.

1

s,

2

, **, ,**

1.14

129

١

PLENARY SESSIONS

		Theory	Bree	tical	
Efficiency	*	29.8%	25.0	25.1	
VMAX PWR	*	703tV	0.84	0.05	
FF	*	0.890	0.84	0.95	
^I sc	-	42.2 MA/cm ²	42.0	40.0	
v _{oc}	=	769 m∨	710	740	

Operating Parameters of Optimum (100 m) Silicon Solar Cell

Schematic Diagram of Westinghouse 18.3% Efficient Silicon Cell Design

Effect of Oxide Passivation and Double-Layer AR Coating on 0.2 - 0.3 Ohm-cm Float-Zone Silicon Cells Fabricated by Conventional Metallization and Lithography

Cell ID	Short-Circuit Current J _{sc} mA/cm ²	Open-Circuit Voltage V _{oc} Volts	Fill Factor	Cell Efficiency
	No Passiva	ation and Single	-Layer AR	
Q-1	33.0	0.606	0.790	15.7
Q-2	33.0	0.607	0.790	15.8
Q-3	32.8	0.605	0.790	15.6
	Passivat	ion and Single-	Layer AR	
14-1	34.0	0.621	0.800	16.9
14-2	34.0	0.620	0.809	17.0
14-9	34.1	0.620	0.805	17.1
	Passivati	on and Double-	Layer AR	
4-1	35.9	0.623	0.809	18.1
4-2	36.2	0.622	0.809	18.2
4-3	36.1	0.623	0.815	18.3

*AMI. 100 mW/cm² Illumination

1

Spire Corporation's Approach to High-Efficiency Solar Cells

Internal Quantum Efficiency of Spire Corp. Cell

131

- 7.**H**

~

and the second

1.3

; ÷) 4 5 <u>;</u>ζ

· · ·

;

1

TR

ORIGINAL PLAT 13 OF POOR QUALITY

Spire Progress in Silicon Cell Design and Performance

Lot: 4731 Originator: LNG	Illumination:	Spire Cerperation AMI.5 (100 mW/cm ²)
Date: 12/19/85 Comment: Module Cells		Temperature: 28 C
Resistivity: 1.50 Q-cm Material: Si	Thickness: 20 mils AR Coat: TiO2	Surface: Tex

Cell	Ar ea (cm²)	Vec (V)	ISC (A)	Jsc nA/cn²	Pn (W)	V= (V)	Im (A)	FF (%)	<u>長</u> 手子。 (光)
1	53.04	0.616	2.007	37.8	0.9639	0.498	1.934	78.0	18.2
2	.33.04	0.615	2.020	38.1	0.9685	0.510	1.878	78.0	18.3
3	53.04	0.614	5.001	37.7	0.9686	0.511	1.895	78.9	18.3
	33.04	0.500	1.764	37.0	0.9417	0.518	1.816	78.8	17.9
5	53.94	0.013	1.787	37.3		0.501	1.002	77.0	10.4
2	57 04	0.012	1 800	37.3	0.7000	0.304	1.075	79.7	10.0
é	ST 04	0.613	1 840	37.3	8 9477	0.504	1 857	80 0	17 0
ĕ	53.04	0.413	1 070	30.7	0.9425	0.519	1.854	79 5	19 1
10	53.04	0.415	2.002	37.7	0.9804	0.509	1.928	79 7	18.5
ii	53.04	0.414	1.999	37.7	0.9787	0.519	1.885	79.7	18.5
12	53.04	0.406	1.934	36.5	0.9036	0.494	1.831	77.0	17.0
13	53.04	0.413	1.992	37.5	0.9730	0.509	1.912	79.6	18.3
14	53.04	0.410	1.962	37.0	0.9411	0.508	1.951	78.6	17.7
15	53.04	0.612	1.963	37.0	0.9531	0.510	1.868	79.3	18.0
1.6	53.04	0.410	1.961	37.0	8.9575	0.521	1.836	80.0	18.1
17	53.04	0.410	1.962	37.0	0.9554	0.524	1.824	79.B	18.0
18	53.04	0.613	1.972	37.2	0.9710	0.509	1.906	80.3	18.3
19	53.04	0.611	1.974	37.2	0.9625	0.507	1.900	79.8	18.1
20	53.04	0.611	1.971	37.2	0.9475	0.507	1.870	78.7	17.9
21	53.04	0.614	1.788	37.5	9.9699	0.514	1 . 868	79.4	18.3
22	53.04	0.607	1.944	36.4	0.9356	0.518	1.804	79.3	17.4
23	53.04	0.612	1.781	37.3	0.9613	0.511	1.880	79.2	10.1
24	53.04	0.613	1.991	37.5	0.7573	0.506	1.875	78.6	10.1
25	53.04	0.614	1.997	37.7	0.9755	0.320	1.877	79.6	18.4
#@4n	وردوه مر: 8	0.612	1.979	37 . 3	0.9588	0.511	1.875	79.2	18.1
STO DEV		0.002	8.021	0.4	0.0165	0.007	0.034	9.8	0.3
		19							

neen.		0.412	1.981	37.3	0.9611	0.512	1.877	79.3	18.1
\$74 dev		0.102	8.019	0.4	0.0121	0.007	0.034	0.6	0.2

0.612 1.981 0.4 0.0121 0.017 0.034 79.3

• • • • • •

CURRENT PARTY CLARKE

١, W.

Ş

•

استهر معتقد و بر المحمد المحمد

Output Current-Voltage Characteristics of an Improved PESC Cell Fabricated on a 0.2 Ωcm Substrate

' Green

.

133

VK(

Output characteristics of a high efficiency microgrooved PESC solar cell measured under standa: d terrestrial test conditions (AM1.5, 100 inW/cm², 28°C) compared to those of previous generations of nongrooved PESC cells calibrated by the Solar Energy Research Institute (SERI), Colorado. The inset shows the contact design for the cell.

Green, Appl. Phys. Lett., Vol. 48, No. 3,20 January 1986.

Stanford University Approach to High-Efficiency Solar Cells

Structure of the Point-Contact-Cell

- 3

Stanford Point Contact Cell FT11-3B

Evolution of High-Efficiency Silicon Solar Cell Performance Over Recent Lears as Measured by the Solar Energy Research Institute (AM 1.5, 100 mW/cm², 28°C)

Date	Cell Description ^a	V _{oc} (mV)	^j sc (mA cm ⁻²)	F." (%)	7 (%)
May 1983	ASEC	620	34.8	79.3	17.1
Aug. 1983	Westinghouse (4 ହୁମେ)	600	36.2	79.3	17.2
Sept. 1983	UNSW MINP (0.2 pcm)	641	35.5	82.2	18.7
Sept. 1983	SPIRE textured (0.2.0cm)	622	36.1	80.1	18.0
Dec. 1983	UNSW PESC (0.2 pcm)	653	36.0	81.1	19.1
May 1984	Vestinghouse LLAR (0.1 - 0.2 com)	627	36.0	80.0	18.1
Feb. 1535	Westinghouse (0.3 <i>Q</i> cm)	623	36.1	81.5	18.3
May 1985	UNSW PESC (0.25 pcm)	649	37.0	82.2	19.8
May 1985	UNSW PESC (0.2 gcm)	662	36.5	81.9	19.8
Oct. 1985	S. IRE textured (0.3.9-cm n-type)	635	36.3	81.6	18.8
	UNSW microgrooved PESC (0.1.2 cm)	654	37.0	82.9	20.1
Jan. 1960	UNSW microgrooved PESC (0.2.0cm)	661	38.3	82.4	20.9
April 1986	Stenford University (Point contact cell)	682	41.5	78.5	22.2

135

XK.

¢

٩,

ł

. . . .

1

Silicon Material/Processing Research

- More Sensitive And Better Methods To Detect And Identify Lifetime Limiting Traps In Silicon
- Role Of Carbon And Oxygen Content On Defect Formation And On Cell Performance
- Role Of Dopants And Their Interactions With Defects And Impurities
- Process Induced Defects
- Gettering, Defect Passivation Or Defect Elimination During Crystal Growth And Processing

Measurements/Modeling Issues

- Considerable Amount Of Ambiguity And Assumptions Are Involved In Modeling And Device Design
- All Parameters In Actual Device Are Not Known Accurately Enough To Do Precise Modeling; S, ΔV_G , T_A, N_{xj}, L
- Concern About The Values Of Minority Carrier Mobility And Diffusivity At High Doping Concentrations
- Need For Innovative Cell Design

11/24

F

AKCF.

R.

Flat-Plate PV Module Cost as a Function of Levelized Electricity Cost

ORIGINAL PAGE IS OF POOR QUALITY

· · · · ·

۹, ۱