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1.0 INTRODUCTION
1.1 Purpose and Scope

This document describes the features, command language, and functional
design of the Software Implemented Fault Tolerance (SIFT) fault injection and
data acquisition systems in detail. It is also intended to assist and guide
the SIFT user in defining, developing, and executing SIFT fault injection
experiments or other experiments and the subsequent collection and reduction of
data obtained from the data acquisition software. This document is intended to
be used in conjunction with the SIFT User's Guide (NASA TM-86289) for reference
to SIFT system commands, procedures, functions, and overall guidance in SIFT
system programming.
1.2 Background and Description

SIFT is an experimental multi-computer system designed to provide ultra-
high reliable computing service in applications where uninterruptable system
performance is critical. Research in fault-tolerant computing concepts
utilizing the SIFT computer system is performed at the NASA Langley Research
Center's Avionic Integration Research Laboratory (AIRLAB). Vital to verifying |
and validating a given fault-tolerant computer system (like SIFT) is the
concept of in-circuit fault injection. 1In-circuit fault injection allows the
designer or researcher to examine system parameters such as: fault-handling
behavior (i.e. fault detection, isolation, and reconfiguration), performability
under fault conditions, survivability of the system in the presence of faults,
and fault coverage for the system or a particular subsystem. The SIFT fault
injection and data acquisition environments support the user in creating,
modifying, and executing fault injection or other experiments via command
driven interfaces implemented on the host environment (VAX-11/750). 1In

particular, the SIFT Fault Injection System (FIS) furnishes the user with the




flexibility to vary fault injection parameters such as: static fault insertion
(stuck at one, stuck at zero), transient fault insertion, rate of occurrence,
duration of fault waveform, double fault insertion, ete. On the other hand,
the SIFT Data Acquisition System (DAS) provides the capability to extract,
collect, and analyze selected real-time data from the SIFT computer system
during fault injection or fault-free operation. Together, the two diagnostic
research support systems provide an effective work station environment for
preparing, executing, analyzing, and cataloging a wide range of data from the
SIFT computer system.

Fault injection, data acquisition and software development for the SIFT
computer is accomplished using a DEC VAX-11/750 (AIRLAB System 9) as the host
software facility. Communication between the VAX-11 computer and SIFT computer
is facilitated through a VAX-11 resident interface called the SIFT Host
Environment (SIFT HEVN). The programming concept for SIFT HEVN is to provide a
separate DEC Command Language (DCL) command (e.g. a separate task program) for
each SIFT function. This programming approach allows the SIFT system user to
execute all VAX-11 DCL commands while in the SIFT environment and in addition,
provides the user with the flexibility and control to modify and/or add SIFT
functions for unique user applications and future SIFT programming
requirements. Entry into the SIFT Host Environment requires only a SIFT
account on System #9 and a VT-100 compatible terminal, Multi-user capability
can be utilized for many of the SIFT programming features; however, the FIS and

DAS features are SINGLE USER only.

The main section of this guide describes the FIS and DAS command languages
which are used to define, develop, and execute SIFT fault injection

experiments.




Appendix A describes the DAS user interface WINDOW. The WINDOW utility
allows the user to define the conditions for SIFT to VAX data transfers. This
appendix describes the procedures, command language, and capabilities of the
WINDOW interface.

Appendix B describes the features and operations of the SIFT global clock.
The SIFT Global is a common time base for the SIFT computer system and the
VAX/11-750 host station.

The user should be advised that because SIFT is a dynamically evolving
system, modifications to exiting functions/commands or new procedures can be
expected and may not be reflected in this guide. Current information can be
obtained through the VAX-11/VMS help facility which will be updated to reflect
the latest changes.

1.3 Conventions Used in this Document

CONVENTION MEANING
USER SUPPLIED Underlining indicates

command or data is to be

supplied by user

) Parenthesis indicate
optional parameters
associated with command
arguments

non Double quotes contain

system supplied responses,

prompts, cursors, and

error messages

$ VAX-11 DCL command prompt




SIFT$ SIFT Interface program

prompt
* Editing prompt
for FIS
environment
COMM¥*AND The asterisk indicates command

can be truncated to first four

letters.

2.0 SIFT FAULT INJECTION SYSTEM
2.1 Introduction

There are two methods for conducting fault injection tests (i.e., entering
fault input parameters and injecting the fault using those parameters) in the
SIFT Fault Injection System. The first method described is the injection of
faults interactively from input at the terminal. This method allows the user
to execute one type of fault at a time for as many iterations of that fault as
desired. The fault type and parameters can be varied interactively for desired
results. The second method is to inject faults using a file to store sequences
of faults which constitute a complete fault inject test plan. This method is
primarily used for large tests that can be executed automatically from
beginning to end with little or no user intervention. Test plans must be
developed using the Automated Research and Test System (ARTS), and detailed
procedures are contained in the ARTS User's Guide. The following sections
describe in detail the procedures for executing fault injections interactively -
and from a test plan.
2.1.1 Entering the SIFT Environment

To enter in the SIFT interface environment from a VT-100 type terminal,

the user can type SIFT at the VAX-11 command prompt "$". The system will




respond by replacing the VAX~T1 command prompt "$", with the SIFT prompt

"SIFT$". This starts the SIFT session and the display of the SIFT computer

system status. The SIFT display (see Figure 1) will appear at the top of the

screen showing current processors not allocated to other users, Processor
numbers already allocated to other users will not appear in the display.

Processor status (ARMED, ALLOCATED, SELECTED, HALTED, and RUNNING) is indicated

by various combinations of character attributes as described in reference 1.

2.2 FIS Command

o Command format: FIS (no options)

o Command level: Entered at the SIFT users prompt "SIFT$" .

0 Command summary: The command FIS activates the SIFT Fault Injection System
resident on the VAX-11/750. There are no parameters
associated with the FIS command. The FIS command is
cancelled by issuing the ENDFIS command at the SIFT user
prompt "sift$".

Description

After entering the FIS command, the system will issue the message "FIS

ACTIVATED" to notify the user that the command was accepted and executed, and

the message "FIS:0ON" will appear in the sift status display. However, if FIS

is currently in use by another user, the system will issue the message "FIS IN

USE"., 1In either case, the SIFT prompt "SIFT$" will reappear after the command

is executed. To exit a FIS session, the user can or must enter the ENDFIS

command at the SIFT prompt "SIFT$". The ENDFIS command will delete any FIS
parameters that were created by the user (see FAULT command below) and permit

other users to access the FIS environment.
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There are several background processes initiated by invoking FIS commands
that are transparent to the SIFT user, such as, creating the FIS global section
and initializing the section variables, and subsequently mapping to the SIFT
global section and setting the boolean FIS true. When FIS is finished mapping
to SIFT, the FIS switch in the SIFT display will be set (on). This Boolean
locks out other users from entering the SIFT FIS program.

2.3 Interactive Fault Injections

2.3.1 FAULT Command

o Command format: FAULT (no options)

o Command level: Entered at the SIFT users prompt "SIFT$".

0 Command summary: This command activates the process that allows the user to
enter fault input parameters from the terminal for a
subsequent fault injection. To cancel the fault command
the user can enter QUIT at the FIS editing prompt "*". To
save fault input parameters, the user can enter EXIT at
the FIS editing prompt.

Description

To invoke the FAULT data entry screen, the user must initially invoke FIS
as described above, then enter the FAULT command at the "SIFT$" prompt. The
system will respond to a FAULT command by graphically displaying the fault
input parameters needed for a single fault injection (see Figure 2). The
single fault injection display is segmented into different fault input
parameter fields (e.g. fault type, processor, board, etc.). Accordingly, each
input parameter field is associated with a unique set of keywords that are
valid only for the input parameter field they are associated with. For
example, (see Figure 2) the input parameter field PROCESSOR has six different

keywords that are valid for this field: "P1" (i.e. SIFT Processor 1), "P2",
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np3n, _...,... and "P6". A description of the fault types and other input

parameters with respect to limitations of input parameter sizes and correct

format is included in the FAULT INPUT PARAMETER section. Once the FAULT
command has been executed, the FIS cursor will automatically be placed at the
bottom of the screen awaiting the fault data entry commands (i.e. DEF*INE
command, DOU*BLE command, etc.).
2.3.1.1 DEFINE Command
‘o Command format: DEF (options: /1 or /2) [parameter field name]

Options /1 - single fault entry screen

Options /2 - double fault entry screen

Default option is /1.

o Command Level: Enter command at FIS editing prompt "V,

o Command summary: The DEF command, when used in conjunction with the
appropriate fault input parameter, allows the user to
enter fault injection data into the FIS display.

For example:

* DEF TYPE <return> Places the cursor in the field FAULT

TYPE and
accepts one of the following keywords:
SAQ0 -~ Stuck at zero. TR1 ~ Transient type 1.
SA1 - Stuck at one. TR2 ~ Transient type 2.
Description
The DEFINE command executed without a fault input parameter field
automatically positions the cursor at the first fault input parameter field
(i.e. FAULT TYPE) inside the display for data entry. Pressing a <return>
after data entry will move the cursor in the display for the next data entry.

Executing a carriage return without entering data will leave the data unchanged




in that parameter field. Entering a "Q" at any parameter field will exit the
display and reposition the cursor to the FIS editing prompt "*", Once the user
has completed an input parameter edit session, a control Z command entered at
the editing prompt "*" will save the FIS edit session and map the input fault
injection parameters to the FIS global section for subsequent use by the INJECT
command process.
2.3.1.1.1% Fault Input Parameters
This section will present and describe the fault input parameters and
associated keywords for a single fault and double fault injection display.
This section is organized in the following manner: fault parameter field,
format, options, and associated keywords.
FAULT TYPE:
Description:
Defines the type of fault to be injected into the circuit. Currently
there are four types of faults available:
"Stuck at O", "Stuck at 1", "Transient 1", and "Transient 2".
Format:TY*¥PES (no options)
Keywords:
SAO -"Stuck At O" - forces the selected fault node to a logic low from 1
millisecond - 600 seconds (user defined).
SA1-"Stuck at 1"~ forces the selected fault node to a logic high from 1
milliseconds -~ 600 seconds (user defined).
TR1-"Transient 1"- injects an intermittent pulsed waveform that can
repeat over a time interval specified by the user. The TR1 waveform is
in a electrically inactive high impedance state (i.e. tristated) between
active pulses. (See Figure 3)

TR2- "Transient 2"- is a continuous waveform (e.g. alternating "stuck at

10
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zero", "stuck at one" states) that repeats over time interval specified

by user. This transient waveform is electrically active in both state

levels.

(See Figure 4).

PROCESSOR
Description:

Defines the SIFT working processor that is targeted for fault injection.
No default parameters are associated with this input parameter field.
Format: PROC*ESSOR (no options)

Keywords: P1,P2,P3,P4,P5,P6 - SIFT working processors.
BOARD
Description:

Defines the functional circuit board that faults are to be injected into
for a given SIFT processor. No default parameters are associated wiﬁh this
input parameter field.

Format: BOA*RD (no options)
Keywords:
CPU~ Central Processing Unit
BI- Bus Interface
MIC~- Memory Interface Control
BR~ Broadcast Receiver
1553- Avionics Serial Data Port (MIL-STD-1553)
MPM1~ Main Processor Memory
MPM2- Main Processor Memory

TC- Timing and Control

12




SSNUYal - AI0DAL

"WHOJTAVM NOILJDAINI ¢ LNHUISNYHL ¥ "Old
‘WIOJ2ADM }|ND} SNOUIUOD Z¥| JO awi) pasdo|s |pjoy si ¢

"1 JO UoDINP By} 1O} Pa}iassD A||N} SI WIOJSADM }|NDJ SNOUIUOD Z¥]
SY) 940}3J3Y} ‘WI0JaADM }|NDJ | Y[ 8y} Ul _m_ 9SDO 8y} SO ‘S3)D}S
P8}D}S—14} 10 9A1}OD—UI OU SDY WIOJSADM }|ND}J SNOUIJUOD Z¥| 8U} :9)}O0N
‘WIOJSADM }|ND} SNOUIUOD Z¥] 9:. 10} 9A1}OD 3Q ||IM |BA3|

abD)|0A pauljep 1SN D DY} Wi} [DAJB)UI UD ajoubisep Z| PUD || :IYIHM

4

soasn Q] T P

NHO43AVM 3AILIL 3T —— —pleS288T L e

'soasn | 'soasn 1|

-S1T0A NINW :S1T0A XYW

13



I.C.
Description

The Fault program will accept valid I.C. designations from Ul-U995
However, the user should consult Appendix C "SIFT I.C. layouts" to correctly
identify board and I.C. No default parameters are associated with this input
parameter field,
Foﬁnat: I.C. (no options)
Keywords: U1 - U99
PIN
Description

Accepts valid pin numbers from 1-99. Again, the user should consult the
SIFT users data base for correct pin assignment numbers. No default
parameters are associated with this input parameter field.
Format: PIN (no options)
Keywords: 1-99.
MAP PROBE
Description

The SIFT Fault Injector is a physical link to the integrated circuit or
P.C. board. At present, there exists eight discrete map probes for in-circuit
fault injection. To aid the experimenter in connecting to integrated
circuits, each probe can accommodate two connection devices. The first, is a
standard ball-clip ‘connector; the second option is a wire-wrap pin socket. 1In
addition to the in-circuit fault connections described above, the map probe
requires a power (+5 v) connection and a ground connection from the board
receiving the fault injection. (See the AIRLAB In-~-circuit fault injection
users guide for more detail on the SIFT Fault injector operation).
Format: PRO*BE (no options)
Keywords: 1-8.

14




MAX VOLTS
Description

Defines the maximum voltage the user wants to inject into the circuit.
Maximum voltage using the SIFT Fault Injector is 15 volts d.c. It can be
incremented in .1v steps from -15Vdc to 15Vdc. Default is 0.0 volts. Note:
The user should consult the SIFT data base for information on designated I.C.
supply voltages.
Format: MAX*VOLTS (no options)
Keywords: -15.0vVdc to 15.0Vdc at .1Vdc incremental steps
MIN VOLTS
Description

Defines the minimum voltage the user wants to inject into the circuit.
Minimum voltage using the SIFT Fault Injector is -15 volts d.c. Can be
incremented in .,1v steps from 15.0Vdc to -15.0Vde. Default is 0.0 volts.
Format: MIN*VOLTS (no options)
Keywords: 15.0Vdc to -15Vdc at .1Vdc incremental steps
INJECTIONS
Description

Defines the number of times the fault is to be executed. Default is 1.
Format: Inject*ions

Keywords: 0 to 65536

TIME
Description

Defines the amount of time a FAULT TYPE waveform (i.e. SAO, SA1, TR1,
and |

TR2) will be activated.

15




Format: TIME
Keywords: T, T!, T2, T3
T: Defines the amount of time a "Stuck at zero" (SA0) or a "Stuck at one"
(SA1) fault injection waveform is activatedf T: can be varied from 1
millisecond to 600 seconds in 1 millisecond intervals. (See Figure 2).
T1: Defines the time a voltage pulse (either a negative or positive level)
will be active for a TR1 and TR2 fault injection waveform. Can be varied from
.3 microseconds to 12.8 microseconds in .1microsecond steps. (See Figures 3
and 4).
T2: Defines the inactive or tristated time between two successive voltage
pulses as related to TR1 fault injection waveform. For TR2 fault injection
waveform, defines the time the user defined voltage level will be active. Can
be varied from .3 microseconds to 12.8 microseconds in .1 microsecond steps.
(See Figures 3 and U4).
T3: Defines the total period or life-time of a TR1 and a TR2 fault injection
waveform. Can be varied from .3 microseconds to 3200 microseconds in .1
microsecond steps. (See Figures 3 and 4)
TIME OUT
Description

Defines the time out period (in sec) for the fault if no reconfiguration
occurs. No further data will be taken after this time.
Format: TIME OUT °
Keywords: 0 to 65536 seconds.
DELAY TIME (double fault display only)
Description

Defines the amount of delay between siﬁgle fault display execution and
double fault display execution (i.e.defines the delay time between two
sequential faults). NOT IMPLEMENTED.

16




Format: DELAY TIME
keywords: not avaliable yet
2.3.1.2 DOUBLE Command

o Command format: DOU (options: /DEL)

o Command level: "*" DOU
o Command summary: The DOUBLE command invokes the process that draws the
double fault screen display (See figure 5). To cancel
and erase the double fault screen, the option (/del) is
used with DOU command.
Description
Data entry is accomplished by using the DEF/2 command with the appropriate
input parameter field at the FIS editing prompt "*", For example:
* DEF/2 TYPE
Places the cursor at the FAULT TYPE input parameter field in the double
fault display (assume the DOUBLE command was executed prior to DEF/2
command) .
The same input fault parameters as described in Section 2.3.1 for the single
fault display are valid for the double fault display. To exit a double fault
edit session, the user can execute a control Z or enter an EXIT <return)>
command sequence. The FIS edit session will be saved and accordingly the fault
input parametqrs will be sent to FIS global variable section for subsequent
use. If the user desires to discontinue or erase a double fault screen, the
command DOU with the DELETE attribute will erase the double fault screen.’
Fault input parameters entered into the single fault injection screen will

remain intact and undisthrbed.

17
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o] Command format: EXIT or Control Z (no options)
o Command level: ¥ EXIT or Control Z
o] Command summary: The exit command saves the fault injection data into

the FIS global section for future fault injections, and returns the user back
to SIFT status screen.
Description

The EXIT or Control Z command allows the user to exit from a particular
fault injection edit session and subsequently save the edit session parameters
for later use (i.e. the fault injection). Note: If the EXIT or Control Z
command is given while the double fault is in effect, the system will assume a
double fault is being executed. If a single fault is in effect when EXIT or
Control Z command is given, the system assumes a single fault is being issued.
2.4 INJECT Command
o] Command format: Inject
o Command level: $SIFT Inject
(o] Command summary: The Inject command activates the In-circuit Fault
Injector, which subsequently issues a fault to the targeted circuit board. To
cancel the Inject command, type a ctrl Y during the Inject process.
Description

The Inject command calls the process (program) that retrieves and checks
the fault input parameters from the FIS global section and subsequently sends
them to the SIFT Fault Injector for in-circuit fault injection. The INJECT
program is integrated with the SIFT data acquisition system (DAS) (see section
3.0). Therefore, FIS and DAS must be activated to use this facility. The in-
circuit fault injection will execute and issue the message FAULT INJECTION

COMPLETED. After the fault is completed, the program stores the values of the

19



SIFT global clock at the time the fault was submitted. This clock time is the
variable SIFT_global clock in the DAS section which is available for use in
processing the results of a fault injection test (see Appendix B on use of the
SIFT global clock).
2.5 Fault Injection Test Plan Execution

The following commands are used to execute fault injection test plans:
(See the Automated Research and Test System (ARTS) User's Guide for detailed
procedures on creating and editing a fault injection test plan.)
2.5.1 FITM*ENU [testplan name]
o] Command format: FITM¥ENU
o Command level: SIFT$ FITM*ENU
o Command summary: Displays a menu of fault injection test (FIT)
operations.
Description

When the test plan is first started, the startup menu allows the user to
select a particular test unit to execute from the test plan. The selected unit
is then initialized into the FIS global section. If this command is invoked
after a test plan has already started (i.e., a test unit has already been
initialized and has partly or completely finished execution), a menu different
from the startup menu will be displayed. This menu includes a number of
different operations that are only applicable after a test plan has started
such as restarting a test unit at a different fault number or continuing a test

from the last position in the file. This menu also displays at the top of the

screen the lastest status of test plan execution.
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2.5.2 FITCX®ONNECT
o Command format: FITC*ONNECT
o Command level: SIFT$ FITC*ONNECT
o Command summary: Displays the map probe connections and SIFT circuit
board layouts to assist the user in connecting the correct in-circuit fault
injector probes to the SIFT processor hardware.
Description

By default the mapping for the currently initialized test unit will be
displayed but other test unit mappings can also be displayed as desired. The
program is completely menu driven and allows the user to select circuit board
and IC layouts for display on the Megatek graphics monitor. The Megatek
displays highlight the particular ICs as they are being connected and also show
additional information of value about the ICs.
2.5.3 FITI*NJECT
o] Command format: FITI*NJECT
o Command level: SIFT$ FITI*NJECT
o] Command Summary: This command initiates the fault injections for the
currently initialized test unit,
Description

The FITINJECT command automatically does all the other SIFT or FIS
commands necessary to run the test such as enabling data acquisition, starting
the SIFT processors, starting the preprocessing program, and reloading faulted
processors after an injection. Each fault in the test unit is injected in
sequence for the required number of iterations until all faults have been
injected. After the test unit is completed, control will return to the user to
select another test unit or rerun the previous test unit (done from the FITMENU
command)., Once a test unit is in progress it can be interrupted with Cntrl y,
after which the FITMENU can be invoked to restart or repeat the test unit.
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2.6 ENDFIS Command

o Command format: ENDFIS

o Command level: SIFT$ ENDFIS

o Command summary: The ENDFIS Command ends the current FIS session.

The ENDFIS command ends the FIS session by deleting access to the FIS global
section. Note: The ENDFIS command deletes all FIS and FAULT input variables
in the FIS global section; therefore, all previous user input data describing a
fault injection session is lost.

2.7 SUMMARY OF FIS COMMANDS

o FIS - Activates the SIFT fault injection system if not already in use.

0o FAULT - Invokes the process that allows the user to enter, edit and list
fault injection data for an interactive fault injection session. 1Inside
the fault program commands are:

DEF[/1 or /2] [field] ~ Places the cursor at the parameter field
specified or first parameter field if no field is specified.

DOU - Displays the double fault entry screen for subsequent entry of
second fault parameters

DOU/DEL - Deletes the double fault entry screen and returns to single
fault entry.

EXIT or CNTRL Z - saves parameters and exits the fault program.

o INJECT =~ Collects the data from the FIS global section (i.e., the fault
input parameters from the last FAULT command) and sends them to the SIFT
fault injector for in-circuit fault injection. (Note - This command also
enables data acquisition, starts SIFT, runs the preprocessor and reloads
SIFT after the injection. It repeats this sequence for the number of
injections specified in the FAULT program.)

o FITMENU - Displays a menu of operations for execution of a fault injection
test plan.
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0 FITCONNECT - Displays mapping for the in-circuit fault injector probes and
SIFT circuit board diagrams for making probe connections to the SIFT
hardware.
o FITINJECT - Does the fault injections from the test plan.
o ENDFIS - Deactivates FIS and deletes all global variables/parameters used
during the FIS session.
3.0 SIFT DATA ACQUISITION SYSTEM
3.1 Introduction

The purpose of the SIFT Data Acquisition System (DAS) is to extract,
collect, and analyze selected real time data from the SIFT computer system.
This process is accomplished in three main phases. The first phase is defining
the specific data objects to be extracted and the conditions for sending the
data (called the filter). The second phase is setting up DAS, enabling
acquisition, and capturing the data. The final phase is preprocessing the data
which includes reading, processing, and/or saving the data for further
analysis. The phases of DAS are integrated and coordinated through VAX global
data sections and interprocess communications. A thorough understanding of
these phases and their interelationships is essential to have effective use of
DAS for SIFT experiments. This section describes each phase of data
acquisition in detail and also describes the window utility used for defining
DAS requirements.
3.2 Defining Output Data and the Filter

The specific data objects that DAS is to output must be defined and made
known to the system, and the conditions (filter) for sending the data must also
be defined. The method for accomplishing these tasks is the window utility

which places the information in a file called the window file. The details of
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how to use the window utility are described fully in Appendix B; however, the
general concepts of defining output data and filter are explained below.
3.2.1 Data Definition

There are four basic types of data objects used in DAS - variables, hooks,
memory addresses, and permanent system variables. DAS allows up to 16 of these
data objects to be defined. The entire list of objects make up what is called
the window. There are five permanent system variables leaving the user with
zero to 11 data objects which can be defined as any combination of variables,
hooks, and memory addresses. These types and the permanent system variables
are described below.

Variables: Variables are those names or labels used in the modules of the
SIFT operating system and user programs that are linked with the operating
system. At link time the variable names used in these modules are mapped to a
specific memory location in SIFT. If a variable name is defined in the window,
the contents of this memory location will be output. In order to use a
variable name in the window the variable must be listed in the program map.
In assembly programs, all labeled variables are accessible in the program map.
In Pascal programs, only those variables declared in the outermost scope (main
program level) are accessible. In addition to the operating system variables
available in the VAR section of the SIFT operating system program, several
frequently used variables are declared in the source file GLOBALS.SR located in
the SIFT directory (logical name SIFTDIR). These variable names can be
included in the window only if the object file SIFTDIR:GLOBALS.RX is linked
with the operating system and user programs.

Hooks: One group of special purpose variables listed in GLOBALS.SR is
used frequently in DAS ~ the hook variables (or just hooks). The hooks are

HOOK1, HOOKZ2,...HOOK9, HOOKA, HOOKB; and one or more of these hooks can be
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defined in the window. The purpose of a hook is to provide a convenient method
of accessing local variables (i.e., not declared in the outermost scope) used
in SIFT programs. For example, if the variable TIME is defined locally in a
Pascal program and this program is linked with the operating system, the
variable TIME will not be mapped to a specific hex address and, thus, cannot be
used in the window. However, if the program contains a statement that assigns
the value of TIME to one of the hooks (e.g., HOOK1 := TIME), then the variable
HOOK1 can be used in the DAS window which will output the value of TIME. An
alternative is to define TIME in the Pascal program to be at a specific address
and use this hex address in the window. Another alternative is to declare the
variable at the outermost level in the Pascal program and use that same name in
the window.

Hex addresses: This type of data object is self-explanatory. If used as
an entry into the DAS window, the value that is stored at the hex location will
be output by the system.

Permanent system variables: The five permanent system variables in the
window are: PID (processor ID), TASKID (task ID), PRESENTCONFIG (present
configuration), GFRAME (global frame count), SFCOUNT (subframe count). These
variables are always located in the order given and in the last five positions
of the window. They cannot be changed by the user, but the data from these
variables can be filtered (see filter definition below) and accessed during
preprocessing (see Section 3.4).

Declaration files: If a hook is referenced in a Pascal program (e.g.,
HOOK1 := TIME), the hook must also be declared in the Pascal program. To
declare one or more hooks, the program must contain the statement INCLUDE
'SIFTDIR:HOOKSDEC.GLO'. HOOKSDEC.GLO is a file that contains the declarations

for all the hooks, and these declarations correspond to the hook definitions
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contained in GLOBALS.SR. If a non-hook variable listed in GLOBALS.SR is
referenced in a Pascal program, the statement INCLUDE 'SIFTDIR:SIFTDEC.GLO'
must be used. If both hooks and non-hook variables listed in GLOBALS.SR are
referenced in the program, then both files (HOOKSDEC.GLO and SIFTDEC.GLO) must
be included in separate INCLUDE statements.

3.2.2 Filter Definition

Once the window has been defined the conditions for sending the data must
be established. The set of these conditions is called the filter. The filter
is composed of two main parts. The first part, the filter status, defines when
data is to be sent based on actual values of the data objects in the window.
The second part, the termination status, defines how data acquisition is to be
terminated.

Filter status: There are three choices for the filter status: 1) send
data only when there is a reconfiguration of SIFT processors, 2) send data all
the time (unconditional - filter disabled), or 3) send data based on the value
of specific data objects in the window or when there is a reconfiguration.
These options are selected using the window utility and invoking the SET FILTER
function at the main menu as described in Appendix B. The first two choices
are self-~explanatory but the third needs more explanation. Under this third
option the user may qualify from one to six data objects in the window with a
relational operator (called the qualifier or qualifier code) and a qualifier
value. The filter algorithm compares the value of the window data object to
the qualifier value based on the qualifier code selected (e.g., equal, less
than, greater than, etc.). If the result of this relational expression is
true, data is sent. If more than one data object has been qualified, the data
will be sent when any qualifier is found to be true (i.e., the results of

qualifiers are ORed). An example might be to establish a qualifier for the
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variable TASKID so that data is sent only when TASKID = 3. Also, a qualifier
could be defined for ERRORS > 0 so that data will be sent when either TASKID =
3 OR ERRORS > 0. (There is no provision for ANDing qualifiers so that data is
sent only when the expression, TASKID = 3 AND ERRORS > 0, is true.) Also note
that data will always be sent when there is a processor reconfiguration,
regardless of the result of qualifier conditions established in this option.

Termination status: There are basically two choices for termination
status: 1) terminate data after a reconfiguration, and 2) do not terminate
data after a reconfiguration but continue data acquisition indefinitely.
These options are made using the Window Utility and invoking the SET
TERMINATION function at the main menu. The first choice means that data will
be sent during the subfréme that reconfiguration occurs and will continue to be
sent (without filtering) for a set number of subframes after which data will
stop. The number of subframes to continue data after reconfiguration is called
the delay, and this number may be defined by the user to be zero or any
positive integer. The default delay is 10 subframes, but can be changed in the
window utility. The second option means that data will be sent during the
subframe that reconfiguration occurs, but data acquisition will continue
indefinitely according to whatever filter conditions have been established.
Therefore, under this option data will not be sent automatically for a certain
number of subframes after a reconfiguration, but will be filtered just as
before the reconfiguration occurred. This option allows continuous operation
of data acquisition for extended periods without being effected by processor
reconfigurations.
3.3 Setting Up DAS, Enabling Acquisition and Capturing Data

The DAS environment must be properly set up and enabled in order to

capture data for SIFT experiments. The setting up process involves several
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steps: activating DAS, allocating and loading SIFT processors, loading the
window file, and enabling data acquisitionf
3.3.1 Activating DAS

The first step is to activate DAS within the SIFT environment. To
activate DAS the user must already be in SIFT and type 'DAS' at the SIFT$
prompt (i.e., DAS is a SIFT command and is unknown outside the SIFT
environment). However, data acquisition is a single user system. If another
user has already activated DAS the second user gets a 'DAS IN USE' message and
must wait until the other user is finished. Once activated, DAS runs as a
subprocess in parallel with SIFT, and the SIFT display will show the message--
DAS ON. The DAS command also does some functions that are transparent to the
user but are nevertheless important for a complete understanding of the system.
One of the most important of these functions is to create and initialize a DAS
global section that is used to store information needed for acquisition and to
share data between various DAS programs. Another important function is to load
the SIFT processor P7 with a program (called RELAY) that filters and sends the
data to the VAX. Processor P7 becomes allocated to DAS and cannot be used for
any other purpose while DAS is activated. Another function done automatically
by the DAS command is to mount the disk drive DMA3. This is the drive used by
DAS to store all data transferred during one acquisition. Under normal
operating conditions, the message indicating that DMA3 has been mounted will be
displayed on the screen. However, it is possible that a previous error
condition or abnormal exit from DAS will cause DMA3 not to be mounted
automatically. In this case, the DAS command will display a message that
requests the operator to mount the disk and will wait for the disk to be
mounted before continuing to execute the DAS command. If this situation should

occur, see the operator, SIFT system manager, or a systems programmer for
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assistance. After DAS has been activated (shown by the DAS ON message in the
SIFT display), the other DAS commands become available for use. All the DAS
commands are listed in Section 3.5.
3.3.2 Allocating and Loading SIFT Processors

This step can be done before or after DAS is activated, but it must be
done before loading the window file. The commands used for allocating (ALP)
and loading (LOAD) are described fully in the SIFT User's Guide (NASA TM-
86289). Any combination of available processors P1 through P6 can be allocated
for use during data acquisition. These processors must be loaded with the SIFT
operating system that has been properly linked with the user's application
programs and schedule table; and the map option must have been used during the
link operation (see SIFTLNK command in the SIFT User's Guide). The map option
during linking produces a map file with the extension .CRF which is used to
locate symbolic addresses when the window file is loaded. One point to be
aware of when allocating SIFT processors for data acquisition is that there
will be no reconfigurations if fewer than three processors are selected.
Therefore, with fewer than three processors, data acquisition will only
terminate when a terminating condition other than reconfiguration occurs (see
paragraph below on terminating data).
3.3.3 Loading the Window File

After DAS is activated and the SIFT processors are allocated and loaded,
the window file must be loaded. This is accomplished using the window utility.
Type WINDOW and select the load option in the main menu, or type WINDOW/LOAD
filename. The second method bypasses the menu and loads the window file
directly. The SIFT processors that are loaded will be the processors that are
selected at the time the load is done. Normally, the window file has to be

loaded only once for a data acquisition session. However, the window file will
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have to be reloaded if any of the following situations occur: (?) if changes
are made to the allocated/selected processors; (2) if a new/revised window file
is used; (3) if any of the SIFT processors are reloaded; (4) if DAS is ended
with ENDDAS command and reentered at a later time. (Note - the commands INJECT
AND FITINJECT automatically take care of reloading the window file on a faulted
processor after the injection is done.)
3.3.4 Enabling Acquisition

After loading the window file, data acquisition can be enabled with the
ENABLE [timeout] command. This command enables the system to receive data by
starting the hardware and software components that work together in
transferring data from the SIFT processors to the VAX. The timeout parameter
given with the ENABLE command sets a length of time (in seconds) that data will
be received. If no timeout value is given, the initial default is set to 10
seconds. If a timeout is given in the command, that value becomes the default
for subsequent ENABLE commands. The minimum time that can be given is O
seconds and the maximum time is 65,534 seconds (approximately 8 hours). A zero
timeout means that timeout is disabled (i.e., timeout will not occur).
Acquisition starts when the ENABLE [timeout] command is invoked and ends when
the timeout period (if not zero) or another terminating condition occurs (see
paragraph 3.3.6 below on terminating data). The acquisition period started by
the ENABLE command does not imply continuous receipt of data. No data will be
delivered until after the SIFT processors are started; also the actual amount
of data captured can vary from 0 to 50,000 blocks on the DMA3 disk depending on
the filter conditions established (see Section 3.2), the number of processors
used, and the number of variables in the window. This subject is covered in
more detail in the next paragraph and in Section 3.4 under structure of the

data. After data acquisition has been enabled (i.e., started) with the ENABLE
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command, it can be aborted using the ABORT command which stops the current
acquisition. This command might be used if a zero timeout or long timeout
period is given in the ENABLE command but a problem occurs and acquisition must
be discontinued.
3.3.5 Capturing Data

To start capturing data after DAS has been enabled, the SIFT processors
must be started with the STARTSIFT 100 command. The parameter 100 is the hex
address of the starting program counter (PC) for the SIFT operating system.
While the SIFT processors are running, the SIFT operating system tasks and
application tasks run in predetermined interrupt periods called subframes.
These subframes and the particular tasks that are scheduled to run during each
subframe are defined by the scheduler (see SIFT User's Guide, Appendix A).
The important point to remember for data acquisition is that values for data
objects in the window are broadcast by the SIFT processors at the BEGINNING of
EVERY subframe. The values transmitted are those that were valid after
termination of the previous subframe. Because a subframe can be as small as
1.6 msec duration, the capability exists to transmit a considerable amount of
data at very high speeds. The actual amount of data transmitted to the VAX,
however, can be significantly limited and controlled using the filter mechanism
discussed in Section 3.2. The filtering is done by a program (called RELAY)
running in processor P7 that examines the data sent by the SIFT processors
every subframe. This program either sends the data for that subframe or does
not send the data depending on the results of filtering. If the filter is
disabled (an option selected in the window utility), all the data will be sent
automatically every subframe which will rapidly fill up the DMA3 disk. With no
filtering and maximum output (1.6 msec subframes, 16 variables in the window,
and 6 processors in the SIFT configuration), the disk will fill up (50,000
blocks) in approximately 4 minutesf
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3.3.6 Terminating Data

Data acquisition will be terminated when any of the conditions listed
below occur. Note that conditions 1 -~ 6 do not terminate the activation of DAS
(done by the ENDDAS command), but only terminate the current acquisition
started by the ENABLE command.

1) The timeout occurs (value in seconds given in the ENABLE command).

2) A reconfiguration of SIFT processors occurs (if filter termination

status is set to stop data after reconfiguration).

3) An error condition is detected by DAS.

4) The DMA3 disk fills up.

5) An error condition or timeout occurs from a fault injection test.

6) The user aborts acquisition by invoking the ABORT command.

7) The user does an ENDDAS or ENDSIFT command while acquisition is still

in progress.

The user will be notified of termination by a message to the screen that
gives the reason for termination and also the amount of data transferred. 1In
the case of an error condition some diagnostic information will also be given.
The amount of data transferred is given by two numbers - the number of full
buffers and the word count. A buffer is 16,128 words. The word count is the
number of words left after the last full buffer. Thus, the total words
transferred is the number of full buffers times 16,128 plus the word count.
All of this data is located on DMA3 starting at block 1; this data must be
preprocessed and results saved in a permanent file or the data will be lost.
3.4 Preprocessing the Data

The final phase in data acquisition is to read the data from the disk
DMA3, check and/or manipulate the data (i.,e., preprocess), and save the raw

data or results of preprocessing in a permanent file. These functions are
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accomplished by a user written program constructed from a template provided in
the Pascal source code file named PREPRO.PAS. The template program, located in
SIFTDIR, provides the data structures and procedure for retrieving data from
the DMA3. The user must edit this file to add preprocessing functions which
are unique to his or her experiment. After editing the file, the program must
be compiled and linked using a command procedure PREPRO.COM. The user's
preprocessing program can then be run after acquisition has been enabled and
SIFT processors have been started. The program will wait until data
acquisition completes and then do the preprocessing. A point to remember is
that the preprocessing program must be run before the next data acquisition
begins. This is necessary because each acquisition starts writing at block 1
on the disk, causing any previous acquisition data to be overwritten. If the
experiment requires doing repeated data acquisitions in a loop (i.e., enabling
acquisition, waiting for DAS completion, preprocessing, enabling again,
preprocessing again, etc.), the data must be preprocessed during each iteration
of the loop. After the entire experiment and all acquisitions are completed,
only the data saved during preprocessing will be available for post processing
analysis.
3.4.1 Structure of the Data

The structure of the data transferred from the SIFT processors is the same
for every acquisition, but the length of the structure is determined by the
number of processors in the starting SIFT configuration and the number of data
objects in the window. The output data structure for each subframe is

described as follows:
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subframe count
current processor configuration (voted value)

first processor in starting configuration
first user defined data object in window
second user defined data object in window

. (additional user defined objects up to 11)

PID (permanent system variables)
TASKID ‘
PRESENTCONFIG

GFRAME

SFCOUNT

second processor in starting configuration
first user defined data object in window
second user defined data object in window

. (additional user defined objects up to 11)

PID (permanent system variables)
TASKED

PRESENTCONFIG

GFRAME

SFCOUNT

last processor in starting configuration
first user defined data object in window
second user defined data object in window

. (additional user defined objects up to 11)

PID (permanent system variables)
TASKID '
PRESENTCONFIG

GFRAME

SFCOUNT

Each data value output is a 16 bit word and the number of words
transmitted for a single subframe in SIFT is called a subframe record (see
data type SUBFRAMEREC below). The first word (SF in SUBFRAMEREC) is the
subframe count, a number from O to 26. The second word (PCONFG in

SUBFRAMEREC) is the present configuration which is a value that has been voted
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from each processor's copy of the PRESENTCONFIG variable. The bits 0, 1, 2,
3, 4, 5 of PCONFG represent processors P1, P2, P3, P4, P5, P6. 1If a bit is O
the processor is in the configuration., If a bit is 1 that processor is not in
the configuration. For example, when PCONFG = O0F1, it means that P2, P3 and
P4 are in the configuration. After SF and PCONFG the remaining words are the
window values from each processor in the starting configuration. Each
processor outputs its own copy of the values for each data object (variable,
hook or hex location) in the window. This is an array of arrays, or a two-
dimensional array of window values. The total length of this structure
depends on the number of processors and the length of the window (number of
data objects). The smallest length possible is 7 words (1 processor times 5
window values plus 2). The maximum length is 98 words (6 processors times 16
window values plus 2). The Pascal data type declarations used for this
structure in the template file PREPRO.PAS are as follows:
TYPE
"$WORD = [WORD] 32768..32767; {defined in INCLUDE file SIFTDEC.PAS}
{Names used in the user's window file}
WINDOWVARS = (HOOK1, HOOK2, HOOK3, HOOKY4, HOOK5, ERROR1, ERROR2,
ERROR3, ERROR4, ERRORS, ERROR6, PID, TASKID, PCONFIG,
GFRAME, SFCNT);
SUBFRAMEREC = [ALIGNED(1)] PACKED RECORD
SF: $WORD;
PCONFG: $WORD;
PROCDAT: PACKED ARRAY [P1..P6, WINDOWVARS] OF $WORD;

VAR
SFDAT: SUBFRAMEREC

WINDOWVARS is a Pascal enumerated type that defines the structure and
data objects in the user's window as described in Section 3.4.1. The user
edits the template file PREPRO.PAS to define WINDOWVARS by listing the names
of the window data objects in the same order they are listed in the window

file. The names should correspond closely with the names used in the window
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The names should correspond closely with the names used in the window file,
but do not necessarily have to be the same, In fact, if a hex location is
used in the window file it will not have a name, so a name representing the
value in that location should be used in the type WINDOWVARS. The names will
be used to access the subframe record to read a particular window variable for
a particular processor. The subframe record is defined by type SUBFRAMEREC,
which is a record that corresponds to the data structure described previously.
The first and second words are the subframe count and present configuration
respectively followed by the window variable data for each processor P1
through P6 in the starting configuration. Data for each subframe includes
data for each processor in the starting configuration even if one or more of
those processors has been reconfigured. This insures that the length of the
subframe record is the same for the duration of the acquisition.
3.4.2 Accessing the Subframe Data

Using the example in 3.4.1 above, the data is accessed as follows: The
variable SFDAT is defined in the preprocessing program to be of type
SUBFRAMEREC. HOOK3 in processor P5 is then accessed by the variable name
SFDAT.PROCDAT [P5, HOOK3]. The present configuration is accessed by the
variable name SFDAT.PCONFG. The global frame count in processor P2 is
accessed by the variable name SFDAT.PROCDAT [P2, GFRAME]. If a processor is
not used in the starting configuration the user should take care not to
inadvertently access that processor because the data will either be all zeros
or garbage.
3.4.3 Reading and Preprocessing

The template file PREPRO.PAS contains a procedure that can be called
which returns the data for a single subframe (a single record represented by

the variable SFDAT). The user should not alter this procedure in any way
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since it is dependent on logical I1/0's to the DMA3 disk drive and exact
calculations of where a requested record is located on the disk. Once the
data is returned in SFDAT the user must write code to access the record as
shown above and preprocess it in some way. This preprocessing might be
reading the data into user defined variables or arrays in memory, doing
computations, and storing results/raw data into a permanent file. After

PREPRO.PAS is edited it must be compiled and linked by invoking the command

procedure PREPRO:COM (DCL command €PREPRO). This procedure links the user's

preprocessing program (named by the user) to other files located in the SIFT
directory (logical name SIFTDIR). To perform preprocessing during the
experiment, the user must execute the DCL command RUN filename where filename
is the name of the executable file for the user's preprocessing program.

3.5 Summary of DAS Commands and Sequence of Operations

The following is a summary of DAS commands described above:

DAS - Activates the SIFT data acquisition system if not already in use.

ENDDAS - Ends a data acquisition session. The DAS global section is
destroyed.

WINDOW - Invokes the window utility main menu used for creating, editing,
listing, printing or loading a window file and defining the filter.

(Note - window can be used outside of DAS except the LOAD and SETUP

TERMINATION functions which require DAS activation before use).

WINDOW/LOAD [window file_name] - Loads a window file directly and bypasses the
main menu of the Window Utility. If file name is omitted, the
program prompts for the file name. Requires DAS activation.

ENABLE [timeout] - Enables the data acquisition system to accept data.

The timeout parameter sets a time limit in seconds for the

acquisition if no other terminating condition occurs first. If no
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timeout is given, the default timeout is 10 seconds for the first
ENABLE and for subsequent ENABLEs it is the last timeout value used.

A value of 0 means no timeout.

ABORT - Aborts a data acquisition that was started by the ENABLE command.

1‘

Note that the ABORT command ends the current acquisition of data; it
does not end the activation of DAS which is done by the ENDDAS

command.

The sequence of operations for DAS is as follows:
Enter SIFT and type DAS to activate the data acquisition system.
(Also type FIS to activate the fault injection system if applicable.)
Use the window utility to create a window file if not already done.
Allocate SIFT processors and load the sift operating system.
Load the window file using the window utility.
Use the ENABLE [timeout] command to begin an acquisition.
Start the SIFT processors (STARTSIFT 100).
Wait for the acquisition to complete (timeout, reconfiguration, etc.).
Other SIFT or DCL commands may be used while acquisition is in progress.
When acquisition completes, execute the user's preprocessing program
using the DCL RUN command. If this program is run before DAS completes,
the program will be in a wait state and will start the preprocessing when
acquisition completes.
Repeat 5 through 8 as many times as required. This may be done
interactively or in a user written command procedure. (Note: The
operations in 5 through 8 are done automatically by the INJECT and

FITINJECT commands for injecting faults).
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10. When all acquisitions of the test or experiment are finished and all
preprocessing as been done, end the DAS session by the ENDDAS command.
The data acquisition system is designed to provide flexibility for many
types of tests or experiments using SIFT. For example, fault injection tests
are integrated with data acquisition through the INJECT command (see Section
2.0), or transient fault tests can be run over very long periods (weeks or
months) by disabling timeouts. The user may want to write a command procedure
to execute DAS commands, or may do DAS and SIFT commands interactively. The
former method is appropriate if experiments must be done with minimum user
intervention. The latter method allows interactive control of experiments and

access to all DCL and SIFT commands while acquisitions are in progress.
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APPENDIX A

SIFT WINDOW UTILITY

A1. INTRODUCTION

The SIFT WINDOW UTILITY is used to define the output variables for SIFT
data acquisition and also to define the filter for those variables (i.e., the
conditions under which data will be transferred from the SIFT processors to
the VAX). The utility stores this information in a file and also provides the
capability to edit the file, list the file on the screen, print the file and
load the information in the file to the SIFT processors. The utility is
invoked by the command WINDOW. A menu will appear on the screen to select one
of the window functions: CREATE, EDIT, LOAD, LIST, PRINT, SETUP FILTER, SETUP
TERMINATION, SETUP PREPROCESSOR. The following sections describe these
operations.
A2. CREATE

This function creates the window file that stores the information needed
for data acquisition. The information i's organized as a list of variables
and/or SIFT processor memory locations which are defined for SIFT output plus
additional information about each variable/location. The entire list is
called the window, and each variable entry in the list is called a pane. Up
to 16 variables or memory locations can be defined for the window. Five of
those variables are predefined by the data acquisition system (DAS) and the
remaining eleven are selected by the user. The user will be prompted for all
information (no commands to remember) starting with PANE 1 through PANE 11.
(Note: PANES 12 - 16 already contain the predefined variables explained

below).



The first information to enter for each pane is the name of a SIFT
variable or a hex address. At the top of the screen there is a list of
variables called the default window variables. To facilitate data entry the
default variable may be selected for a particular pane number by pressing
<RETURN> or by entering an asterisk (¥). If a variable name is entered it is
divided into two sections, the scope and the label, which are separated with a
period (.). The entire name always starts with a dollar sign ($) to
distinguish it from a hex address (e.g., $GLOBA.HOOK1, where GLOBA is the
scope and HOOK' is the label). The scope must be ! to 5 characters; the scope
and label combined can be up to 18 characters long but the scope plus the
first five characters of the label portion must be a unique name. (Note:
rules for labels are the same as rules for referencing labels in other SIFT
commands - see SIFT USER'S GUIDE.) The asterisk can be used to enter a
default scope or a default label. For example, if the default is
$SIFTO.ERROR+2, you can enter * ERROR+5 and the result will be $SIFTO.ERROR+5.
To enter a hex address, simply enter the hex number instead of a label or
default label. 1If no label or address is desired for a particular pane, enter
NIL and this will be considered an unused pane in the overall window. Each
name, hex address, or NIL will be shown in the center of the screen after it
is entered.

The next information to enter for each pane depends on whether or not the
information previously entered was a label or a hex address. If a hex
address, then the user will be prompted for a text description or comment that
describes that data. The description is limited to 30 characters. If the
previous entry was a label but not a hook (see Section 3.2 for description of
hook), then the next prompt will be for a description just as for a hex

address. If the label previously entered was a hook, then the program will




prompt for a task name where that hook is used and a corresponding
description. Up to eight task names and corresponding descriptions can be
entered for each hook used. Up to 11 hooks can be defined by the user in
writing SIFT application or operating system tasks and are referenced by
$GLOBA .HOOK1, $GLOBA.HOOK2,..., $GLOBA.HOOK9, $GLOBA.HOOKA, $GLOBA.HOOKB.
(For a definition of hooks see para 3.2.1.)

After all information has been entered for a pane, the user will be asked
if changes or corrections are desired. Press <RETURN> for no or Y for yes.
If yes, the edit screen will appear which allows changing any part or all of
the entries made for that pane. The edit function is described in more detail
in a later section. The user can make any changes desired and return to the
CREATE operation by pressing Cntrl Z. Changes can only be made to the pane
just entered. Previous panes cannot be changed in this mode but the entire
file can be edited after it is created using the EDIT function in the main
menu.

The five predefined variables are located in pane 12 through pane 16 and
cannot be changed. The definitions of these variables are as follows:

PANE 12: $GLOBA.PID processor 1D (e.g., 1,2,..6)

PANE 13: $SIFTO.TASKID task 1D

PANE 1U: $SIFTO.PRESENTCONFIG present processor configuration

PANE 15: $GLOBA .GFRAME global frame count

PANE 16: $GLOBA . SFCOUNT subframe count

After all information for panes 1-11 have been entered, the SETUP FILTER
function will be invoked automatically in order to obtain information for
filtering the data. Filtering is defined as those conditions which will cause
the data for each variable in the window to be transferred from the SIFT

computer to the VAX. This function is explained in detail in the next
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séction. The SETUP FILTER function can also be invoked from the main menu to
change filter conditions in a previously created window file.
A3. SETUP FILTER

This function sets up the conditions under which SIFT data will be
transferred to the VAX for subsequent processing. It is invoked automatically
from the CREATE function described above to establish the filter for a newly
created window file, or can be invoked from the main menu to make changes in a
previously created window file. The function is completely menu driven,

The first menu that will appear in this function is to select one of
three overall data acquisition modes: 1) send data only when there is a
reconfiguration of SIFT processors, 2) send all data every subframe whether
reconfiguration or not, or 3) send data according to variable qualifiers or
reconfiguration. Options 1 and 2 transfer data for every variable/location in
the window regardless of the value of any variable/location. Option 3 invokes
another input screen which allows the user to enter qualifiers and qualifier
values for any of the non-nil variables. A qualifier is a relational operator
such as equal to (=), less than (<), greater than or equal to {(>=), etc. A
qualifier value is a number entered in hex (the default) or entered in decimal
by preceding the number with %D. During data acquisition, the variable is
compared with the qualifier value using the relational qualifier. If the
result of any comparison is true, the data for all variables in the window
Wwill be transferred. If no comparison is true, data will not be transferred
unless there is reconfiguration. If there is reconfiguration, data is
transferred regardless of qualifiers.

Qualifiers are defined by selecting a pane number at the prompt, then
entering a qualifier code (-1, 0, 1, 2, 3, 4, 5) associated with the qualifier

as defined in the screen display. For example, the code 0 is associated with
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the equal qualifier. The code -1 is used to delete existing qualifiers which
may then be redefined using one of the codes 0 through 5. After the pane
number and qualifier code has been entered, there will be a prompt for the
qualifier value. The qualifier and value (in hex) is immediately shown in the
display at the top of the screen. Pressing Control Z terminates the session
and returns to the main menu.

Note: Changes made to a previously created window file using the SETUP
FILTER function are always made to the same version of the file. Only one
version of the file is maintained. If more than one version is needed, each
version must be given a different name.

A4, SETUP TERMINATION

This function allows the user to override the defaults for 1) terminating
data after a reconfiguration of SIFT processors, and 2) maximum subframe
number in a frame. The defaults are only overridden for the current DAS
session. That is, if the user exits DAS and comes back in, the defaults will
again become effective.

In the default mode, if a reconfiguration occurs data will continue to be
transferred for all variables/memory locations in the window for the next 10
subframes, after which data acquisition will terminate. The filter is not
used to transfer these last 10 subframes after the reconfiguration; this data
is sent regardless of what qualifiers have been established. Data acquisition
stops after 10 subframes are sent, However, there are two options the user
can choose to override this default. The user can change the number of
subframes (from 0 to 65535) to continue sending data after reconfiguration,
or, there is the option to continue acquisition indefinitely after a
reconfiguration, For the second option data will be sent during the subframe
that reconfiguration occurs, but in subsequent subframes the data is sent only
if specified filter conditions are met.
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The second function of SETUP TERMINATION is to change the default for the
maximum subframe number in a frame. Currently, the default is 26. (Note:
there are 27 subframes in a frame starting at O subframe through 26). This
default can be overridden for the current DAS session by entering another max
subframe number at the prompt. However, if a number other than the default 26
is used, the user must also change the constant MAXSUBFRAME in the file
SIFTDEC.CON located in SIFTDIR, and must have made appropriate modifications
to the SIFT operating system and scheduler.

Note: The SETUP TERMINATION function has no effect on any window file.
Changes made using this function are only made to the DAS global section
variables and are not part of any window file. Also, the changes are only
effective for the current DAS session. If DAS is ended using the ENDDAS
command, and DAS is reentered at a later time, the system will return to the
defaults. Also, to be effective any changes made with the SETUP TERMINATION
function must be loaded into the SIFT processors using the LOAD option (see
para 7 below).

A5. SETUP PREPROCESSOR

This function gets the file specification of the user's preprocessing
program that is being used for the current test/experiment. The file
specification is used by the INJECT and FITINJECT commands to run the
proprocessor automatically from a command procedure without user intervention.
A6. EDIT

The edit function allows changing any part of a previously created window
file. The window file is not a text file and, therefore, cannot be changed in
the editor; it can only be changed in the edit function of the window utility.
Use of this function is self explanatory. Edit commands are simple and listed

at the top of the screen. The pane number to be edited is selected by
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pressing arrow keys (up arrow to advance the file and down arrow to go
backwards). The selected pane is displayed in the center of the screen and
edit commands are entered at the prompt. Changes are immediately displayed on
the screen. To exit the function type Cntrl Z.

Note: Changes made to a window file using the EDIT function are always
made to the same version of the file. Only one version of the file is
maintained. If more than one version is needed, each version must be given a
different name.

A7. LOAD

This function must be invoked to make a particular window file effective
for a data acquisition session. If the window file is not loaded data will
not be received. Before LOAD is invoked the SIFT processors (any
configuration of P1 through P6) must have been allocated and loaded with the
SIFT operating system, and DAS must be activated using the DAS command (SIFT
display shows DAS on). The loading procedure loads the addresses of the
window variables or memory locations into the currently selected SIFT
processors and loads the filter information and other parameters into the
acquisition processor P7. The window variables will be packed during the
load. That is, any NIL panes in the window will deleted and selected
variables/locations will be packed in the order they appear in the file. The
window file can be loaded from the main menu, or can be loaded directly from
the SIFT$ prompt using the command WINDOW/LOAD windowfilename.

A8. LIST and PRINT

These functions simply list the window file on the screen or print the

file. Since the file is a binary file, it cannot be listed using the DCL TYPE

command or printed using the DCL PRINT command.
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Appendix B
The Global Clock

The Global Clock is comprised of a 16 bit counter which can be read by
any SIFT processor and the System 9 VAX. The Global Clock's period can be set
from the VAX to anywhere within the interval 1 usec to 4000 seconds. Access
to the Global Clock from a SIFT processor is through function GCLOCK.

FUNCTION GCLOCK: INTEGER; EXTERN;

Function GCLOCK returns the Global Clock value. All SIFT processors can
access the Global Clock simultaneously without contention.

The period of the Global Clock is programmed from the VAX. The Global
Clock has 3 base frequencies: 1 sec., 1 msec., and 1 psec. A 12 bit
presettable up-counter provides additional adjustment to the base frequency
{(i.e. periods of from 1 to 4095 units can be programmed). SIFT DCL function
CLOCK allows a SIFT user to program the clock., If CLOCK is invoked with no
arguments, the Global Clock is read and the following message printed:

Clock has unsigned value of XXXXX(base 10).

The CLOCK function can be called to set the desired Global Clock period.
The clock period should be expressed in "E" notation in units of seconds.

To set a 10 psec period - SIFT$ CLOCK 10E-6
To set a 1 sec period - SIFT$ CLOCK 1.0
To set a 2 msec period - SIFT$ CLOCK 2E-3

Because the Global Clock has been known to "freeze", the CLOCK function

suspends for a length of time to test the operation of the Global Clock. For

periods up to 999 psec CLOCK will suspend for 50 msec. For 1.0 msec <= period

<= 999 msec, CLOCK will suspend for 1.0 sec. For periods over 1.0 sec, CLOCK

will suspend for 5 seconds. Of course periods in excess of U seconds will not



be tested. However, the user can use CLOCK to read the Global Clock after an
appropriate interval and assure himself that the Global Clock is functioning.
When the CLOCK task resumes it prints the following message:
Received X clock ticks during O ::Y.YY second timeout
If, for example, the user sets a 1 msec period, the following sequence
would occur:
SIFT$ CLOCK 1.0E-3
Received 999 clock ticks during 0 ::1.00 second timeout
Using this data the user can verify the Global Clock programming. At
periods below 1 msec (i.e when the timeout period is 50 msec), the correlation
between the number of clock ticks received and the timeout period degrades due
to VMS's inability to deliver consistent 50 msec intervals. For example, when
setting a period of 1 psec, anywhere from 40000 to 50000 clock ticks will be

recorded.
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