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A MIRROR TRANSPORT MECHANISM FOR USE AT CRYOGENIC TEMPERATURES

Kenneth W. Stark* and Meredith Wilson*

This report describes the Mirror Transport Mechanism (MTM), which sup-

ports a pair of dihedral mirrors and moves them in a very smooth and uniform

scanning motion normal to a beamsplltter. Each scan is followed by a quick

flyback and repeat.

Included in the report will be material selection, design, and testing
of all major components of the MTM in order to meet the stringent performance

requirements under cryogenic conditions and survive the launch environment

of the shuttle. Areas to be discussed in detail will be those in which fail-

ures or performance anomalies occurred and their solutions. Typically, this

will include (but not to be limited to) flex pivot failures during vibration

testing, excessive dihedral platform sag under one "g" operation, electronic

and fiber optic characteristics, and tolerancing considerations.

As of this writing, development of the mechanism has reached the final

phase of thermal and vibration qualification. Environmental testing of the

complete FIRAS experiment is just beginning.

INTRODUCTION

The Mirror Transport Mechanism (MTM) is an integral part of the Far

Infrared Absolute Spectrophotometer (FIRAS) instrument. The FIRAS measures

the spectrum of the 3 K cosmic background radiation, the interstellar dust

emission, and any unknown sources in the wavelengths ranging from lO0 _m to

l cm. The FIRAS is a cryogenically cooled (LHe) rapid scan Interferometer
spectrophotometer. A pair of dihedral mirrors is moved with respect to a

beamsplltter, producing the optical path differences which generate an inter-

ferogram. Incoming radiation, which is channeled into the Interferometer by

a skyhorn, is balanced against an internal reference source.

An external calibrator is also provided which when commanded will swing

into place in front of the skyhorn at which time the temperature of the

internal reference source is adjusted to nearly null the signal. Proper

operation requires that the entire instrument be maintained at a temperature

below 2 K. Thus, it Is enclosed in a large dewar filled with superfluld

helium at 1.8 K. Spacecraft orbit is such that complete coverage of the

universe requires about 6 months. For double coverage, a lifetime of at
least a year in orbit is desired. Since any power dissipated in the dewar

increases boil-off of the cryogen, strict limits are placed on the allowable
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dissipation. The FIRAS power budget is 5 mW. Lifetime in orbit is reduced

by about 3 days/mW.

The dihedral mirrors are mounted on the MTM platform and the MTM is

designed as a basic 4 bar linkage connected by a set of 8 flexural pivots.

These flex pivots are essentially frlctlonless and provide only a small lln-

ear restoring force. Angular rotation is low enough that expected lifetime

at normal temperature is infinite. However, the entire mechanism must oper-

ate at 1.8 K for more than a year and there is no such previous experience.

Flex pivots were fabricated with a special material and llfe-tested for more

than 20 million cycles at LHe temperature and wlth greater than normal rota-

tion. The MTM is driven by a unique linear motor whose only moving part is

completely passive (no contact, no flexing wires). Scan operation is con-
trolled by an optical encoder, which consists essentially of a pair of grat-

ings having 50 llnes/mm. Thus, a pulse is generated at intervals of exactly
20 _m. By counting these pulses, the scan motion reverses at the proper

position. These encoder pulses are also used to command the A/D converters

to sample the detector outputs. Since each pulse is generated at a precise

position Of the mirrors, data from successive scans can be coadded for

greater reliability and noise reduction. Actually data sampling must be at

a higher rate than the basic encoder resolution so these pulses are accu-

rately subdivided by a phase lock loop. In normal optical encoder applica-

tions of this type, the light sources and detectors for the encoder are
located outside the dewar and optical fibers transmit the signals. Launch

environment requires rugged caging and locking to prevent damage. The dihe-

drals are quite large (about 8 in. high) and heavy (about 1.5 Ib each) and

must withstand launch vibrations. Protection is provided by moving the

platform beyond its normal stroke and by locking into a pair of cones and
sockets. A latch motor rotates a roller shaft deflecting a leaf spring

which forces the cones into the sockets. As further protection, each flex

pivot is fitted with a sleeve which limits deflection in the lateral

direction.

REQUIREMENTS

The performance and operational requirements that the MTM was designed

to are the following:

(1) Slow scan, 0.228 cm/sec

(2) Rapid scan, 0.342 cm/sec

(3) Flyback, _1.5 cm/sec

(4) Power dissipation, <5 mW

(5) Dynamic platform tilt (Table I)

(6) Operating temperature, 1.8 K (LHe)

(7) 26-g load vector design criteria

(8) Vibration test specifications (Table II)

(9) Jitter - 40 _sec
(lO) Space constraints within FIRAS instrument

(ll) Long scan platform travel, -0.4096 to 1.638 cm

(12) Short scan platform travel, -0.4096 to 0.102 cm
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All optical and structural components, where possible, are constructed
from 6061-T6 aluminum to prevent stresses and distortions upon cooldown to
LHe temperatures.

SELECTIONPROCESS

Prior to the selection of the flex pivot mechanismthere was an evalu-
ation period in which three basically different mechanismswere investigated.
They consisted of a linear ball slide, flexural plvot-four-bar linkage, and
a magnetic suspension platform.

The linear ball slide consisted of a platform riding on two parallel
shafts through three linear ball bushings. Basically two configurations were
built and tested. The first had stainless steel rods without lubrication and
the second had aluminum shafts with a hard coat and teflon lubrication bur--
nlshed onto the shafts. Although the power to drive the platform was low,
the noise present on each linear sweepwas unacceptable from an optical data
analysis standpoint. The stainless steel version was tested first and had
the highest noise levels. To try and reduce the noise, hard coated aluminum
shafts with a Teflon burnished coating were substituted for the stainless
shafts. The noise levels were reduced but were still unacceptable. Another
potential problem with this mechanismwas that it had to be kept exception-
ally clean since contamination on the shafts or bearings would greatly
increase power and noise values.

The magnetically suspendedInterferometer platform (Fig. ll) was
designed, built, and tested. Magnetic suspension provides a very smooth,
frlctlonless mounting which can be quite stiff with no restoring force in
the direction of motion. Each of three bearing assemblies (Fig. 12) is a
square unit with a central hole for the moving shaft. A permanent magnet in
each corner sets up flux paths as shown. The flux in opposite air gaps can
be differentially changed by winding coils on pole pieces. Depending on
current direction total flux at the top gap is increased, while flux in the
bottom gap is decreased. The result is a net upward force on the shaft.
Coils are also provided on the horizontal poles so that force can be applied
in either direction. Twoof the magnetic bearings are in line, supporting a
single long shaft. These bearings are controlled both vertically and hori-
zontally. The third bearing supports a shorter shaft and is controlled only
in the vertical direction.

Although testing of the unit showed good performance, it was not

selected for the MTM because the flex pivot design was simpler and would
meet the requirements.

The flex pivot mechanism was originally designed as a four bar linkage
utilizing six flex pivots (Fig. l). This mechanism was tested and found to

have very smooth operation with extremely low power dissipation (Fig. 2).

Because of the excellent operational characteristics and simplicity of design

this mechanism was chosen for the MTM. Several design changes were made

during the development and testing of this mechanism; however, because of
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space limitation only the final version utilizing eight flex pivots will be
discussed in detail in this report.

MECHANICALDESIGN

The "BASICDESIGN"mechanismdescribed in this report will be the eight
flex pivot four bar linkage (Fig. 3). Briefly this MTMwas changed from a
six flex pivot design to an eight flex pivot design to increase the rigidity
of the dihedral mirror platform support. The original version provided two
flex pivots in the movable connecting link which supported the dihedral
platform. Whenthe MTMwas inverted, as was necessary during certain tests,
there was interference with the gratings due to excessive deflections.

This six pivot model was redesigned and reanalyzed utilizing our NASTRAN
modeling and analysis program to the present "BASIC DESIGN"MTM,herein
referred to as MTM.

The MTMconsists of the following major componentsand subsystems:

(1) Flex pivots, links, and base
(2) Latch mechanism
(3) LVDTand LVT sensors
(4) Fiber optics and grating
(5) Spherical mirror reflector
(6) Linear motor

In Figures 4 and 5 each of the major components is identified. Eachof
the four links has the holes for the flex pivots llne bored so as to provide
a true coaxial centerllne for the pivot axes, thus eliminating rotational
stresses due to mlsallgnment. In addition the center distance of each pivot
on corresponding links is located to very close tolerances so as to provide
true translational motion of the movable connecting llnk. This is the llnk
on which the dihedral platform is mountedand as such any rotational motion
would be detrimental to the optical performance. The flex pivots are capti-
vated in the links by slotting the bored holes, and with the use of a machine
bolt, the hole is clamped about the pivot diameter. This provides a uniform
clamping action without distorting the flex pivot. At LHe temperature the
A_/_ of aluminum is 0.0043 and that of stainless steel is 0.003; therefore,
as the system is cooled the clamping force on the pivot is increased. Tests
were conducted to determine whether the clamping force was sufficient to
prevent the pivots from moving during vibration or whether we had to con-
sider the use of an adhesive. Measurementstaken at LN2 temperatures showed
that the push out force was in excess of 2224 N (500 Ib) which was above any
loads that would be seen during environmental testing. Initially, the piv-
ots were mounteddirectly in the links; however, because of problems arising
out of testing (to be discussed later) close toleranced sleeves are bonded
to the pivots which limit the radial excursion and therefore the flexure
deflections to a safe level. Another modification that was madewas in the
material used to fabricate the flex pivots. The standard material is a 400
series stainless steel; however, at LHe temperatures the impact resistance
is very low <2.7 N-m (2 ft-lb). To insure a better impact strength at
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cryogenic temperatures, INCO 718 was selected for the flex pivots. It has

an impact resistance of about 2? N-m (20 ft-lb).

Since this mechanism is essentially frlctionless and swings freely, it

was necessary to design a latch mechanism that would captivate all moving

components during the launch environment and yet be readily uncaged once in

orbit and data taking is to begin. In addition it must be positioned such

that it will not interfere with the MTM operation when uncaged. As shown in

Figure 6 the caging mechanism consists of a 15° stepper motor operating
through a 24:1 gear ratio. The output shaft is attached to an arm connected

to the shaft at go ° with two special order "V" shaped bearings attached (one

on each end). When the motor is engaged, the output shaft rotates and the

two bearings each engage a beryllium copper leaf spring (Fig. 4) compressing
it approximately 0.051 cm (0.020 in.). This results in approximately 311N

(70 Ib) of force which is reacted by the latch cones and sockets (Fig. 7).

The surfaces of the cones and sockets are hard anodized to prevent wear

debris from forming. In addition, the cone angles were selected such that a

self-locklng tendency would not be present. Internal to the socket housing,

a small spring is incorporated which is designed to give about a 8.9 N (2 ib)
unlocking force to the cones so that when the latch motor releases the 311 N

(70 Ib) holding force the cones are kicked out of the sockets to ensure

release. It should be noted here that in order not to have the latch motor

assembly interfering with the MTM motion during operation the latch position

is slightly out of the MTM operating range. In order to bring the leaf

springs close enough to the latch motor for latching purposes, the linear

drive motor is used for positioning into the latch cones.

The gear reduction consists of a pinion machined onto the output shaft
of the motor, meshing with the two-pass gear system. The large gears are

aluminum with a hard anodized surface lubrlcated with a burnished MoS 2
coating. Located within the gear box are two miniature electromagnetic

proximity sensors which indicate the latch and unlatch positions.

The motor detent torque of 0.0177 N-m (2.5 In.-oz) is sufficient to

prevent the gear box output shaft from rotating during handling environmen-

tal testing. For redundancy purposes the motor is constructed with dual

windings, any one of which will be able to operate the latch/unlatch
sequence.

Because of problems that arose during the tests, which will be dis-

cussed later, a third polnt-constralnt was added (Fig. 8). This constrained

point prevents the MTM dihedral platform and connecting llnk from rotating
excessively about an axis through the latch cone assemblies.

As part of an overall mechanical analysis of the MTM a NASTRAN model was

constructed. It consists of 665 grid points, 449 CQUAD's, 256 CBARS, 6 HEXA,

4 PENTA, and I09 CTRIA elements. The NASTRAN model is shown in Figure 9,
which also shows a comparlson of NASTRAN modes with measured modes indicating
good accuracy of the NASTRAN model.
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ENVIRONMENTALTESTINGANDMODIFICATIONS

Thermally, the MTMmust survive launch conditions at LHetemperatures,
and once in orbit it must operate at this temperature. Although we were able
to performance test the MTMat LHe temperatures, vibration testing could only
be done at LN2 temperatures due to the test dewars that were available. The
sequencefor vibration testing was to perform a room temperature vibration
and if everything was successful then an LN2 vibration would follow. The
reason for two separate tests was that the room temperature test was out in
the openallowing clear visual observation during tests, but the LN2 tests
had the MTMmounted inside a dewar where no visibility was possible.

Vibrational testing consisted of (1) a sine burst test at about 20 cps
to simulate the steady-state componentof the vibration and (2) a random
test. These tests were performed separately and in each of three mutually
perpendicular directions. The vibration test specification levels used are
shownin Table II.

As mentioned previously, there were two major problems that developed
during the vibration testing that necessitated significant redesign in the
latch mechanism. Loads were developed during testing which caused a rocking
motion in the dihedral platform resulting in pivoting motion about the latch
cone axis. This placed excessive loads on the pivot flexures causing them
to fail.

To reduce this motion a third point latch was developed (Fig. 8) which
limited motion to ±0.0051 cm (±0.002 in.). This was arrived at by a compro-
mise of how tight a clearance could be maintained without possible binding
and the allowable stress buildup in the flexures at that excursion. The
third point latch consists of a slot in the latch motor housing and a tang
attached to the rear of the dihedral platform connecting llnk. The spacing
is adjusted so that when the tang is movedinto the slot during the latch
modethere is a clearance gap on each side of the tang of 0.0051 cm
(0.002 in.). This arrangement was retested and worked.

Later in our test program there was a condition in which the MTMwas
vibrated but because of a mlsadJustment in the relationship of the latch
motor to latch spring, the cones were not seated properly in their respec-
tive sockets. This allowed excessive motion at the sockets even though the
third point latch was engaged. In effect, the platform could rotate about
the third point latch. This caused failure in several pivots. At this
point it was decided that the pivots themselves should be protected from
excessive loads in case of another overload condition. After an extensive
investigation it was decided to enclose each pivot in a sleeve (Fig. lO)
that would limit radial movementto an acceptable level. This level was
selected at a maximumof 0.0076 cm (0.003 in.) after an analysis showeda
stress level of 248 MPa(36 000 psi) was reached with 0.0076 cm (0.003 in.)
deflection and that buckling occurred at about 303 MPa(44 000 psi).

Testing in a fixture showedthat buckling occurred slightly above
0.0076 cm(0.003 in.) which probably put the stress close to 303 MPa.
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The sleeves were designed to have tightly machined tolerances so as to mini-
mize the sleeve to sleeve dimensional variations. Taking into account the

tolerances on the pivots, sleeves, and the center shift at 4° (rotation of

flex pivot in latch position) of each pivot, a maximum radial clearance of
0.008 cm (0.0032 in.) and a minimum radial clearance of O.OOll cm

(0.00045 in.) are possible. The upper pivot section is bonded to the sleeve.
Each sleeve and corresponding pivot have recessed grooves machined into the

mating surface to allow for epoxy retention. Subsequent room temperature

vibration testing showed no failed pivots.

An LN2 vibration test is planned in early 1986 to verify cold temper-
ature survival.

ELECTRICAL DESIGN

Drive and Control of MTM

The MTM operates in a closed-loop velocity mode, in which a velocity

sensor feeds into the servoampllfler (Fig. 13). If a constant dc level is

applied to the input, the motor will drive at a constant velocity such that

velocity sensor output just matches the input. It will continue to move at

constant velocity until the input is reversed, after which it will move at

constant velocity In the opposite direction until it is again reversed.

Length of stroke is controlled by an optical encoder having 50 llnes/mm.

The encoder also generates a single zero reference pulse (ZRP) which syn-

chronizes the operation. When the ZRP occurs during forward motion, a con-

verter is set to zero and scan operation begins. Motion continues until the

converter reaches I024 counts. Distance travelled is exactly 20.48 mm, since

encoder pulse spacing is 20 um. When thls point is reached, the MTM reverses
and flies back at about five times the forward scan velocity.

When ZRP occurs during flyback, a time delay is initiated, after which

the direction switches to forward and the cycle repeats. The purpose of the

time delay is to ensure that all transients are settled out and operation is

smooth by the time ZRP is reached, at which point the next scan begins.

Figure 14 shows the four scan modes which can be selected: LONG FAST,

LONG SLOW, SHORT SLOW, AND SHORT FAST. For short scans, forward motion

reverses after 256 counts or 5.12 mm. For slow scans, reference voltage is

exactly 2/3 the value of FAST scans.

An additional mode of operation is the POSITION mode, in which a posi-

tion sensor (LVDT) feeds into the servoampllfler and Is balanced out by a

posltlon-command voltage which can be sent by telemetry. Since this is sent

as an 8-blt word, the MTM can be set to any of 256 discrete positions. It

will stay in this position until a new value is sent or until operation is
returned to the normal SCAN mode.
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Drive Motor

The drive motor (Fig. 15) was designed for a stroke of about 30 mm

(I.2 in.) and a dlametral clearance of about 1.5 mm (0.060 in.). This large

clearance provides for the arc movement of the arms and for dimensional

changes due to temperature or imperfect alignment.

The moving part, attached to the MTM platform, is completely passive and

consists of four powerful rare-earth magnets at each end, forming an annular

air gap, north inward at one end, north outward at the other end. A coll at

each end cuts these magnetic lines, generating a push-pull force which is

essentially linear over its range of travel. The coils are attached to the
base, so the lead wires do not flex.

Initial motor design used niobium titanium wire, which becomes super-
conducting below about 9.5 K. The MTM was tested and operated at 4.5 ° wlth

a motor of this type. However, some anomalies were noted: an apparent

increase in spring constant and a large hysteresis effect. Because of these

poorly understood factors, it was decided to redesign the motor, using nor-

mal copper wire, if power dissipation could be made low enough.

Since copper has finite resistance it was important to reduce the

required current as much as possible by maximizing motor force constant.
Redesign included the following:

(1) Samarium cobalt magnets were replaced with neodymlum-lron, a newly

developed material having about 50 percent higher gauss-oersted product.

(2) The flux return path was at or near saturation. Cross sectional

area was increased about 50 percent.

(3) Overall diameter was increased to allow for 30 percent more turns.

Each coil of the final motor design is wound with 2600 turns of number

38 copper wire. With two coils in series (normal coils) there is a total

resistance of about 830 ohms at room temperature, decreasing to about

lO ohms at LHe temperature. Redundant coils have the same number of turns,

but resistance is lO to 15 percent higher. The force constant is about
2.6 kg/amp (5.? Ib/amp) and the back EMF is about 2? mV/mm/sec. These same

figures apply to either normal or redundant coils.

Optical Encoder

The optical encoder consisting of a scale and a retlcle is shown in

Figure 17. The scale is mounted on the moving platform and the reticle is

attached to the base. Optical fibers are positioned directly below the

encoder parts. Those below the scale feed light in from external light
sources. A spherical mirror is mounted so that its radius of curvature is

in the plane of the gratings. This mirror images the scale pattern onto the

reticle, and the fibers below the reticle pick up the fringe pulses and

carry them out to external detectors. For reliability, two complete sets of

BO



optics and electronics are provided, only one of which is used at a time.

Both F and Z are normal components, F2 and Z2 are redundant.

Both scale and reticle are spring loaded against two edges and the

backside since differential expansion between the glass and aluminum due to

temperature cycling would result in a position shift.

In conventional encoders, scale and reticle face each other wlth a

small space between. Light passes through the grating patterns and fringe

modulation is sensed by a detector. However, spacing between scale and

reticle has a large effect on signal output, as shown in Figure 16(a). If

nominal spacing is 0.005 in., scale movement of even O.OOl in. can double or

halve the peak-to-peak signal. A further disadvantage is that such close

spacing between precision glass surfaces Is hazardous, particularly in

ground handling and testing. Figure 16(b) shows the encoder arrangement
used in the MTM. The reticle is separated from the scale and has its pat-

tern In the same plane as that of the scale. Light passes through the scale

to a spherical mirror which images the scale pattern back onto the reticle.

The spherical mirror used in the MTM is ground to I/4 wavelength accu-

racy and is made of aluminum, as is the tower supporting it. Thus, as dis-

tance between mirror and scale (4-1n. focal length) contracts due to the

cold temperature, the radius of curvature contracts in proportion so that

the pattern remains in focus.

Optical Connectors

Three types of connectors are used:

(1) A hermetic feedthrough connector which penetrates the dewar wall

(2) A bllnd-matlng connector to permit installation and removal of the

cryo-optlcal assembly

(3) A connector to permit removal of the MTM from the cryo-optlcal

assembly (see Fig. 17)

Figure 18 shows the hermetic feedthrough connector. A vacuum-tight

seal is accomplished by a Koval disc into which glass inserts are fused ane

then ground and polished to form clear windows. Ground and polished fibers

are inserted from each side and butted against the glass windows. Attenu-

ation is about 5 dB/pass through the connector.

The blind-mate connector is a butt joint connector in which one-half is

mounted in a floating arrangement and guided by tapered pins into alignment
with the other half. Attenuation is about 3 dB/pass.

The MTM optical connector permits separation of the MTM from the inter"

ferometer and COA assembly. Alignment pins insure accurate butt connectio_
of fibers. Attenuation is about 3 dB/pass.
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Optical Fibers

The optical fibers selected for thls application are large diameter
plastic fibers (DuPont Crofon, l mmdlam). By using such large diameter
fibers, the problems in designing and using connectors are greatly eased.
These fibers have a high attenuation (about 0.5 to 0.6 dB/ft). However,
they are minimally affected by bending, cryogenic temperature, or radiation.

For evaluation of bending and temperature effect, fibers were wrapped
around mandrels of successively smaller radius and exposed to cryogenic tem-
perature. The samefiber was used for all the tests, and temperatures were
applied by plunging the fiber directly into the cryogen. After wrapping the
fiber around each mandrel, it was dipped directly into liquid nitrogen and
allowed to stabilize. Attenuation was read, after which it was immersed
directly into liquid helium and read again. After warm up to room tempera-
ture, it waswrapped around the next smaller mandrel. Figure 19 shows the
results. The fibers showedno slgn of cracking or crazing.

Radiation received by the fibers during a year In orbit will amount to
about 4000 rads. In testing, the fiber was subjected to a total of 80 000
rads with very little adverse effect.

Optical PreampBox

Light sources and detectors are housed in the optical preamp box which
is located near the dewar and connected to it by optical fibers. The preamp
box contains a total of four LED's and four detectors, plus circuitry to
control LEDcurrent and to amplify the detector signals. Half of these com-
ponents are for the normal system and half are for the backup redundant
system.

The LED's are hlgh-power gallium arsenlde diodes which are constructed
wlth a lens. Rated output Is 30 mWat 200 mA, although it was decided to
limit current to lO0 mAfor further reliability. The wavelength is 940 nm.
Another lens concentrates the output further and an optical fiber is posi-
tioned to couple Into it as much light as possible. A photo diode monitors
a portion of the LEDoutput and feeds Into an automatic control circuit to
maintain constant output.

Velocity Sensor (LVT)

The velocity sensor consists of a palr of coils with a permanent magnet
core, which generates a voltage when the core is movedaxially. Output Is
proportional to velocity and is essentially linear over its range of travel.
To get optimumllnearlty, core magnets are measuredand selected for best
uniformity of magnetic field. For reliability, two sets of windings are
provided. Sensitivity is about 6 mV/mm/secfor either winding.
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Position Sensor (LVDT)

A conventional type linear variable differential transformer is used to

measure position. Excitation is about 3.6 kHz and output is converted to dc

by a demodulator and op amp. Linearlty is about 0.5 percent over its range

of l in. Redundant windings are provided.

Electronics

Almost all circuitry utilize CMOS devices for two reasons: (1) power

requirements are very low, and (2) radiation resistance is adequately high.

TABLE I. - DYNAMIC PLATFORM TILT

ALLOWABLE

ROTATION

AXIS P.D.(CM) (ARC-SEC) P.T. (CM) P.T. (IN)

+.2 + 8 +.058 +.023

1 _ 20 _.289 T. II4

_i to 5 _ 204 _.289 to 1.45 _.114 to .571

Y

X

+.2 + 16 +.058 +.023

1 _ 40 _.289 _. 114

-i to 5 + 408 -.289 to 1.45 -.114 to .571

Z NOT SPECIFIED

TABLE II. - VIBRATION TEST LEVELS

X Y Z

PLATFORM TRAVEL

RANDOM (GRMS) 6.75 3.8 3.3

SINE BURST (G's) I0.0 10.0
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