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~ T I D I K E N S I O N A L  AERODYNAMIC COMPUTATIONS 

Philip L. Roe 

Cranfield Institute of Technology, United Kingdom 

ABSTRACT 

We discuss the behavior of gas dynamic flows which are perturbations of a 

uniform stream in terms of information transfer across artificial 

(computational) boundaries remote from the source of disturbance. A set of 

boundary conditions are derived involving vorticity, entropy, and pressure- 

velocity relationships derived from bicharacteristic equations. 
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1. INTRODUCTION 

A r ecu r r ing  f r u s t r a t i o n  i n  Computational F lu id  Dynamics i s  t h e  apparent  

d i f f i c u l t y  of g iv ing  numerical  expression t o  very s imple s ta tements .  Typica l  

of t h i s  s i t u a t i o n  is t h e  s p e c i f i c a t i o n ,  i n  aerodynamic problems, t h a t  t h e  flow 

is uniform a t  l a r g e  d i s t ances .  The problem is  caused by t h e  f a c t  t h a t  t h e  

o u t e r  l i m i t  of t h e  computational domain never is t r u l y  a t  i n f i n i t y ,  because i t  

can a lways  be reached by a numerical s igna l .  Therefore ,  merely spec i fy ing  

uniform cond i t ions  on an o u t e r  boundary r e s u l t s  i n  an  overcons t ra ined  problem; 

s i g n a l s  which do reach t h e  ou te r  boundary are l i a b l e  t o  be r e f l e c t e d  from i t  

and may completely co r rup t  t h e  i n t e r i o r  so lu t ion .  

There has been a long sea rch  f o r  e f f e c t i v e  absorbing boundary cond i t ions ,  

bu t  none so  f a r  has  found u n i v e r s a l  acceptance,  and many p r a c t i c a l  codes make 

use of empi r i ca l  procedures.  In t h i s  note,  we i n d i c a t e  t h e  f a l l a c y  i n  t h r e e  

c u r r e n t  practices and advocate a new procedure which may be less ob jec t ionab le  

and can be app l i ed  t o  unsteady flow i n  any number of dimensions. 

We remark t h a t  t h e r e  is no problem when t h e  flow i s  supersonic  a t  

i n f i n i t y .  It is then both simple and c o r r e c t  t o  p re sc r ibe  every th ing  a t  

inf low and nothing a t  outflow. Upper and lower boundaries can be t r e a t e d  as 

r i g i d  walls remote enough t h a t  r e f l e c t e d  waves do not  impinge on t h e  reg ion  of 

i n t e r e s t .  Our t rea tment ,  t he re fo re ,  concent ra tes  on t h e  subsonic  case where 

t h e  d i f f i c u l t i e s  are twofold. The boundary condi t ions  must lead  t o  a w e l l -  

posed problem, so as t o  avoid t h e  i n s t a b i l i t i e s  a s soc ia t ed  wi th  overcon- 

s t r a i n t ,  and they should a l s o  be an  accura te  s ta tement  of t h e  physics  so  t h a t  

they  can be app l i ed  a t  f a i r l y  small d is tances .  In t h e  absence of r igorous  

a n a l y s i s  (which is d i € f i c u l t ,  see [ 11 for  a recent  review),  w e  hope t h a t  t h e  

second proper ty  w i l l  imply t h e  f i r s t .  We der ive  phys ica l ly  c o r r e c t  equat ions  
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which express the passage of different kinds of information across the 

boundary. If these are differenced so that the numerical information used is 

taken from the proper domain of dependence, we assume that stability will be 

assured. 

2. SOME UNSOUND PRACTICES 

2.1 SPECIFY lWXd DIRECTION AT INFLOW 

Consider Figure 1. The proposal is to set v = 0 on AB. This means 

that AB cannot contribute to the circulation C, u-ds around ABCD. The 

circulation should be independent of the shape or distance of the integration 

contour (provided the flow is inviscid and all shocks are inside the 

contour). It is understandable, therefore, that with this method lifting 

forces are usually underestimated [ 2 ] .  A cure, applicable to steady two- 

dimensional aerofoil flows, is to match the direction to that found in a far- 

field analytic solution whose circulation would produce the lift measured on 

the aerofoil at each iteration. No such procedure is available for three- 

dimensional or unsteady flows. 

N N  

2.2 SPECIFY PRESSURE AT OUTPLOW 

This is an essentially empirical procedure which often works quite 

well. However, it would not be applicable in a three-dimensional flow with 

shed vorticity. In steady incompressible flow, for example, we should satisfy 

Bernoulli’s equation 
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1 2 p + 7 po(u2 + v2 t w = const. 

so that substantial values of v, w imply that p must vary. 

(2.1) 

2.3 APPLY ONE-DIMENSIONAL WAVE ANALYSIS 

Assume, reasonably, that the flow near the outer boundary is a small 

perturbation of the free stream. Also assume, less reasonably, that the flow 

in a radial direction resembles a one-dimensional flow. Introduce a radial 

coordinate 1: and a velocity component ut in that direction. These 

assumptions together imply that 

(-+a a -)(p+pau)=O a 
at o ar O O r  

a a (E - a. z)(p - P a u = 0. O O r  

(2.2a) 

(2.2b) 

Now consider steady flow, and consider two grid points as shown in Figure 

1. Connecting b t o  i through equation (2.2a) leads to 

(2.3a) 

Connecting b to the free stream by (2.2b) leads to 1 
(2.3b) 
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These two equations may be solved for pb, Urb' However, they imply that 

u - u  

u - u  
rb ri 'b - pi 

'0 - 'b rO rb 
= -  . ( 2 . 4 )  

We expect that in the far field both p and ur decay monotonically to 

their free stream values. In that case both fractions in ( 2 . 4 )  should be 

positive, but here we force them to have opposite signs. Careful examination 

of the output from codes using this method reveals this non-monotone behavior 

at the boundary. 

The observation made in this section originates with Dr. Cedric Lytton, 

of the Royal Aircraft Establishment, Farnborough, United Kingdom. 

3. THE NEW PROPOSAJS 

3.1. SPECIFY ENTROPY AT INPLOW AND OUTFLOW 

This is not of course a new proposal. It is perhaps the only widespread 

current practice that is truly unobjectionable. For it to be valid, we merely 

have to draw the outer boundary far enough away that no shockwaves intersect 

it. Since entropy is constant along particle paths in smooth flows, we should 

specify s = so at points of inflow, and extrapolate s from the interior at 

points of outflow. 

3.2 SPECIFY VORTICITY AT INFLOW AND ~ C W  

This is commonly done where vorticity is used to formulate the problem 

(e.g., vorticity-streamfunction treatment of Navier-Stokes equations). The 
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author  does not  know of i t s  use f o r  solving t h e  Euler  equat ions  i n  conserva- 

t i o n  form. It allows us t o  s p e c i f y  t he  t a n g e n t i a l  v e l o c i t y  components on the  

boundary, equal  t o  t h e i r  f r e e  s t ream values a t  in f low o r  ex t r apo la t ed  from t h e  

i n t e r i o r  a t  outflow. Probably it  is s u f f i c i e n t  t o  make a ze ro th  o rde r  ex t r a -  

po la t ion ,  but  t h e  convect ion l a w s  of v o r t i c i t y  

2 - + (u*V)w + (o*V)u - a t  N N  

P 

could be used in s t ead .  

I n  e i t h e r  case, t h e  numerical a p l e m e n t a t i o n  of t..-s cond i t ion  shou 

probably be through the  express ion  f o r  the i n t e g r a t e d  v o r t i c i t y  i n  a c e l l  

I 

Then i n  a finite-volume a n a l y s i s ,  say ,  there w i l l  be boundary cells  wi th  one 

e x t e r i o r  face .  All o t h e r  f aces  ca r ry  f l u x e s  determined by t h e  i n t e r i o r  

scheme, so t h a t  enforc ing  ( 3 . 1 )  w i l l  determine t h e  t a n g e n t i a l  component(s) of 

v e l o c i t y  on t h e  e x t e r i o r  face.  Thus we have (n - 1)  boundary condi t ions  i n  

n dimensions. 

3.3 USE BICEARACTERISTIC ANALPSIS ON THE ACOUSTIC WAVES 

( a )  The Two-Dimensional Case 

We seek s o l u t i o n s  of t h e  Euler  equat ions a t  l a r g e  d i s t a n c e s ,  assuming an 

expansion of t h e  form 
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p = p o  + € P I  + 0 . .  

p = Po + €pl + 0 . .  

u = uo + €U1 + ... 

v = EV + ... 1 

Insertion of these expansions into the complete equations gives 

at ap 1 + uo ax ap 1 + P O ( K  a u l  + ay avl) = o  

a v1 avl 1 
a t + U O F + p g F  

= o  

= o  

(3.2a) 

(3.2b) 

(3.2~) 

= 0. (3.2d) a P1 2 aul avl 
- --+pa ( 

a P1 
at+ uo ax O O a x + a y )  

does not appear in the These equations are partly uncoupled, in that 

last three but could be found after these have been solved. From now on we 

exclude the first equation. An equation holding in a characteristic plane can 

be obtained by multiplying (3.2b) and (3.2~) by p a cose, p a sine 

respectively and adding them to (3.2d). The result is (we have dropped the 

first-order suffixes) 

p1 

0 0  0 0  



+ p a sine[= a v  + uo Bx a v  + a cosece -1 av  = 0 .  
0 0  0 a Y  

It is easy t o  check t h a t  the  d i f f e r e n t i a l  ope ra to r s  i n s i d e  each bracke t  a l l  

act  i n  one p lane ,  which is the  property t h a t  q u a l i f i e s  (3 .3 )  as a 

c h a r a c t e r i s t i c  equat ion.  A r evea l ing  rearrangement, however, is the  fo l lowing  

a a a 
a t  a Y  

2 a 

[- + (uo + aocose) ax + aOsine  -]{p + p O a O ( u c o s ~  + v s i n e ) ]  

( 3 . 4 )  
a case -3 ( w i n e  - vcose). + p  a [ s i& - -  

0 0  ax  a Y  

Here t h e  f i r s t  opera tor  acts along a p a r t i c u l a r  b i c h a r a c t e r i s t i c  (TP in Figure 

2) on t h e  sum of p re s su re  p lus  times the  component of v e l o c i t y  i n  t h e  

d i r e c t i o n  8. The second ope ra to r  ac ts  only i n  space, pe rpend icu la r ly  t o  

t h e  d i r e c t i o n  8,  on t h e  v e l o c i t y  component i n  i ts  own d i r e c t i o n  (PQ). 

Wri t ing ur f o r  t he  v e l o c i t y  i n  d i r e c t i o n  SP, and u f o r  t he  v e l o c i t y  i n  

d i r e c t i o n  PQ, we have 

pOaO 

e 

Even i n  a s t eady  flow, t h i s  does not reduce t o  equat ion (2.2a). To employ 

such a r e l a t i o n s h i p  as a boundary condi t ion,  we need t o  choose a s p e c i f i c  

va lue  of 8. There are var ious  tempting choices ,  but we may t ake  a l ead  
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from the work of Bayliss and Turkel [3]. They showed that under the 

transformation 

(3.5) X 
OS T = BaOt + M X 

n = y ,  S ' p  

and B = (1 - Mo) 2 1/2 , the system (3.2) implies that p where Mo = uO/ao 

obeys a regular wave equation 

or, equivalently , 

where 
2 2 x  2 2  R 2 = C  + n  = - + y  

B L  

and 

n - BY 
tan+ = e - x 

Now at large distances, the last term in (3.7) tends to be small. 

example, if p is given by the well-known separable solution 

P ( T ,  R, $ 1  = eikTcos(n+)Jn(kR) 

R- '/2 R- '/2 R-3/2 the orders of successive terms in (3.7) are 

Therefore, we truncate (3.7) to 
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- 1 = o  
p, T PRR - K P R  

with relative error R - l .  We observe that the trial solution 

( 3 . 9 )  

p = f(T - R ) / R  112 (3 .10 )  

which represents a decaying outgoing solution, satisfies ( 3 . 9 )  up to the order 

of the neglected term. Also, ( 3 . 1 0 )  satisfies exactly 

p, + pR + l- = 0. 2R (3 .11 )  

Note that this equation holds along an outgoing bicharacteristic of 

( 3 . 9 ) .  (This seems a little strange at first, but considering the analogous 

analysis of the one-dimensional case in Appendix A makes it seem natural). In 

fact, ( 3 . 1 1 )  is selecting, out of all the local bicharacteristics at a point, 

that one which coincides with a global bicharacteristic (see Figure 3 ) .  For 

our purposes, that is the most useful bicharacteristic because along it we can 

write an equation derived from global considerations. 

Under the transformation inverse to (3.5), the bicharacteristics of ( 3 . 9 )  

must become the bicharacteristics of the system ( 3 . 2 ) .  The distinguished 

bicharacteristic equation (3 .11 )  becomes 

( 3 . 1 2 )  

which is one form of the boundary condition recommended by Bayliss and Turkel 

[31 to suppress incoming radiation. Here also, we take ( 3 . 1 2 )  to be the 
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equa t ion  which w i l l  determine p res su re  on t h e  boundary. The d i f f e r e n t i a l  

o p e r a t o r  i n  (3.12) co inc ides  wi th  t h e  b i c h a r a c t e r i s t i c  ope ra to r  i n  (3.3) i f  w e  

choose 
0 

B L Y  s i n 0  = f3R - MOx (3.13) 

Other u s e f u l  forms of t h i s  r e s u l t  are 

With this choice of 8 ,  equat ion (3.2) can be w r i t t e n  

3 
a U  x - BMOR 

+ 'OaO f3R - Mox [a" a t  + x - BMoR E] 

Combining (3.3) and (3.14) l eads  t o  

(3.14) 

(3.15) 



I 
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Since (3.12) and (3.14) both hold along an outgoing b i c h a r a c t e r i s t i c ,  i t  

should be a s t a b l e  numerical  procedure t o  eva lua te  the  spa t ia l  d e r i v a t i v e s  

from i n s i d e  the  boundary i n  both cases; hence i n  (3.15) a l s o .  

Equation (3.15) can be used t o  update t h e  boundary value of t h e  l i n e a r  

combination 

(3.16) (X - BMOR)u + f3 2 YV. 

S ince  our  proposal  is  t o  use  v o r t i c i t y  t o  update t h e  component of v e l o c i t y  

t a n g e n t i a l  t o  t h e  boundary, we need t o  ensure t h a t  t hese  two cond i t ions  are 

independent.  I n  o t h e r  words, t h e  boundary contour must never l i e  i n  t h e  

d i r e c t i o n  

(3.17) 

These p roh ib i t ed  d i r e c t i o n s  are sketched i n  Figure 5. In  t h e  l i m i t  

t he se  d i r e c t i o n s  are r a d i a l ;  as they are h o r i z o n t a l  i n  t h e  l e f t  ha l f -  

p l ane ,  i n  t h e  r i g h t  half-plane they a re  t a n g e n t i a l  t o  circles t h a t  are 

centered  on t h e  y-axis and pass  through the o r i g i n .  C lea r ly ,  t h e r e  i s  l i t t l e  

tempta t ion  t o  cons t ruc t  any boundary curve that fol lows these  d i r e c t i o n s .  

Mo+O 

M O + l  

( b )  The Three-dimensional Case 

No new ideas  are involved here ,  but  t he  procedure i s  harder  t o  

v i s u a l i z e .  However, we can simply repeat  t h e  formalism of the  two-dimensional 

case, ad jo in ing  t o  (3 .2 )  t h e  a d d i t i o n a l  equat ion 
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- 0  - + u  - + - - -  a w  1 1  aP1 1 a w  

a t  o ax  p0 az 

and taking the  three-dimensional divergence i n  (3.2d). 

Then a c h a r a c t e r i s t i c  combination i s  

[g + (uo + a case - a P  + a sinecosg - a P  + aosinOsing -1 a P  
0 ax o a Y  a Z  

a U  + (uo + a sec0) E] a U  

I3T 0 + p a cos0 0 0  

(3.18) 

It may be checked t h a t  a l l  fou r  ope ra to r s  a c t  w i th in  on 

space ,  which is def ined  by t h e  equat ion  

t h  

X Y Z t cos0 + sinecosg + - t s ines ing  = uo + a 0 cos0 . 

-dim i o n a l  

(3.19) 

Visual ized i n  t h e  space ( x / t ,  y / t ,  z / t )  t h i s  is a plane s u r f a c e  ( s e e  

Figure 6 )  which touches a sphere whose r a d i u s  i s  and whose c e n t e r  is a t  

(uo,  0 ,  0) .  The l i n e  OP i s  t h e  d i r e c t i o n  along which pressure  is 

d i f f e r e n t i a t e d  i n  (3.18). It is  b i c h a r a c t e r i s t i c  i n  t h e  sense  t h a t  i t  i s  t h e  

i n t e r s e c t i o n  of planes having parameters ( 8  f de) ,  (4 f dg). 

a. 

Again,  we w i l l  select  s p e c i f i c  va lues  of 8 ,  g by a p p e a l  t o  t he  f a r  

f i e l d  ana lys i s ,  The t ransformat ion  (3.5) (wi th  5. = z) produces 



A t  l a r g e  d i s t a n c e s ,  s o l u t i o n s  of t h i s  equation have t h e  form 

p = f(T - R ) / R  

where 
--i 

2 L 
R 2 = t 2 + ~ 2 + 5 2 = x  + y 2 + z .  7 

( 3 . 2 0 )  

( 3 . 2 1 )  

(3 .22 )  

These s o l u t i o n s  obey t h e  d i f f e r e n t i a l  equat ion 

p, + pR + = 0. (3 .23 )  

A s  before ,  t h i s  can be transformed back i n t o  an equat ion  along t h e  

b i c h a r a c t e r i s t i c ,  a l lowing pressure t o  be updated thus 

a P  a P  a P  
a Y  a 2  

B 2ao 
a p  + at B R  - M ~ X  ax [ x - +  y - +  z - +  p - pol = 0. ( 3 . 2 4 )  

The d i f f e r e n t i a l  ope ra to r  here  acts along the  b i c h a r a c t e r i s t i c  €n (3 .18 )  i f  w e  

choose as before  
x - BMoR 

B R  - MOx case = (3 .25 )  

and a l s o  

z tan+ = -  . 
Y 

(3 .26 )  
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Using t h e s e  

a P  
a t  - +  

expres s ions ,  we convert  

2 
a. [ X = + Y - +  a P  a P  

BR - M0x a Y  

(3 .18 )  i n t o  

a 

f l JR  a. a u  x - BMoR 

+ BR - M0x + x - BMoR 

( 3 . 2 7 )  

Now we combine the two b i c h a r a c t e r i s t i c  equat ions ( 3 . 2 4 )  and (3 .27 )  t o  

o b t a i n  

( 3 . 2 8 )  

This equat ion al lows us t o  update t h e  v e l o c i t y  component 

2 ( x  - BMOR)u + 8 (yv + zw) . 
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The cond i t ion  t h a t  avoids  having t h i s  component p a r a l l e l  t o  t h e  boundary i s  

t h e  same as i n  two dimensions. 

4. DISCUSSION 

The i n t e n t i o n  announced i n  t h e  in t roduc t ion  has been c a r r i e d  out .  A set 

of boundary condi t ions ,  s u f f i c i e n t  i n  number t o  determine t h e  flow, have been 

obta ined  from phys ica l  cons idera t ions .  I n  a l l  cases ,  i t  is poss ib l e  t o  

r ep resen t  t h e  condi t ions  as f i n i t e - d i f f e r e n c e  formulae involv ing  t h e  proper  

domains of dependence. Nevertheless ,  there  is a poss ib l e  hazard a s s o c i a t e d  

wi th  expres s ing  t h e  inf low boundary cond i t ion  i n  terms of vanish ing  

v o r t i c i t y .  E f f e c t i v e l y  t h i s  is a de r iva t ive  condi t ion  which f a i l s  t o  

communicate what t h e  v e l o c i t y  vec to r  a t  i n f i n i t y  a c t u a l l y  is. Although t h e  

s ta tement  is t r u e ,  i t  is incomplete. I n  f a c t ,  i f  the  i n i t i a l  d a t a  f o r  t he  

problem i s  c l o s e  t o  uniform flow, our boundary condi t ions  t ake  t h e  form of 

spec i fy ing  t h a t  no o u t s i d e  inf luence  c rea t e s  any changes. With a conserva t ive  

scheme, t o t a l  momentum wi th in  t h e  computational domain w i l l  change only 

through boundary e f f e c t s  which have been allowed fo r .  What might happen is  a 

slow d r i f t  away from the  des i r ed  ve loc i ty ,  which could probably be s t a b i l i z e d  

by p r e s c r i b i n g  a cons tan t  v e l o c i t y  magnitude, say ,  a t  one point .  
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APPENDIX A 

The One-dimensional Case 

One-dimensional acoustic flow is governed by the pair of equations 

( A .  1) 
p t + p a u  2 = O  

o o x  

= o  1 
u +-px 

from which we may deduce the wave equation 

with its general solution 

p = f(x - aot) + g(x + sot>. ( A . 4 )  

If there are no incoming waves at large x, then g = 0, and p 

satisfies 

pt + aoPx = 0. ( A . 5 )  

This corresponds to equations (3.11) or ( 3 . 2 3 )  in the text. We also have 

the characteristic equations 
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At the outer boundary, we discard ( A . 7 ) ,  which should carry no information 

inward, and retain ( A . 6 )  which propagates the inner solution outward. 

Combining ( A . 6 )  with ( A . 5 )  yields 

u + a u  = O  t o x  

so that (A .5 )  and ( A . 6 )  are two outgoing characteristic equations, stating 

that p and u remain constant on lines dx = aodt. Thus we see that the 

assumption of no incoming waves enables us to write two outgoing 

characteristic equations, one for p and one for U. This is precisely what 

happens in the main body of the text. 

To test these ideas in one dimension, a simple code was written to solve 

(A.l), ( A . 2 )  on a grid (O,l,...,N + 1). At points 1 through N, the 

solution was updated by a first-order upwind scheme based on the 

characteristic variables (p f pOaOU). At 0, N + 1 both p and u were 

updated by first order upwind schemes using data from (0,l) or (N,N + 1). The 

initial data consisted of an internal disturbance superposed on a uniform 

state. The disturbance passed cleanly and stably through the boundary with no 

reflections whatsoever. 
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Figure 1 .  Aerofoil and computational boundary 
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Figure 2. Geometry of two-dimens 
b i c h a r a c t e r  is t ics 
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Figure 3. Global and local  bicharacteristics 
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Figure 4. The choice of 8 which selects the radial bicharacteristic 



Mo= 0 O<MO<l Mo= 1 

Figure 5 .  The forbidden boundary d i r e c t i o n s  
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Plane tangent to 
the sphere at P 

Figure 6. Geometry of three-dimensional bicharacteristics 
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