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I. INTRODUCTION

Mechanical system CAE is a distinct, relatively new field of

computer-aided mechanical engineering. It is complimentary to neighboring

fields such as geometrical or solid modelling, finite element stress analysis

and vibration analysis. The functional distinction of the field is that it

determines the time-dependent behavior of entire interconnected systems of

parts and other elements, ranging through angular displacements which may be

sufficiently large to require non-linear solution.

Engineers responsible for mechanical design are particularly assisted

by mechanical system CAE, since this technology enables them, accurately and

early, to predict the behavior of machinery or vehicles for many variations

in design. Behavior assessment can be done even before the first prototype

exists, or in compliment to prototype or product testing. The assistance

for aerospace design is especially compelling due to extreme requirements for

reliable performance, and the difficulty of providing a zero gravity environ-

ment for physical testing.

For many years machine designers appraised the performance of devices

such as four-bars, slider-cranks and cam-follower mechanisms, utilizing the

assumption of kinematic behavior. Solutions were essentially geometric and

were usually performed graphically. The first computer implementations were

limited to kinematics. Two early programs were KAM [i] (Kinematic Analysis

Method, 1964) and COMMEND [2] (Computer Oriented Mechanical Engineering

Design, 1967). Both programs were created by IBM. KAM solved for displace-

ment, velocity, acceleration and reaction force of a limited number class of

spatial linkages, notably vehicle suspensions. COMMEND was a planar program

particularly intended for computer-aided engineering of IBM's mechanical

products.

The original version of DRAM was completed in 1969, at The University of

Michigan [3, 4, 5] through the efforts of Professor Milton Chace and Michael

*Mechanical Dynamics, Inc., Ann Arbor, Michigan.
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Korybalski. At that time it was named DAMN (Dynamic Analysis of Mechanical

Networks). It was historically the first generalized (type-variant) program

to provide time response of multifreedom, constrained, mechanical machinery

undergoing large-displacement behavior. Major improvements and additions

were made to the program by D.A. Smith in his doctoral thesis work over the

period of 1968 to 1971 [6]. Since then, DRAM (Dynamic Response of

Articulated Machinery) has undergone continuous improvement particularly

through the efforts of John C. Angell [7, 8].

The ADAMS (Automated Dynamic Analysis of Mechanical Systems) program

was originally completed in 1973 as doctoral thesis work by Nicolae Orlandea

[9, i0]. ADAMS was designed as a three-dimensional, large-displacement

dynamic program, without however some of the capabilities for impact and

surface-to-surface contact possessed by DRAM. ADAMS also utilized a differ-

ent coordinate scheme than DRAM and involved sparse matrix methods in the

equation solutions. Again, major improvements and additions have been made

to the original ADAMS code; most of them by J. Angell, R. Rampalli, and

T. Wielenga. An important adjunct to ADAMS, ADAMS/MODAL, has recently been

comp]etedby V.N. Sohoni and J. Whitesell [Ii]. ADAMS/MODAL performs auto-

matic linearization of mechanical systems (this of course requires circum-

stances of small-displacement), then proceeds to determine the system modal

characteristics and time dependent response.

In this paper the scope and analytical methods involved in ADAMS are

reviewed, followed by a discussion of some aerospace examples. ADAMS and

DRAM are intended for direct use by engineers and senior designers. For this

reason much effort has been devoted to facilitating ease of use. The

programs self-formulate all of the relations described in the following

sections of the mechanical system. Computer graphics is utilized to provide

output in a flexible, comprehensive form.

ADAMS and DRAM are provided as proprietary software by Mechanical

Dynamics, Inc., 3055 Plymouth Road, Ann Arbor, Michigan.

2. MODELLING OF MECHANICAL SYSTEMS

ADAMS is a general, fully three-dimensional code. For a given

mechanical system, each rigid part is represented by six coordinates. A

local part reference frame is attached to each part. The translational dis-

placements of each part are measured as displacements of the local part

reference frame origin along the three global coordinate axes. To orient the

part in space, three Euler angles are employed.

Interactions between parts in a mechanical system can generally be

classified into the following three categories.

i. Kinematic

2. Compliant

3. Elastic
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2.1 Kinematic Connections

Two parts can be connected by a kinematic connection or joint. These

connections are such that they only allow certain types of relative motions

between the connected parts. The equations representing the relationships

implied by the joint are formulated as non-linear algebraic equations in

terms of the coordinates of the two parts connected and the geometry of the

joint.

To illustrate the formulation of these algebraic relationships consider

parts i and j as shown in Figure I. These two parts are connected by a

spherical joint, for example, at markers I ik and Jk on parts i and j, respec-
tively. The spherical joint constraint requires that these two markers be

coincident at all times. Writing the vector equation around the loop 0, 0 i,

0j, 0:

R. + T. r. + p - T. r. - R o = 0 (2.1)
--± --I --Ik -- --3 --3k --]

where

R = Position vector to the origin of the local part reference frame

from the global origin, relative to the global frame.

T = Transformation matrix from local part reference frame to global

reference frame.

r = Position vector between points in a part relative to the local

part reference frame.

= Vector from marker Jk to marker ik, relative to global
reference frame.

i,j = Part numbers being connected by the joint.

ik,Jk = Indices of the markers being connected by the joint

Since markers ik and Jk are always coincident

p=0

From equation 2.1

R I.+ T.I --IKr'1---3T"--3r'k- R. = 0 (2.2)

Equation 2.2 is a vector equation, equivalent to three scalar equations.

Parts i and j have twelve degrees of freedom. However, the presence of three

scalar algebraic constraint equations reduces the degrees of freedom to nine.

In a similar manner, using vector equations, the constraint equations for all

other possible physical joint types have been derived and are automatically

invoked by ADAMS, depending on the mechanism example input.

IThe term "marker" denotes the combination of a point (indicating transla-

tional position) and a triad of unit vectors (indicating orientation).
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as
In general the algebraic equations representing joints can be written

¢(q, 4, t) = 0 (2.3)

where

= Vector of constraint equations

= Vector of n coordinates
t = Time

= Vector of Velocities

Because of the generality of this form, user specified constraints can also

be included, such as the interaction between variables due to controllers.

ADAMS has a large library of kinematic joints. Some of these are:

i. Spherical

2. Rotational

3. Translational

4. Universal

5. Cylindrical

6. Gear

2.2 Compliant Elements

The second type of interaction between parts is through compliant

elements. These do not reduce degrees of freedom. However, the forces

developed in compliant elements are functions of the displacement and

velocities of the parts on which these compliant elements act. Consider two

parts i and j as shown in Figure 2. These parts are connected by a compli-

ant element C at markers i% and j_ in parts i and j, respectively. Force f

developed in the compliant element acts with equal magnitude but opposite --

direction on markers i% and j%.

The simplest compliant element is a linear spring-damper. The force

developed in such an element can be written as

f = [k(l - i0) + cv]p (2.4)

where

f =

k=

i =
i0=

c =

V =

force vector due to compliant element

spring constant

free length of spring

distance between points pi and pj

damping coefficient

velocity of marker j% with respect to marker i_ along the line
connecting them

unit vector along the line from marker il to j_
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Force f acts at marker i% and an equal and opposite force -f at marker

JR" The resulting moments on the two parts are

M. =r. xf
--i ---i (2.5)

and M. = r. x-f
--3 --3 --

where

M _

r =

i,j =

moment acting on respective part

position vector of marker in local part reference frame

parts being connected by compliant element

In a similar manner equations for other compliant elements can be

developed. Some of the standard compliant elements that are available in
ADAMS are:

i. Translational spring-damper element (three directional force)

2. Rotational spring damper element (one torque)

3. Bushing element (three forces and three torques)

4. Action only forces

5. Bistop (impact)

The characteristics of elements can be specified as linear or can be

invoked from an extensive library of standard non-linear functions. These

functions can be combined using arithmetic operators to conveniently formu-

late more specialized affects.

In general equations representing compliant elements can be written as

F(q, _, f, t) = 0 (2.6)

where

f

F=
vector of force in compliant elements

vector of equations defining the compliant forces

2.3 Elastic Elements

Elastic elements are a further generalization of compliant elements.

While with the compliant element, force in the element is defined to be along

the line defined by markers between which the element is connected, this is

not generally required for an elastic element. An example of an elastic

element is a beam element. The forces applied on the two parts connected are

functions of the beam stiffness and damping matrices and the relative dis-

placement and velocity of the two parts. The standard stiffness and damping

matrices are the 6x6 matrices as for a beam element with clamped-clamped

153



boundary conditions. Non-standard stiffness and damping matrices can be
specified. Under this category, multi-dimensional elements such as tires can
also be considered. The equations for representing elastic elements are also
given by Equation (2.6).

2.4 Equations of Motion

In ADAMS the equations of motion for parts in the system are written as

second orderLagrange's equations of motion in the constrained form [12].

d/dt{_T/_} - _T/_q - [_/_q]T_ = f (2.7)

where

r

_=

f =

System kinetic energy

Vector of Lagrange multipliers corresponding to the equations of

constraint

Vector of conservative and non-conservative "generalized" forces

3. ANALYSIS PROCEDURES

Mechanical systems can be modelled in ADAMS using the various entities

described in the preceding section. These models can then be analyzed in

any one of the following modes:

i. Static

2. Quasi-static

3. Kinematic

4. Transient dynamic

5. Modal

The first three modes of analysis are described only briefly. In the

static mode, starting from an initial estimate of position, ADAMS computes

the position of static equilbrium. The quasi-static mode allows the system

to be stepped through time while computing static equilibrium at output time

steps. The system velocities and accelerations are ignored in this analysis.

The kinematic mode, works from only the constraint conditions to determine

position and orientation of all parts in the mechanical system. The velocity

and acceleration of all parts, if requested, can also be computed. Forces in

compliant and elastic elements and joint reaction forces can also be obtained.

3.1 Transient Non-linear dynamics

In the transient dynamic mode the mechanical system is presumed to be

multifreedom and its transient performance is to be determined by numerical

integration of the governing system equations (2.3), (2.6), and (2.7). In

general the governing equations can be written as a mixed system of second

order differential and algebraic equations as:
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H(_',_, q,%,f,t) = 0 (3.1)

In order to utilize a standard numerical integrator, the second-order

differential equations have to be reduced to the first-order form by intro-

ducing velocities as solution variables. In the first order form the govern-

ing equation is given as

g(_,y,f,t) = 0 (3.2)

where

There are two integrators available in ADAMS at present.

i. Non-Stiff Integrator (Adams-Moulton)

2. Gear's multi-step Stiff Integrator

The non-stiff integrator is only used for systems considered to be "non-

stiff" [13]. However, since most mechanical systems are considered to be

'stiff' [13], (i.e. have widely separated eigenvalues) the Gear multi-step

stiff integrator is generally applicable.

The Gear stiff integrator formula is a predictor-corrector formula. The

prediction for the system state at a point ahead in time is made by an

explicit predictor formula not presented here. The corrector for the system

is given by the following implicit formula (orders of the dependent variable

y (n+l) occur in different terms).

k n-j+ln+l
= _h_01.n+ + E (3.3)+ h_j__n-j+l)j=l (_j Z

where

h = Integration step size

_,B = Gear integration constants

As can be seen, this formula is of the implicit type. Repeated appli-

cation of this formula about a fixed point in time can reduce the integration

error further. This, however, is not a numerically stable procedure. A

numerical stable procedure is to solve the non-linear governing equations by

employing the Newton-Raphson interative procedure. This procedure requires

the initial corrected state of the system to be computed by substituting

predicted values on the right hand side of equation (3.3). Sucessive

corrections to state vector can then be made by the following Newton-Raphson
equation.
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{_&l_y + (-llh60) Sgl_} Ay = -g

In a compact form

(3.4)

JMz=

where the Jacobian matrix

(3.5)

J = +
A[= Correction in

The numerical integration procedure starts by computing y from equation (3.3)

on the basis of the history of y and # over the preceding k time steps. The

residual of the governing equations, obtained after evaluation, using pre-

dicted values of y is reduced by repeated application of the Newton-Raphson

formula of equation (3.4). The iterative procedure is stopped when the con-

vergence criterion is satisfied. An important observation to be made about

the Jacobian is, that while the governing equation for the system may consist

of a large number of equations, the Jacobian matrix is extremely sparse (less

than ten percent non-zero entries). This permits use of sparse matrix

algorithms for the rapid repetitive solution of Equation (3.4).

3.2 Linearized Analysis of Mechanical Systems

Recent developments in the ADAMS software now allows determination of

natural frequency and mode shapes for linear circumstances of systems which

are normally non-linear. The governing equations of the mechanical system,

equation (3.2), can now be linearized about an operating point

(3.6)z*=
to give

6_= AIZ,6 _ - Bly__,6_ + _/_f[_,6f + _/_t[_,_t = 0

where _ = _/$Z and B = $K/$i

If we assume that the mechanical system represented by equation (3.2) is in a

state of equilibrium (or other state such that matrices A and B are time

invarient) then

= 0

Furthermore since the modal characteristics are independent of system applied

forces,

6f = 0 (3.7)

In this case we may express

ot (3.8)
6X = e £
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Equation (3.8) may be differentiated with respect to time to give

_ Oe°t= _ (3.9)

The resulting eigenvalue problem is

Az =_Bz
(3.10)

To construct the eigenvalue problem of equation (3.10) requires that matrices

A and B be constructed. From equation (3.4) it can be seen that these are

the very same matrices constructed for the corrector formula of the integra-

tion procedure. Therefore, at a given operating point, the Jacobian matrix

computed in ADAMS is sufficient information to construct the eigenvalue

problem. However, the presence of algebraic equations in the governing

equations causes the eigenvalue problem to take on non-standard character-

istics. Matrix B is inherently singular due to the absence of any deriva-

tives of Lagrange multipliers in the governing equations. The large eigen-

value problem of equation (3_0) is not well posed.

It is possible to reduce this large ill-conditioned problem to a well-

conditioned standard problem. The procedure involves recognizing that the

form of the algebraic equations allows us to represent a set of variables

as being a linear function of another independent set of variables. This

fact can be used to reduce this large eigenvalue problem to one that has a

size of 2 x the number of degrees o£ freedom, That is the smallest size to

which a first order problem can be reduced. This procedure is embodied in the

ADAMS/MODAL linear analysis software. The details of this procedure are

described in reference [ii].

4. EXAMPLES

Two examples are now described illustrating the application of ADAMS

to aerospace mechanical system problems.

4.1 Example 1 - Boom Dockin_

The first example is that of an ADAMS simulation of a boom docking

maneuver to couple two satellites. As shown in Figure 3j the target and

chaser satellite are maneuvered to within one meter of one another. The

target vehicle is equipped with a funnel that has a latching mechanism at its

base. The chaser vehicle has a telescoping boom that can be extended or

retracted as desired. The object is to extend the boom so that its tip

reaches into the base of the funnel on the target satellite. Once this is

accomplished the latching mechanism at the base of the funnel is tripped and

latches onto the tip of the boom. The chaser satellite then begins to

retract the boom, thus pulling the two vehicles together. In the ADAMS model

the boom is represented by a number of parts that slide with respect to one

another. The entire boom is elastically connected to the chaser satellite.
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Figures 3 to Figure 7 show a sequence of snapshots of the docking

maneuver. In the first snapshot, Figure 3 the two vehicles are separated

by about one meter. The chaser satellite now begins to extend the boom as

shown in Figure 4. The tip of the boom makes contact with the funnel,

Figure 5, and is guided towards the base of the funnel. Impact and surface

geometry of the tip and the funnel is modelled by user supplied subroutines

in ADAMS. The next snapshot, Figure 6, shows the tip of the boom extended

beyond the base of the funnel. The latching mechanism at the base of the

funnel attaches onto the tip of the boom. The chaser satellite now begins to

retract the boom, causing the two vehicles to move closer. The final snapshot,

Figure 7, shows the two satellites coupled together.

Output can be requested from ADAMS in a tabular or graphical form. The

output could consist of displacements, velocities, and accelerations at any

point on any of the parts. The forces acting in various elements of the model

can be obtained. The forces acting on the tip of the boom when it comes in

contact with the funnel can be obtained.

Since all the parameters necessary to perform this simulation were not

available, parametric studies had to be performed to obtain acceptable values

for certain parameters in order to produce the desired docking maneuver.

Initially it was found that the velocity with which the chaser satellite

approached the target was too high. This caused the target to spin away when

the funnel was impacted by the boom. The parameters related to the latching

mechanism at the base of the funnel had to be adjusted to achieve a rapid

latching of the boom. Initially the latching mechanism was not quick enough,

thus the boom tip that ran into the latching mechanism was retracted by the

chaser before the mechanism latched.

4.2 Example 2 - Satellite Docking Using Clamp Mechanisms

A second example is a satellite docking maneuver using a clamp mechanism.
In this simulation it is assumed that the chaser satellite can be steered to

within fifteen centimeters in front of the target. As shown in Figure 8

the chaser has four locking handles. Correspondingly the target vehicle has

four claws with spring loaded levers. When the handles come to within seventy

millimeters of the base of the claws the locking levers on the claws are

triggered to cause the handles to be pulled into the claws.

In the ADAMS model the levers are connected to the claws by means of

revolute joints. The clamping action of the lever is caused by a torsional

spring of linear characteristics. The claws are themselves mounted on the

target by an elastic connection.

Figure 8-12 shows a sequence of snapshots of the two satellites during

simulated docking. In the first snapshot, Figure 8, the two vehicles are at

some distance from one another and have some angular misalignment. As can be
seen all the claws on the target are open. As the two vehicles approach,

one of the handles on the chaser vehicle gets close enough to the claw to

158



Y

P

X

Z

0

0j

Figure I. - Two parts connected by kinematic joint.
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Figure 2. - Two parts connected by compliant element.
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Figure 3 Figure 4

Figure 5 Figure 6

Figure 7

Figures 3 thru 7. - Snapshots of boom docking maneuver.
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Figure 8 Figure 9 Figure i0

Figure ii Figure 12

Figures 8 thru 12. - Snapshots of satellite docking with clamp mechanism.
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