the compiled application program from the IBM PC en-
vironment to the target system. Transfer methods include
floppy disks, PROMS, or downloading t o RAM.

The “C” language (including Microsoft “C”) itself does not
provide in t empt handling. Even though all “C” functions are
re-entrant, they end with a normal return, not an interrupt
return. This problem has been solved by using simple assembly
language routines which vector the interrupt, to the desired
“C” routine, and then perform the required end-of-interrupt
operations.

The VGTA retains the same monitor and control philosophy
as did the PCTA. The ability to read and execute command
sequences from the floppy disks was lost with the removal of
the CPM-86 operating system from the array controllers.
Therefore, it was decided to use the IBM PC as a smart ter-
minal as well as a software development tool. Once again,
selecting Microsoft “C” proved beneficial because it allows
the IBM PC and Target Machine software to be written using
the same language.

IV. Development Process and
Required Equipment

Software development can be described by the following
steps:

(1) Design the application program.

(2) Code the program.

(3) Compile the program.

(4) Test the program.

In the preceding steps, a!! hut testing can he done on any
IBM PC. Initial testing of programs, if no real-time input/
output is performed, can also be done to some degree on the
IBM PC. But in general, testing must be done on the target
computer. It is for this reason that the utility programs were
written.

The following hardware and software were required:

(1) IBM PC or equivalent with PC DOL

(2) Microsoft “C” and Microsoft macro assembler

175

(3) Target system consisting of:

(a) Intel 86/14 computer.

(b) 1/2 Mbyte RAM.

(c) PROM module.

(d) BLC 8222 floppy disk controller module.’

(e) 5-1/4 inch floppy disk drive.’

(9 Set of COLDBOOT, SIMDOS, and 957B PROMs.

(4) Prolog PROM programmer.’

(5) JPL utility software.

V. Transferring IBM PC-Compiled Software
When a program is compiled to run on the IBM PC, a

relocatable file, called an EXE file, is generated by the compile
and link process. When the program is executed, PC DOS
loads the EXE file into memory and then executes it. All
input and output to the program is through PC DOS system
calls, which are implemented via software interrupt 21H. The
utility software performs the functions of locating the EXE
file to operate at a specific memory location, loading the
file into the target computer’s memory, and simulating the
interrupt 21H PC DOS system calls. The transferring of the
program to the target computer’s memory can be accom-
plished via floppy disk, PROMs, or downloading.

VI. Memory Map of Target Computer
The following is a memory map showing where the various

utility programs will be loaded:

FFFF:F Top of memory.

FFFF:O Jump instruction to the start of COLDBOOT
(F800: 0).

FCO0:O Start of Intel 957B monitor program (ROM).

FDO0:O ROM image of SIMDOS. Moved to RAM by
COLDBOOT during initialization sequence.

F800:O Start of COLDBOOT (ROM).

8000:O Start of ROM area containing application pro-
gram memory image.

‘Required if floppy disk loading is desired. While the utility software
is presently written for the National BLC 8222, the software can be
modified for other controllers.

’Required to program PROMS. While the utility software is presently
written for the Prolog programmer, it can be modified to control
other programmers.

Note: The area above 8OOO:O is ROM (or unused); the area

Start of RAM area where application program is
loaded from floppy disk, transferred from
ROMs at 8000:0, or downloaded from IBM PC.

07CO:O Start of RAM resident portion of SIMDOS.

below is RAM.

1OOO:O

Transferred here during the boot-up sequence.

Start of the load area for the LOADER utility.

Start of RS-232 communication input buffer

0780:O

0200:O

0OOO:O Start of interrupt vector table, bottom of
memory.

VII. Utility Software
All utility programs were written in “C,” or assembly

language, with the exception of the Intel 957B program. All
programs are small and are easily modified.

ZNTEL957B. This program is an INTEL monitor program.
It is designed to run on the 86/14 computer and to provide
basic debugging services. This program is supplied in an
unmodified form.

EXE2ABS. This program is written in “C,” and runs on
the IBM PC. It takes as input a relocatable EXE file generated
by the Microsoft compiler/assembler/linker. This program
converts the relocatable file into a memory image file de-
signed to run at location 1000:0, although the load address
may be changed if desired. The resultant absolute file can be
loaded into the target computer via floppy disk using the
LOADER utility, or it may be converted to a hex file for
PROM programming using the ABS2HEX, and HEX2ROM
utilities, or it may be downloaded to the target computer
using the IBM2SBC utility. The EXE2ABS places a header at
the beginning of the actual program which contains items
such as the program length, program start address, a valid
file ID mark, a file checksum, and code to initialize the various
segment registers, stack pointer, and instruction pointer.

SZMDOS. This program, written in assembly language,
runs on the target computer. It is designed to simulate PC DOS
functions which the application program calls via software
interrupt 21H. A ROM image of SIMDOS is moved into the
RAM area during the initialization sequence of the COLD-
BOOT utility. Once moved, the SIMDOS initialization routine
is called, which sets up the interrupt 21H vector.

Since application programs reside in ROM-based assem-
blies having no disk drives, the majority of the PC DOS func-
tions relating to file and memory management are not needed.

176

Only the functions required to support the RS-232 interface
and a few miscellaneous others are implemented at this time.
These include the following:

0 - Program terminate

1 - Keyboardinput

2 - Display output

6 - Direct console I/O

7 - Direct console input without echo

8 - Console input without echo

9 - Print string

B - Check standard input status

25 - Set interrupt vector

30 - Set DOS version number

35 - Get interrupt vector

40 - Write to a file or device

44 - I/O control for devices

For a detailed explanation of these functions, consult the
PC DOS documentation.

COLDBOOT. This program, written in assembly language,
is the first program to run on the target computer following a
power on or reset. Upon start-up, COLDBOOT sets the baud
rate, and initializes buffers required for the RS-232 I/O
channel under interrupt control. Secondly, this program tests
RAM from 0OOO:O to 8000:O. If during the RAM test time
(about 5 s) a key is pressed, a menu will appear following the
completion of the RAM test, giving various options to the
user. If a key has not been pressed, as is the case in normal
operation, the program checks to see if a floppy disk is present
and ready to be loaded. If so, the program on the floppy
disk is loaded and executed. If no floppy disk is present,
COLDBOOT checks to see if a ROM program is present. If a
ROM program is present, it is transferred from the ROM area
to the RAM area and then executed. If neither floppy disk
nor ROM is present, the menu is presented. COLDBOOT
always checks for a valid program ID mark, and performs a
checksum of the RAM program prior to executing it. The
menu items include the following:

(1) Load from a fioppy dkk.

(2) Transfer a ROM program to the RAM area.

(3) Test RAM.

(4) Execute the 957B monitor.

(5) Perform a checksum of the RAM program.

(6) Execute the RAM program.

(7) Download a program into RAM.

LOADER. This program, written in assembly language,
runs on the target computer. It is used to load a program into
the target computer via a floppy disk. Using the IBM PC, the
floppy disk must first be formatted without the /S option,
thereby creating an empty disk. LOADER must be the first
program written to the disk. Next, SIMDOS is written to the
disk; and finally the application program, after being located
to run at 1OOO:O by the EXE2ABS program, is written to the
disk. Following this procedure, the disk is ready to be loaded
into the target computer. This process is not as complicated
as it seems if a PC DOS batch command is used.

When the disk is inserted into the floppy drive of the target
computer and the reset pressed, COLDBOOT will detect the
presence of the floppy disk and load LOADER into address
0780:0, and then jump to 0780:O. The LOADER will then
load the disk copy of SIMDOS into its proper place in mem-
ory, and then load the application program into location
1OOO:O. Valid program ID marks are checked, and a checksum
of the application program is performed prior to program
execution. By using the LOADER utility, a test version of
either SIMDOS or the application program can be loaded into
the memory of the target computer.

ABS2HEX. This utility program, written in “C,” which
runs on the IBM PC, converts an absolute file created by the
EXE2ABS utility to a hex file which will then be used to
program PROMS. ABS2HEX prompts the user for ROM size,
and then generates hex files grouped as ROM images. The
program also generates and records in the file the checksums
for each ROM image.

HEX2ROM. This program, written in “C” and run on the
IBM PC, reads a hex file generated by the ABS2HEX utility
and then controls the PROM programming process. HEX2ROM
is presently designed to control a Prolog PROM programmer
but may be modified for others il’ desired. Tne uber is direcied
by prompts during the programming process to perform check-
sums on the programmed ROMs.

VIII. Conclusion
The software approach described above is presently being

used to implement the VGTA Software. PCTA software,
written in Pascal and compiled using CPhI-86/Pascal MT+86,
is presently being rewritten in “C” in order to eliminate bugs,

177

and to make the programs more manageable. Approximately required in the application programs other than the interrupt
70% of the programs have been converted and tested. Results linkage routines; this was not the case in the Pascal versions.
show a 20% decrease in code size, and at least a 50% increase So far. no errors have been detected with the Microsoft
in speed. Little assembly language programming has been products.

Reference

1. Brown, D. W.. Cooper. H. W.. Armstrong, J. W., and Kent. S. S., “Parkes-CDSCC
Telemetry Array: Equipment Design,” TDA Progress Report 42-85. Jet Propulsion
Laboratory. Pasadena, Calif., pp. 85-1 10.

