V: C

3

-

PROCESSING

N87-16419

A LINE A MARTIN CONTRACT AND THE REAL OF A

AMORPHOUS DIFFUSION BARRIERS

CALIFORNIA INSTITUTE OF TECHNOLOGY

E. Kolawa, F. C. T. So, and M-A. Nicolet

Amorphous W-Zr Barrier

MOTIVATION

- (PREVIOUS STUDIES: NI-W, NI-MO, CU-TA)
- SUBSTITUTE NI WITH ZR TO <u>AVOID INTERFACIAL</u> <u>PENETRATION</u> OF NI INTO SI SUBSTRATE AT LOW TEMPERATURES (~ 400°C)

NOTE:

- I) NI REACTS WITH SI AT $\sim 200^{\circ}\text{C}$
- 11) NI IS THE MOVING SPECIES IN NI+SI REACTION
- 111) ZR REACTS WITH SI AT 7 700°C
- IV) SI IS MOVING SPECIES IN ZR+SI REACTION

Crystallization

ANNEALED 500-900°C (30')

X-RAY

4

2

٤,

イーーー

-

1

Experimental

RF SPUTTER DEPOSIT W-ZP FILMS FROM A <u>W TARGET</u> COVERED WITH <u>ZR STRIPES</u> IN 10MTORR AR (BASE PRESURRE < 1E-6 TORR)

2 COMPOSITIONS: W70ZR30

W40ZR60

SEM, EDAX (SURFACE MORPHOLOGIES) X-Ray (Phase identification)

N⁺P Shallow Junctions

JUNCTION DEPTH : 0.35 UM JUNCTION AREA : 50G x 500 Jm^2 contact area : 300 x 300 Um^2 . As surface concentration : 3E20 cm^{-3}

4

skt.

.

Ϊ,

y

Behavior of W-Zr Diffusion Barrier

1) INTERDIFFUSION IN [SI]/ W-ZR / AL SETS IN

AT $\sim 500^{\circ}\text{C}$ despite T_C is as high as 900°C

(AL+W 500°C

AL+ZR 400*C)

2) REACTION BETWEEN AL AND ZR-W IS LATERALLY

NONUNIFORM ---PITS FORMATION

** W-ZR CANNOT BE USED AS SACRIFICIAL BARRIER

** W-ZR EFFECTIVE BELOW 500°C

1.2%

1

4

ŝ

W-N Barriers

PREVIOUS WORK:

METAL OVERLAYER N-N (SI) - W-N INHIBITS INTERDIFFUSION BETWEEN METAL OVERLAYER AND SI UP TO: - 550°C - 30 MIN. FOR AL - 800°C - 30 MIN. FOR AU - 700°C - 30 MIN. FOR AG

Experimental: Solar Cell with W-N Diffusion Barrier

Experimental: Solar Cell with Ti-Pd-Ag Metallization

AG PD T1 [S1]

- ANNEALED IN FORMING GAS AT 400°C, 600°C FOR 10 MIN.

- I-V MEASURED UNDER AMO ILLUMINATION AT R.T.

406

-

- I trut Xuda

1.62.

۔ مر' ء

XK'

7

I-V Characteristic of n⁺p Solar Cell with W-N Diffusion Barrier Under AMO Illumination at Room Temperature

I-V Characteristic of n⁺p Solar Cell with Ti-Pd-Ag Metallization

407

S

h

- ---

Comparison Between Intrinsic Stress Properties of Magnetron-Sputtered TiN and α-W-N Films

Conclusions

- 1) W-ZR, NI-W, NI-MO
 - FAILURE MECHANISM REACTION WITH METAL OVERLAYER BELOW T_C
 - NEED TO FIND WAYS TO SUPRESS THIS REACTION (E.G. NINW)

2) WN

- EFFECTIVE BARRIER BETWEEN AG AND SI UF TO 550°C/30' AU AND SI UF TO 800°C/30'
- STABLE SI/TI/WN/AG CONTACT TO SOLAR CELLS UP TO 600°C/10'
- LOWER STRESS W-N FILMS CAN BE PRODUCED BY APPLYING NEGATIVE SUBSTRATE BIAS VOLTAGE

•

ALLER A CO.