.

N87-16422

LASER-ASSISTED SOLAR CELL METALLIZATION PROCESSING

WESTINGHOUSE ELECTRIC CORPORATION RESEARCH AND DEVELOPMENT CENTER

D. L. Meier

Topics

- Basic Concept
- Linewidth
- · Cells Fabricated Without Masks
- Alternative Metals for Improved Adherence

Laser Pyrolysis of Spun-On Metallo-Organic Film

Sample Base Temperature 75°C Focussed Laser Spot Decomposes Spun-On Film Silver Metallization Patterns are Forme.⁴ by Direct-Writing

(

ź -1

and a the second s

Effect of Laser Power on Laser-Metallized Linewidth After Rinsing the Silver Neodecanoate Film (Cont'd)

Maximum Power: 2.6 watts Width: 40 µm

. light

1.2 watts

Maximum Power:

Width: 30 µm

ž , **T**

Maximum Power: 1.8 watts Width: 40 Lm -

Maximum Power: 0.7 watt Width: 20 µm

439

PROCESEING

w. St.

1.5

WHAT'

Linewidths as a Function of Laser Power With 50 mm Lens Before and After Film Rinse

Laser Power (W)	Before Film Rinse	After Film Rinse
handad.		
8.50	85 μm	60 μm
7.50	75	65
6.90	75	60
6.36	75	60
5.70	70	60
4.92	70	55
4.14	65	50
3.30	60	50
2.55	55	40
1.80	50	40
1.20	45	30
0.66	25	20

. . .

.•;

440

vik!

j,

Sequence of Laser-Assisted Maskless Metallization Process

ود يو

- Evaporate 1500 Å Ti (adherence) and 500 Å Pd (cap) over entire Si wafer
- Spin solution of silver neodecanoate in xylene on wafer
- Write Ag lines (50 μm) with Ar⁺ laser (8 W) at 20 cm/sec scan speed
- Dissolve undecomposed silver neodecanoate film in acetone
- Electroplate 8 µm Ag on laser-deposited Ag lines
- Etch Ti and Pd leaving only grid lines

 \sum

1

Ş,

۵,۴۰ م

Laser-Metallized Cells

ORIGINAL PAGE IS OF POOR QUALITY

VR.

A State State

Effect of Laser Power on the Performance of Cells Fabricated by Laser-Assisted Metallization Process

.

Cell ID	Laser Power <u>Watt</u>	J (mA/cm ²)	۷ (៣۷)	<u>FF</u>	7 <u>(%)</u>
1	8.5	33.5	577	.787	15.2
2	7.0	34.3	582	.792	15.9
3	6.0	34.6	579	.788	15.8
4	4.0	35.1	582	.781	16.0
5	3.0	34.9	582	.785	16.0
6	2.0	34.5	584	.786	15.9
7	1.0	34.1	573	.761	15.2

ł

PRÚCESSING

1

Laser-Metallized Solar Cells on 4 ohm-cm Float-Zone Silicon After AR Coating

Cell <u>ID</u>	J sc 2 (mA/cm)	۷ (m ³)	<u>FF</u>	η <u>(%)</u>
2	35.0	606	.754	16.0
3	34.9	603	.768	16.2
4	35.5	603	.750	16.0
5	34.8	601	.781	16.3
6	35.0	601	.779	16.4
7	35.4	603	.780	16.6
10	34.5	598	.778	16.1
11	33.8	604	.785	16.1
14	34.3	603	.789	16.3
15	34 🖓	604	.782	16.2
Q1+	35.1	609	.790	16 .9

+Conventional Metallization/Lithography and no passivation

.

i

1.4

ļ,

ς.

İ

xk(

Ŧ,

; ,

Ŀ,

......

A Comparison of Lighted and Dark !-V Data of 16.6% Laser-Metallized Cell and 18.4% Cell Fabricated by Conventional Metallization and Photolithography

		18.4% Oxide- Passivated
	16.6% Laser-	Conventionally
Parameter	Metallized Cell	Metallized Cell
J sc	35.4 mA/cm ²	36.7 mA/cm ²
V _{oc}	604 mV	621 mV
FF	0.780	0.804
η	16.6%	18.4%
Rs	0.69 Ω-cm ²	0.56 Ω-cm ²
R	103 kû-cm ²	150 kn-cm ²
J	$1.4 \times 10^{-12} \text{ A/cm}^2$	$0.5 \times 10^{-12} \text{ A/cm}^2$

à

the state

Relationship of Auger Peak Height Versus Sputtering Time

WKC"

:. .

.:

Ξ,

;

5

Relationship of Auger Peak Height Versus Sputtering Time (Cont'd)

447

j

ł

1

Relationship of Auger Peak Height Versus Sputtering Time (Cont'd)

:

ĩ

VAL: "

١

:

ĥ

; ;

:

Net

7. 3

¥

•

· ; \

1

ļ

Summary

1 11 1 1 1 **1 1** 1

- Linewidths of 20 μ m demonstrated
- Cells with efficiency up to 16.6%
 fabricated with a hybrid
 laser/evaporation maskless process
- Adherence of Ag to Si poor
- Alternative materials (Ag/Bi, Ni, Pt) also poorly adherent (preliminary result)

. •

· ,