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Institute of Applied Mathematics
imeni Keldysh, USSR Academy of Sciences

1. Introduction

At present in computational gas dynamics [1] there are well-
developed methods based on isolation of discontinuities, making
use of calculation grids adapted to the boundary. Such approach
[2-3] affords high accuracy, although the computerized construc-
tion of a difference grid involves major software difficulties,
especially in the case of a moving boundary and other nonsta-

tionary processes.

The tasks of contemporary engineering gas dynamics are dis-
tinguished by great diversity of geometries and boundary condi-
tions, and even an approximate solution often enables an assess-
ment as to the prospects of a gas dynamics apparatus under
development. There also exist a multiplicity of problems in
which the gas flow itself plays a subordinate role in relation
to the other dominant physical processes for which only extremely
crude models are available (physical gas dynamics). In these
applications, it seems advisable to expect the following demands

of the computer algorithm:

1. A unified approach to the solving of different types of

problem, with easy enlargement of the physical content.

*
Numbers in the margin indicate pagination in the original text.
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2. Easy operation of the program, not requiring a highly

qualified computer mathematics user.

3. Satisfactory practical precision at relatively short

computer run time.

It is difficult to satisfy requirements 1-3 with traditional
numerical methods. The methods best suited to this are a start-to-
finish calculation [l1], which has been a stimulus to the develop-
ment of the latter. The use of boundary-nonadapted regular grids
and explicit schemes enables a simplification of the algorithm,
an automated running of the program, and consequently an appre-
ciable enlargement of the range of users.

Various authors have elaborated this method for the two-
dimensional case [4-9]. The chief shortcomings of the methods
described in [4-6] are the nonconservativeness, the nonhomo-
geneity and the cumbersome formulas in the boundary compartments
of the grid, which do not allow a generalization of these methods
to the case of an arbitrarily moving, curvilinear boundary in a
complex three-dimensional configuration. This complicated algo-
rithmic procedure has another shortcoming--the boundary condi-
tions are difficult to realize on nonuniform rectangular grids.
The methods advocated in [5,6] are based on direct approximation
of the derivatives at the node next to the boundary, which
results in a large error at nodes with a heavily nonuniform
pattern, complicates the software realization, and inadmissibly
limits the time interval of explicit layouts. These shortcomings
led the author [5] to the conclusion that nonadapted grids have

few prospective applications.

However, the above does not apply to the scheme [7-9] derived
on nonadapted grids by the integro-interpolation method (IIM)
[10]. Use of the IIM enabled simple difference formulas for the



two-dimensional case, assuring conservativeness of the start-to-
finish calculation of the flow parameters in the interior and

boundary compartments even for moving boundaries of complicated
shape. Joining small compartments to the neighboring ones pro-

vides adequate stability of the difference scheme.
The present work generalizes the approach developed in
[7-9] to the case of three-dimensional solids of complicated

shape.

2. The Numerical Method

Let us consider the equations describing multidimensional

flow of a nonviscous gas in Eulerian variables:
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or the equation for the total energy E can be replaced by the

equation for the internal energy e:
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where W = (W™ ,W"°,W”) is the velocity, P the pressure, p the

density. System (1) is solved in the region G with boundary

14 14
I =TI~ (Fig. 1), where I'" can be of three kinds: 1) the entry
boundary Fﬁx, where conditions of the first kind are usually

set; 2) the exit boundary Fz where we shall set the condition
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of vanishing of the normal derivatives of the gas dynamic quan- /5
tities; 3) the solid wall Pg or planes of symmetry Fﬁ, where we
have the condition of no flow-through:

(QF.;;)= 0 (2)
where n is the normal to the wall.

The surface of the solid is given by the function F:

F(x,y,z) > 0, point (x,y,z) lies outside the solid
F(x,y,2) = 0, point (x,y,z) is on the solid (3)
F(x,y,2) < 0, point (x,y,z) lies inside the solid.
The boundaries I‘2 ’ I‘z and PL are situated in the coordi-
bx bux c

nate planes. We shall complement the region G to produce a
coordinate rectangle by introducing the region G corresponding
to the solid. We cover the rectangle G + GT with a nonuniform
rectangular grid, producing three types of compartment:

a) a full compartment, entirely situated in the gas (inside

region G)

b) a partial compartment, intersected by the boundary of
the solid (in the calculations of the field of flow only that

portion occupied by gas is involved)

c) an empty compartment, entirely situated in the solid
(inside region GT - hereafter omitted from the calculations, and
such compartments are totally absent from the specially organized

computer memory files.

Furthermore, we introduce a layer of imaginary compartments

£ £

G¢ along Fmb' FC. After this, the grid is complemented to a



rectangle by the region Ggan' the compartments of which are
equivalent to empty ones. The center of each compartment corre-
sponds to the index i = (il’iZ'i3)' Hereafter, we shall omit
from the variables the indexes of directions on which no differ-
ence operations are performed. For the compartment of type a,b
(Fig. 2), we introduce the following geometrical parameters:

Sy = Simes
open to passage of gas in the direction im =1,2,3; Vi - the

- surfaces of the side faces of the compartment i

volume of the compartment occupied by gas. The proposed tech- /6
nique can be developed on the basis of any given explicit diver-

gent (flow) method of start-to-finish calculation. The results

of the two-dimensional calculations {7-9] revealed that the FLIC
method [11] is a convenient reference point, in which the values

of all the gas dynamic variables @ = [p,pﬁ,pE] are adjusted to

the centers of the compartments.

This method is based on consecutive calculation of the
physical processes - transition from the n-th to the (n+l)-th
time layer is done in a two-stage (in the case of moving bound-

aries, three-stage) scheme with a summary approximation [10].

In the first stage, only the action of pressure forces
with transport processes held in abeyance is considered. To
smooth out pulsations behind the shock wave front, it is possible
to introduce an artificial viscosity. We shall assume such
viscosity by analogy with the second physical [viscosity?] [9]:

7~di¢§/;

in contrast with [4,5,7,8] this is added to the gas pressure [3]:

PI= P +q

which simplifies the algorithm and improves the equalization of .



pulsations in the multidimensional case (hereafter we shall
write the combined pressure without the prime). Let us apply
the procedure described in [7] to a compartment or test volume.
We integrate system (1) throughout the volume of the compart-
ment i and replace the time derivative with its difference

analog:
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The index 0 refers to the value of the variables in the n-th
layer, 1 after the first stage, 2 after the second. Using the
familiar formulas of vector analysis, we change the volume inte-

grals in (4) into surface integrals:

oW = (S W! +—TSP-J§

g€l = (g% --e-P-S “W-od T )

On the side faces of the compartment open to the passage of gas
all the quantities shall be approximated by the half-sum of the
values in the corresponding compartments. It follows from (2)
that (W-d8) = 0 on the solid wall; therefore, the wall in (5)
provides a zero contribution to the energy integral. Provided
that the spacing of the grid is much less than the radius of

curvature of the solid, we have from (2):

QP _
5;-0 (6)

which lets us regard the pressure on the wall in (5) as equal to

the pressure at the center of the compartment.



As a result, we obtain approximation formulas for the first

stage:
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In the second stage, convective transport is factored in. The
procedure of obtaining the difference formulas is similar to the
first stage procedure. In this case we use a "scheme with wind-
ward differences". This scheme conveys rather precisely the
characteristic physical features of the flow, i.e., it possesses
the attribute of transportiveness. For the second stage, we get

the following difference formulas:

(Yot9) V= —t S (2" 4 )
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For the first-order explicit method described, the Courant con- /8

dition is a criterion of stability (for more details cf. [12]).
To avoid excessively severe limitations on the time interval,
ach small partial compartment (with volume less than 20-30% of

e
a full compartment) is joined to its neighbor.



3. The Software Realization

The program AEOL-3 is written in the language FORTRAN,
making use of the conventions of the OLYMPUS system [13,14] and
being an expanded version of the AEOL-2 application program
package for the three-dimensional case. The structure of the
program and the interplay between its modules conform to the
general layout of the AEOL package. The programming does not
employ any specific features of a particular FORTRAN version,
and therefore can be used in virtually any computer of sufficient
capacity. The package was developed in the BESM-6, but is run
in the YeS-1045. The computer run time is relatively short:
establishing a stationary flow past a complicated three-dimensional
solid on a grid of 22,000 compartments (working storage around
1 MGB) takes less than 3 hours of machine time of the YeS-1045.
Only the construction of the modules CURVE and CUBE differ
significantly from the two-dimensional version AEOL-2. These
perform the computation of the geometrical parameters of the
partial compartments. If the boundary is immobile, the sub-
programs are called up only once at the start of the program.
CURVE effects a scanning of the compartments of the grid, the
geometrical situation in each partial compartment being solved
independently, which also enables a uniformity of solving dif-
ferent types of problem. The CURVE and CUBE modules employ a
function for specification of the shape of the solid (3), formu-
lated as a subprogram - the function FCUR(x,y,2). The lengths
of the edges of a partial compartment are determined by solving
the equation FCUR(x,y,z) = 0 on the corresponding edge by the
method of dividing the segment into halves. If the boundary of
the solid passes exactly through one of the vertexes of the
compartment, we shift the boundary a slight distance away from
the vertex (usually less than 0.1%) for uniformity of the algo-

rithm.



To simplify the finding of the area of a particular side
face of a partial compartment, the line of intersection of the
face with the boundary of the solid is approximated by a straight
line segment. If (ql,qz) and (bl’b2) are the pairs of lengths
of opposite edges of the same face, it is easy to obtain a homo-

geneous formula:

S = 0.5.‘(Q‘+Q.) . l£,+ [.) -min(a"a‘).min [5‘41

The subprogram CUBE calculates the volume of the portion of /9
a compartment with a lesser number of vertexes, which is sub-
tracted as needed from the volume of the corresponding full
compartment. Through geometrical manipulations (rotation,
mirror and central symmetry, parallel translation), the spatial
configuration is reduced to one of the standards. Depending on
the type of configuration, we calculate the volume by a particu-
lar approximation formula, and if the situation is nonstandard,
the program is automatically halted and an error notification
is sent. (A nonstandard situation is easily corrected by modi-
fying the grid, cf. Fig. 3f.) The version being used at a given
time provides five standard configurations (Fig. 3a-e), which

enable analysis of practically all configurations.

The described standardization of cases of intersection of
a three-dimensional compartment by the solid substantially sim-
plifies the program logic, reduces the run time, enables a uni-
fication of the program complex and facilitates its mastery by
the user having no special training. The user is only expected

to specify the shape of the solid in the FCUR function program.

On the foundation of a unified geometrical data base, two

subsystems have been created in the AEOL-3 program complex:



a) calculation of the hydrodynamics, b) visualization
on display screen of the shape of an intricate object by lighting
up the lines of intersection of the surface described by the
function FCUR(x,y,z) with the planes of the grid. This program

appreciably simplifies the shape adjustment process.

4. Test Computations

To test the proposed procedure of start-to-finish calcula-
tion, we shall solve the problem of a supersonic gas flow past
a particular standard solid on various grids and shall compare
the results with standard tables. A sphere on a uniform Car-
tesian rectangular grid is a solid of practically arbitrary
shape (Fig. 3g). Therefore, we examine the streaming of a gas
flow with parameters M, =2, y=1.4, P_=p_ =1 around a unit
sphere on grids 21 x 24 x 32 and 18 x 18 x 24 with constant
spatial intervals hX = hy = 0.103 and 0.164, hz = 0.0594 and
0.095, respectively. On the first grid, in the entire field of
flow outside the zone of discontinuity the differences of the
pressure and density from the tabulated data [15] did not exceed

3% and 6%, while the drag was in agreement within 1.5%.

Figure 4 shows graphs of the pressure distribution along
radii making angles o = 0°%, 60°, 90° with the direction of the
flow; Fig. 5 shows the pressure distribution along the solid.
The curves obtained from a calculation on a detailed grid are
indicated by 1, those from a more coarse grid by 2. Figure 6
and 7 show the corresponding density profiles. It is evident
from the graphs that the agreement of the pressure and density
fields on both grids is perfectly satisfactory. Comparison of
the calculation results on the two grids demonstrates the con-
vergence of the method as the grid becomes more fine. It should

be pointed out that an accuracy better than 1% should not be
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expected for realistic grids in our method, since the parameters
within the grid compartment are assumed to be constant. In order
to clarify the role of the mutual arrangement of the solid and
the grid, the sphere flow problem was again solved on a grid of
24 x 24 x 32, but with the center of the sphere shifted 0.5-hz
along the flow. As compared to the former case, the difference
in pressure field was less than 1%, but the difference in the
drag force remained within 1.5%. This result is a dramatic illu-
stration of the reality of the above-mentioned accuracy limit
level of 1%.

In problems of experimental design the foremost considera-
tion is the distribution of pressure along an object and the
aerodynamic coefficients, as well as the nature of their change
as the shape of the object is varied. Analysis of the test
calculations reveals that the developed technique, realized in
the AEOL-3 program complex, is able to solve such problems on

extremely coarse grids with tolerable precision.

5. Calculation of the Flow Around a Three-Dimensional Object
of Intricate Shape

Let us consider the problem of a gas flow with parameters

M, = 3.5, p, = P, = 1, Y = 1.4 around an obtuse object. The

[oo]
general appearance of the object in Fig. 8a is shown by the
lines of intersection of the object's surface with the coordi-

£3 a1
Laca

0

nate planes. Figure 8b and 8c show th d of pressure in

the plane of symmetry and in the horizontal meridional section.
About the periphery of the graph are also shown the grid plane
markings, illustrating the distribution of the intervals. It
should be noted that, despite the small dimensions of the recess
in the meridional plane as compared to the grid interval (Fig. 8c),
the method provides an excellent resolution of the secondary

shock. The 1lift force at such object is negative, which was /11

11



found in the calculations and is entirely explained by the
presence of the secondary shock, which increases the pressure

in the upper half.

The calculations were done on grids with different spatial
intervals, the difference in the vertical and horizontal aero-
dynamic coefficients not exceeding 2%. A standard analysis was
done on a grid of 15 x 35 x 34 (22,000 compartments) and took
less than 3 hours in the YeS-1045.

6. Conclusion

The paper describes a conservative method of unified com-
putation of three-dimensional flow in the region of a complex
shape. The accuracy suitable for practical purposes, the rela-
tively modest computer run time, and the simple structure of the
program complex render it a useful tool in the study of engineer-

ing gas dynamic problems.

The authors express deep gratitude to A. A. Samarskiy for
unwavering attention to the work, as well as A. O. Latsis for
useful discussions of the elements of the program realization

of the method.
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