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LARGESPACESTRUCTURESACTIVECONTROL

High performance control systems for flexible structures which provide
adequate robustness require synthesis techniques that incorporate the
interdependencies between performance objectives and model fidelity. Such levels
of fidelity are not possible to achieve via ground testing alone. This is due to
the fact that differences in ground and space environments can significantly
change the measuredparameters. In addition, the time-varying nature of the space
environment requires real-time "tracking" of key structural parameters.

An on-orbit ID function can provide the real-time knowledge of plant
characteristics which greatly influence control performance, such as flex-body
parameters, self-generated disturbances, shape distortions, actuation and sensing
dynamics, etc. This information is then available for updating the controller
plant model, and mayserve as the data base from which a control function can make
adjustments to autonomously tune the system performance and stability margins. I

In this discussion, the focus will be on those identification and modeling
aspects primarily associated with large space structure dynamical control.
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GENERALFLEXIBLESTRUCTURECONTROLMETHODOLOGY

In general, the high frequency dynamicsof LSSwill not be well
known and the order of the dynamics will be too large to design an effective
wideband control system. Newmethods are required to control the low
frequency modeswithout exciting the higher frequency dynamics inherent
in the structure and to constrain the control gains from spill-over into
the higher modescausing instabilities or performance loss. This area is
a major thrust in the extension of modern control theory and the emerging

cross-discipline technology of active structural control covers a wide

range of interrelated design and system functions.

As depicted below, the general structure control methodology is to

phase stabilize modes lying within the control bandwidth (in-band modes) and

to gain stabilize structurally damped modes lying outside the control band-

width. Such active control methods require very precise knowledge of the

locations of the in-band modes in order to allow correct phase stabilization

(such sensitivities are even more pronounced when actuators and sensors

are non-colocated). Because such precise knowledge of system dynamics is

not possible via ground testing alone, on-orbit system identification is

required.
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DISTRIBUTED PARAMETER MODELING, APPROXIMATION AND CONTROL

Control design for distributed parameter systems introduces a number of

complexities that are either not present or relatively innocuous in the design

process for lumped systems. A most fundamental issue is selecting an appropriate

reduced order model so that system performance objectives can be met. As is

well known, a poor selection can severely degrade performance and in some cases

yield closed loop instabilities. Under reasonable hypotheses on the finite

dimensional approximation schemes, the distributed parameter LQG design approach

utilizing a functional gain convergence criterion achieves a correct match

between model order and desired performance 2. In addition, LQG also has the

desireable property that new physical objectives are easily incorporated into

the design process through the state-cost functional.

We have successfully applied this distributed parameter LQG design

methodology to large-scale simulations of control systems for flexible struc-

tures. The chart below contains time history plots of controller performance

based on this approach. Because a functional gain convergence criterion is used,

these controllers are very near optimal for the full distributed parameter system.
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ON-ORBITSYSTEMDYNAMICSIDENTIFICATIONMETHODOLOGY

The need for developing a system identification (ID) on-orbit methodology is
driven by practical considerations. The post-launch changes in a physical
system's characteristics must first be identified before the mission operations
proceed with confidence; structural dynamics identification is essential for
accomplishing active vibration control of large structures; and system
characterization in space is required to verify the accuracy and adequacy of
ground-based models for predicting and modifying in-flight performance.

The technical challenges involved in performing on-orbit identification are
significant. As opposed to ground testing which involves elaborate test beds with
virtually unlimited sensing, excitation, and computational resource, the on-orbit
situation is constrained to only a few sensors, operationally viable excitations,
and restricted computational resource. 3 The diagram below illustrates the
integrated systems approach for on-orbit dynamics identification. The methodology
involves a multi-stage identification process starting with robust nonparametric
survey methods, and progressing to more refined parameter determination
algorithms.
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IDENTIFICATION EXPERIMENT CONSTRAINED INPUT DESIGN

On-orbit identification of modal frequencies of a 15 degree-of-freedom Power

Tower model of the Space Station was considered using maximum likelihood

estimation. Low frequency modes can successfully be identified by the proper

application of multi-directional thruster inputs in the form of force and torques

in orthogonal spaces. Higher frequency modes, however, are insufficiently excited

to permit accurate estimation due to thruster power and bandwidth limitations.

Among the inputs considered, it is concluded that staggered pulse sequences are

superior for obtaining a more accurate estimate of the unknown parameters. When

staggered thruster pulses are used the identification process may toleratean

initial parameter estimate error of up to 50% of the nominal values for the lower

frequency modes. Further research is needed for the identification of modal

dampings.4,5, 6
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ROBUSTNESSENHANCEMENTOFLQGCONTROLLERS

Our initial approach to control design utilizes infinite dimensional LQG
theory to design compensators that are robust with respect to errors introduced by
model truncation. A second error source that requires accommodationare those
errors introduced by parameter error. At the present time two approaches have
been developed and validated to improve the robustness characteristics of LQG
compensators with respect to parameter error. The first approach synthesizes
structured uncertainty and loop transfer recovery techniques to achieve a
systematic process for making trades between performance and robustness 7. In
terms of synthesis, the method involves adjusting the weighting matrices in both
the regulator and estimator portions of the LQGdesign problem in a way that
reflects the structure and magnitude of the modeling uncertainties. This
uncertainty information could be obtained from the covariance analysis provided by
an on-line identification process. An alternative approach that has also been
developed consists of a sensitivity optimization of the eigenvalues of the closed-
loop system8. A nominal LQGcompensator is used to initialize the nonlinear
programmingproblem associated with the optimization. Constraints in the form of
stability margins are imposed in the optimization to insure adequate trades
between performance and robustness. On the models to which these methods have
been applied, both approaches have yielded substantial improvement in robustness
over o+o_A_rdLQGcontrollers.

The chart below illustrates the overall design methodology, and how the
sensitivity optimization method can increase observer bandwidth in an LQG
compensator and simultaneously increase its robustness properties.
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IDENTIFICATIONANDCONTROLFLIGHTEXPERIMENTS

A natural progression of technology development, from analysis and simulation
through laboratory physical test beds to full scale flight experiments, is basic
to major CSI research initiatives. The COFSprogram and the ATSE(Antenna
Technology Shuttle Experiment) provide the meansto space test and enable
application readiness of advanced identification and control technologies.

The objectives of the ATSEin identification and control have the underlying
theme of an integrated system capability to support robust precision
stabilization/control of the MSAT(2nd generation 20-meter dish). This can be
further described by the following criteria which include operational constraints,
system design limitations, in-situ performance maintenance, and synergistic use of
identification/control techniques:

a) Integration of identification with active structure control
for LOSstabilization

b) Identification in operational mission time
c) Design for flight system hardware limitations
d) Input design for controlled excitation 9,10
e) Unify frequency and time domain techniques for in-flight

support
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POINTINGJITTER CONTROL EXPERIMENT

The objective of this experiment is to control the dynamic motions

of both feed boom and reflector boom in order to maintain precision pointing

of the feed to dish llne-of-slght. Distributed accelerometer signals

are processed onboard by selected algorithm options to actively control

boom dynamics via proof-mass actuators located at mldspan and tip of each

boom. Parameter updates from identification processing at the payload

operations control center (POCC) are used to tune the controller-embedded

reduced order plant models. Both regulation and tracking control policies

are to be evaluated in a sequence of sub-experlments.
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SUMMARY

We have presented the major components of a design and operational

flight strategy for flexible structure control systems. In this strategy

an initial distributed parameter control design is developed and implemented

from available ground test data and on-orbit identification using sophisticated

modeling and synthesis techniques. The reliability of this high performance

controller is directly linked to the accuracy of the parameters on which the

design is based. Because uncertainties inevitably grow without system moni-

toring, maintaining the control system requires an active on-line system

identification function to supply parameter updates and covariance information.

Control laws can then be modified to improve performance when the error

envelopes are decreased. In terms of system safety and stability the covariance

information is of equal importance as the parameter values themselves. If

the on-line system 1D function detects an increase in parameter error covar-

iances, then corresponding adjustments must be made in the control laws to

increase robustness. In one scenario for example, if the error covariances

exceed some threshold, an autonomous calibration sequence could be initiated

to restore the error envelope to an acceptable level.
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