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SUMMARY

A procedure for compatibility check of measured airplane responses is
presented. This procedure includes estimation of bias errors in the measured

data in terms of constant measurement biases and scale factors, and a compari-

son of reconstructed responses with those measured. The model relating air-
plane states and outputs is based on six-degree-of-freedom kinematic
equations. In these equations the input variables are replaced by their
measured values which are assumed to be without random errors.

A maximum likelihood method is used as the estimation technique. The
resulting algorithm is verified with simulated data and data from flight
testing. The results from simulated data show that the increased number of
unknown parameters and the correlation among them can degrade the accuracy of
the estimates; however, moderate measurement noise level in the input vari-
ables has only a small effect on the estimates. The maximum likelihood esti-
mates from flight data were compared with those obtained by using an extended

Kalman filter and a nonlinear fixed-interval smoother. This comparison showed

no major differences in results of all three techniques.
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SYMBOLS AND ABBREVIATIONS

A sensitivity matrix

ays ay, a, longitudinal, lateral, and vertical accelerations, m/sec

by constant bias error in variable y

E expected value

g acceleration due to gravity, m/sec2

h altitude, m

h( ) nonlinear output vector used to represent measurement
system

J cost function

4 information matrix

MMOD modified information matrix, see Eg. (17)

mij element of inverse information matrix

N number of data points

n measurement - noise vector

n, number of measured output variables

np number of unknown parameters

P, 4, Y roll, pitch, and yaw velocities, rad/sec or deg/sec

R measurement - noise covariance matrix

s ) standard error estimate

t time

u, v, w longitudinal, lateral, and vertical airspeed components,
m/sec

v true airspeed, m/sec

X state vector

Xpr Ypr 2y linear position coordinates of aircraft, m
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Xa' Y ., Z position coordinates of a wind vane with respect to
aircraft center of gravity, m

XB' yB, zB p?sition coordinates of'Bv wind vane with respect to
aircraft center of gravity, m

Yy output vector

W transformation matrix

-4 measurement vector

a angle of attack, rad or deg

B sideslip angle, rad or deg

Gij Knonecker delta

81, 82 convergence criteria, see Eq. (16)

n input vector

0 vector of unknown parameters

0 pitch angle, rad or deg

Ay scale factor error of variable y

v residual vector

g process -~ noise vector

02 variance

¢ roll angle, rad or deg
Subscripts:

b body axes

E measured quantity

N nominal value

0 initial value

R uncorrected for bias error

v wind vane
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Matrix Exponents:
T transpose matrix
-1 inverse matrix
Mathematical Notation:
. over symbols denotes derivative with respect to time
over symbol denotes estimated value
A incremental value

Abbreviations:

EKF extended Kalman filter
ML maximum likelihood
NFIS nonlinear fixed-interval smoother
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INTRODUCTION

For more than fifteen years there have been numerous attempts to estimate
airplane states from measured flight data. This estimation is possible
because of well known kinematic equations relating the airplane states and
output variables. In many cases the estimated states have been used for data
compatibility checks, that is, for comparison of measured and predicted
response variables of an airplane. Because the measured data are corrupted by
random and systematic errors, it was recognized that the state estimates
should be combined with the estimation of unknown biases (parameters) to
obtain satisfactory results. Various methods for state and parameter esti-
mation were applied. They can be divided into two groups:

1. Methods for estimating separately unknown parameters and states
(refs. 1 to 6). For parameter estimation the maximum likelihood or nonlinear
least squares techniques are used. For state estimation the system is assumed
to be deterministic. That is, the state variables are simply obtained by the
integration of model equations.

2. Methods for estimating states and parameters simultaneously using an
extended Kalman filter (refs. 7 and 10), or nonlinear smoother (ref. 11). A
review of various approaches to the problem of airplane state estimation is
presented in reference 12,

The purpose of this report is (1) to develop a maximum likelihood algor-
ithm applicable to general motion of an airplane; (2) to compile an efficient
computer program based on this algorithm; and (3) to verify both the algorithm
and program on simulated and real flight data. The report starts with the
formulation of model egquations and estimation techniques. Then several
examples are presented. When the real flight data are analyzed the maximum
likelihood results are compared with those obtained by using an extended
Kalman filter and nonlinear smoother.

MODEL EQUATIONS

The mathematical model used for the data compatibility check is described
by three sets of kinematic equations with the state variables consisting of
three linear velocities u, v, and w; three Buler angles ¢, 6, and ¢ ; and
three linear positions Xpr Ype and Zyye The input variables in these equations

are the linear accelerations ag, ay, and a, and angular velocities p, q,

and r. The form of the kinematic (state) eguations considered can be found in
various references {(see, e.g. reference 9).

The following variables are measured:

P, 9, and r.

1. The inputs to the system a_, a,, a

X Yy z!

2. The airspeed V, two incidence angles Bv and o, three Euler
angles ¢,0 , and Y and altitude h= =Zye




These variables represent the output of the system.
ables z are corrupted by systematic and random errors.

each of them can be expressed as

z=(1+A)y+b +n
y Yy Yy

where y is the true value of the output, A

b, is the constant bias error, and n

Yy

Yy

is the measurement noise.

The measured
It is assumed that

vari-

(1)

y is the unknown scale factor error,

It is further

assumed that the scale factor error is equal to zero for all the input vari-

ables.

scale factor and bias errors.

This assumption will simplify an estimation procedure for remaining

The system of state equations is simplified by deleting the equations for

Xp and Ype

Then, replacing the input variables in the remaining state equa-

tions by their measured values results in the following set of state equations
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The output equations take the form

V.= (1 + A) /u2+ V2 WP+ b
R v v
v +r X - p. .2
-1
Bre = (1 4 Atan [cor B By 4y
r,EYg" YR, E®B
v +r X, + p. .Z
-1 R,E
Bog= (1 * XB) tan [u _—— : B+ R'EZB] cos a . oF bB
r,eYg" IR, E%8 '
=1 v
= A,
Br (v + )‘S) sin’ ¢ bB (3)
., W-gq x + p. _y
a = (1 + Aa) tan1 [u — rR'E a+ R,Eza] +b
R,EYa IR, E%a @

h = (1 + kh) h

o= (1 + A) ¢+ b

L ¢
eR= (1 + xe) 6 + be
V= (v + Aw) v

In Eq. (3) BV and a, are the incidence angles measured by the vane. The
sideslip angle B* is measured in the Oxbyb plane, whereas B is measured
between the wind vector and its projecton on the Oxbzb plane. These two

angles are therefore defined as

(4)

Sometimes the measured sideslip angle has been corrected for the c.g. offset
prior to the compatibility check. 1In such case BR can be computed from the

simplified equation as indicated above. In the output equations for hp

and J_ the constant bias terms are omitted because the reference values
for y and h can be selected arbitrarily. Further, in Egs. (2) and (3), R
indicates the variable uncorrected for bias errors and index E measured vari-

able. Finally, X ya 'z, and XB' YB' zB are the position coordinates

of a and B vane with respect to airplane center of gravity.



PROBLEM STATEMENT
The general form of state equations for a given system can be written as

X(t) = ¢ [x(t), n(r), o] + g [x(£)] E(t), x(0) = x, (5)

and the discrete form of the measured equations as
z(i) = h [x(i),n(i), ©,] + n(i), i =1, 2, +vu, N (6)

where x, n, and z are the state, input and measurement vector

respectively, 01 is the vector of unknown biases and scale factor errors, Xg

is the vector of unknown initial conditions, £ and n are the process and
measurement noise vectors respectively, and N is the number of data points.
The compatibility check can be now formulated as an identification problem
which involves the estimation of state and output variables, unknown para-
meters 01 and x5, and covariance matrices of £ and n, from measured data.

The postulated model eguations represent a nonlinear stochastic system
with state-dependent process noise and with nonlinear output equations with an
additive measurement noise. The state estimation in this case would be an
extremely difficult problem. The separate estimation of unknown parameters
would be equally complicated because of the resulting form of the sensitivity
equations. For these reasons, possible simplification of the problem will be
considered.

ESTIMATION METHOD

The state and parameter estimation problem outlined above can be reduced
to parameter estimation only by neglecting the process noise altogether. The
state estimation is thus replaced by the integration of the state equations
with the estimated values for initial conditions and bias errors. For the
parameter estimation the maximum likelihood (ML) method is applied. The
measurement noise in equation (6) is assumed to be zero-mean, uncorrelated,
and gaussian, i.e.,

Efn(i)} = 0, and E{n(i)n"(5)} = R,

14

where the symbol Gi 3 is the Kronecker delta.
4
The ML method finds a set of parameters by minimizing the log -

likelihood function (see, e.g. reference 14).

1 T . -1 . N
5 v (i) R u(i) - 5 in|R| (7)

[ A

2
J(O1o ) = -
Y

i=1




where
T
o = [o, x,]

v(i) = 2(i) = h [x(i),n(i),0,] (8)

2, . . . . .
ay is the variance of the measurement noise in output variables and N is

number of data points. Minimizing (7) for parameters in R gives the estimate
of measurement-noise covariance matrix as

R = w(i) V(i) (9)

™2

1

N .
i=1

The estimates of the remaining unknown parameters are given by the root of the

equation

3%(8) -0 (10)
0=29

for R replaced by R. This root can be found by modified Newton-Raphson itera-
tion technique (ref. 14).

It is well known that under the above mentioned assumptions the final
estimates of unknown parameters are consistent, asymptotically unbiased, and
asymptotically efficient with

E{(6 - 0 (0 - O)T} > ¢ [Af R 1Ai] (11)
i=1

In this expression AT is the transpose of the sensitivity matrix with the
elements

RV
Aif?i’ {z= 1,2,000en }
L rer p

k = 1,2,....nm

where n_ and n, are the numbers of measured output variables and unknown

parameters in O respectively.

COMPUTING ALGORITHM

The block diagram of computing procedure for the ML estimation of unknown
parameters is presented in Figure 1. The measured data are considered in the
form of digitized time histories of input and output variables with sampling
interval At. The state and output equations are given by Egs. (2) and (3)
respectively with the unknown biases and scale factors
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and unknown initial conditions

B
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For the integration of state equations and computing output time histories the
starting values of unknown parameters must be specified. The biases and scale

factors are usually set egqual to zero. The starting value of initial condi-
tions are obtained from measured variables at t=0 as

uy= VR,E(O) cos aR,E(O) cosBR'E(O)
vo© Vk'E(O) sinBR,E(O)

Wo= VR,E(O) sinaR,E(O) cosBR'E(O)

(12)

hy= hg, g(0)
%= g,g(?)
60= eR,E(O)
Vo< Vg, g!®)

Using the modified Newton-Raphson iterative technique the unknown para-
meters obtained from

0= ON+ AQ (13)
where ON are the starting values
and
N -1 N
- -1 T 2-1
so=[za R'a ][ za ]
. i i . i i
i=1 i=1

The transpose of the sensitivity matrix A is given in Table I, where the
crosses indicate sensitivities ayk/802= -avk/aoz computed by a numerical

method of reference 14. The remaining sensitivities in Table I are equal to a




known constant or zero, or are formed by the computed output variables. The
estimates of elements in the measurement noise covariance matrix R are
obtained from Eg. (9) and the residuals from Eg. (8).

For t=0 the output equations for ¢Rand eR give

b= ¢_(0) = (14x,) ¢
by= 0,(0) = (1+X.)8)

It means that for X¢ and Xe a linear relationship exists between ¢0 and b¢,
g ° The algorithm therefore provides two options for b¢ and be
being either estimated or computed from Eg. (15).

and 60 and b

The iteration process is completed when certain stopping criterion is
met. In this report two criteria proposed in reference 13 are adopted, i.e.,

AQ
a“ <€1

AT
T %

where €, and €, are specified, for example g,= €, = .001. These two criteria

should be met simultanecusly. When the iteration is completed the correlation
matrix of unknown parameters is computed from

=1 -1

MMOD= WM W (16)
=1

where M = {mij}
W = {1//mii}

The residuals can be examined using their time histories, autocorrelation
functions and power spectral densities (ref. 9).

EXAMPLES USING SIMULATED DATA

The method developed in this study was applied to simulated data to check
the accuracy of the computing algorithm and estimated parameters. Two sets of
simulated data, one representing the longitudinal and the other representing
the lateral motion of an airplane, were used. The time histories of the input
and output variables are shown in Figures 2 and 3. The sampling interval for
these time histories was At= 0.05 sec. The measurement noise with standard
errors given in Table II was added to the simulated data.



The results of three cases using the longitudinal data with measurement
noise only in the output variables are presented in Table III. In Case 1 the
initial conditions were fixed on true values, in Case 2 on values corrupted by
measurement noise. In Case 3 the initial conditions were estimated. The
degradation in the accuracy of the estimated parameters from Case 1 to Cases 2
and 3 is apparent. It is probably caused by incorrect values of initial
conditions (Case 2), by an increased number of unknown parameters (Case 3) and
high correlation (greater than 0.9) between some parameters. The expected
high correlation between parameters be and 60 (see Eg. 15) did not materialize.

A similar approach was adopted in the next three cases, where both the
input and output variables were corrupted by measurement noise and the number
of unknown parameters was increased. The results in Table IV do not show any
substantial deterioration in the accuracy of the estimated parameters when
compared with the previous results in Case 2 and 3.

In Table V two sets of results from the analysis of lateral data are
given. These sets differ in the two values of simulated bias errors in the
variables B, p, r, and ¢ . The different values of bias errors did not
change the differences between the true and mean values of estimated para-
meters but changed the standard errors of the parameters and the correlation
between them. The accuracy was worse than that obtained from the longitudinal
data. The estimation was then repeated with the initial conditions as the
unknown parameters. This attempt, however, failed because of the estimation
procedure divergence. The analysis of lateral data indicated a possibility of
identifiability problems with this type of data. To avoid that, the design of
an optimal maneuver for more accurate estimates and with less sensitivity to
the number of unknown parameters should be investigated.

ANALYSIS OF FLIGHT DATA

Three sets of measured flight data were analyzed. Two of them repre-
sented a longitudinal motion of an airplane, the last set was obtained from a
combined maneuver with predominantly lateral motion. The sampling interval
for all data was At= 0.05 sec. The measured output variables Vg, a§ P
and GR in the first run are presented in Fiqure 4. The resulting estimates

which include the parameter mean values, their standard errors (Cramer-Rao
lower bound) and standard errors of the measurement noise in the output vari-
ables are summarized in Table VI. In Case 1 the vector of unknown parameters
was postulated as

T
07= [b, s sb Db s AGs A g W, 8,]

As can be seen from the results, three pairs of estimated parameters are
highly correlated, and the parameters bax and 60, have large standard errors.

As the next step, therefore, the parameters b__, w, and ) were fixed on their
. . . ax 0 v
estimated values. The estimation of the remaining parameters was then repeated




in Case 2. The new results indicate no change in the mean values but lower
standard errors of the estimates. The predicted time histories of the output
variables are compared with those measured in Figure 4. The agreement is very
good in all variables plotted.

The time histories in the second run had similar form as those in the
first one. The estimated parameters are contained in the last two columns of
Table VI. All parameters from both runs agree well with the exception of the
parameter by. This disagreement could be caused by the elimination of AV in

the vector of unknown parameters in the second run. As in Run 1 the results
also exhibit high correlation between some parameters.

In order to further validate the results, the ML estimates from Run 1
were compared in Table VII with those obtained by a nonlinear-fixed-internal
smoothing (NFIS) technique (ref. 12) and by an extended Kalman filter (EKF)
(ref. 9). For the ML and NFIS estimation the initial values of unknown bias
and scale factor errors were set equal to zero whereas for the EKF these
values were made equal to the ML estimates because of the slow convergence of
the filter. The estimates from all the three techniques agree well. The main
differences are seen only in parameters bV and 60. The parameter 90 was

estimated with poor accuracy in all cases. The reason for the disagreement in
by, could be due to insufficient excitation of the airspeed during the airplane

motion.

Data from the third maneuver were analyzed assuming only the bias errors
in variables ays a,, Py, A, L, B, ¢ and O, After reviewing the estimates, some
of the less important terms were eliminated. As a result of that, the vector
of unknown parameters was postulated as

9 = [bayrbazrbqlbrlbsluolvolwol ¢O’ eo]

with b¢ and be computed from Eq. (15). The measured and predicted time
histories of output variables are plotted in Figure 5. Then, as in the pre-
vious case, the ML estimates were compared with those using NFIS and EKF
techniques. The results are given in Table VIII. The agreement between the
ML and EKF estimates is good. This could be, however, due to the use of ML
estimates as starting values for the EKF technigue. Therefore, more thorough
checks should be made for better assessment of results from both methods. The
main differences between ML and NFIS techniques are in the parameters bB' and

initial conditions v0,¢0 and 60. These differences can be caused by poor

accuracy of these estimates and different values of the remaining parameters.



CONCLUDING REMARKS

A maximum likelihood method was developed for the estimation of initial
conditions and bias errors in measured airplane responses. In the development
it was assumed that the input variables to the system represented by linear
accelerations and angular velocities are measured without random errors. The
model relating airplane state, input and output variables is based on six-
degree-of -freedom kinematic eguations and on output equations specifying the
measured variables.

The resulting technique was first applied to a limited number of simu-
lated data runs to check the accuracy of the computing algorithm and estimated
parameters. It was demonstrated that the increased number of unknown para-
meters and the correlation among them can degrade the accuracy of the esti-
mates. At the same time it was observed that a moderate noise in measured
inputs has only a small effect on the accuracy of the results. The lateral
maneuver analyzed provided less accurate parameter estimates than the longi-
tudinal one. The increased number of unknowns in the lateral case resulted in
a divergence of the estimation procedure. The results from simulated data
indicate a need for a design of an optimal maneuver for more accurate esti-
mates and with less sensitivity to the number of unknown parameters.

The maximum likelihood method developed for this report was also applied
to the analysis of real flight data. Two longitudinal maneuvers similar in
form were analyzed first., The resulting parameter estimates from both maneu-
vers were in good aqgreement. Then the maximum likelihood estimates were
compared with those obtained by a nonlinear-fixed-interval smoother and an
extended Kalman filter. The comparison of the three techniques showed no main
differences in the results. Similar conclusions were obtained from the anal-
ysis of a lateral maneuver with a strong longitudinal coupling. All the
comparisons served as a verification of the maximum likelihood technique
presented in the report.
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- TRANSPOSE OF SENSITIVITY MATRIX

TABLE I.

%R

8vR

Qn ¥ 6 © > ou B
L 0 a0 0 0 a9 8 a0 < < <

x indicate sensitivities computed by a numerical method

bax
bay
baz
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TABLE II.

~ STANDARD ERRORS OF
MEASUREMENT NOISE

Standard Error
of Measurement

Variable Noise of Variable
a 2 0.1
x? m/SeC .
2

ay, m/sec 0.1

a m/sec2 0.1
zl
p, rad/sec 0.002
q, rad/sec 0.002
r, rad/sec 0.002
V, m/sec 1.0
B, rad 0.002
a, rad 0.002
¢, rad 0.002
6, rad 0.002
Yy, rad 0.002
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TABLE VI. - ESTIMATES OF PARAMETERS FROM LONGITUDINAL
FLIGHT DATA OF TWO DIFFERENT RUNS

RUN 1 RUN 2
Parameter Case 1. 1 Case 2

) s(9) ) s(6) ) s(9)
b,y 9 units .004 . 0065 .004 €
b,,, g units -.1240 .00040 -.1240 . 00021 -.1257 .00022
by, deg/sec 1.792 .0019 1.792 | .0018 1.827 @ .00060
by, m/sec -1.2 .30 -1.24 a .098 -.5 a .16
b, deg 2.6 .19 2.631 .0036 1.5 a .21
by, deg -12.7 -12.72 Dn -12.87 P
Ay .018 .0077 018 €
Ay -.073 .0027 -.073 .0026 -.081 .0034
ug, m/sec 35.5 .10 35.5 a .10 37.2 a .16
wg, m/sec 6.0 .13 6.0 c 6.5 a $12
8, deg -2, .37 -.19 .025 7.60 a .025
s(V), m/sec 260 260 . 338
s(a), deg .280 .280 331
s(6), deg .748 .748 1.19 !

o

Parameters with high correlation
Computed from 60 and BR E(0)
Fixed parameter !
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TABLE VII. - ESTIMATES OF PARAMETERS FROM LONGITUDINAL
FLIGHT DATA USING THREE DIFFERENT METHODS

ML NFIS EKF

Parameter " R R R N "

5] s(09) e s(6) <] s(0)
b,,s 9 units -.1240 . 00021 -.122 .0035 -a123 | .0035
by, deg/sec 1.792 2@ .0018 1.8 .14 1.74 .042
by, m/sec 1.24 a .098 .02 .40 -.28 .075
b . deg 2.631 .0036 2.34 .34 2.6 .10
by, deg -12.72 P -13.03 .10 -12.64 .033
Ay -.073 .0026 -.050 .015 -.09 .012
uy m/sec 35.5 a .10 37.8 .40 35.5 .82
wor m/sec 6.0 c 6.1 27 | 61 .39
8,: deg -.19 a .025 .7 .30 .4 .72
s(V), m/sec «260 177
s(a), deg «280 .158
s(6), deg .748 1.08

a

Parameters with high correlation
Computed from 6_ and 6 (0)
0 R,E

€ Fixed parameter
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TABLE VIII. - ESTIMATES OF PARRMETERS FROM
FLIGHT DATA USING THREE DIFFERENT METHODS

ML NFIS EXF

Parameter

é s(é) 0 s(é) 0 s(é)
byys 9 units -.003 2 .0045 -.018 .0063 -,003 .0035
b,,, g units -.1801 .00041 -.172 .0024 -.181 .0035
bq' deg/sec 3.152 . 0065 3.07 .050 3.14 .042
b., deg/sec 1.414 .0038 -1.9 .13 -1.43 .056
bB' deg 7 .10 1.2 .18 .83 .094
b, deg -3.5 b -3.9 .43 -3.94 .031
Ug, m/sec 35,20 .037 36.91 .038 35.3 .16
Vor m/sec -.47 .084 o1 17 -4 .25
LY m/sec 7.63 .029 7.14 092 7.4 .39
¢or 9e9 .2 a .24 -1.8 .58 .2 1.6
60, deg «70 . 044 .2 17 7 60
s{V), m/sec .300 «511
s(B), deg .435 .206
s(a) , deg .854 .182
s(¢) , deg 2.078 1.053
s{(08) , deg 1.105 .961
s(y), deg .728

a

pParameter with high correlation

b
Computed from ¢0, 60 and ¢R'E(0), 0 (0)

R,E
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Figure 1. - Block diagram of computing procedure for
ML estimation of unknown parameters.
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