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ABSTP.__CT

An orbiter and its payload substructure are linked together by five

trunnion joints whlch have thirty degrees-of-freedom. Geometric com-

patibility conditions require fourteen of the interface physical coor-

dinates of the orbiter and payload be equal to each other and the

remaining sixteen are free to have relative motions under Coulomb

friction. This report presents the component modes synthesis method

using fourteen inertia relief attachment modes for the formulation of

the coupled system. The exact nonlinear friction function is derived

based on the characteristics of the joints. Formulation is applicable

to an orbiter that carries any number of payload substructures.
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I. INTRODUCTION

I.I Obiective of This Research

An orbiter and its payload substructure are linked together by five

trunnion joints: two primary joints support load in the axial (x) and

normal (z) directions, two stabilizing joints transfer forces in the

normal direction and the keel joint carries load in the transverse (y)
direction. The joint shafts of the payload _d the support bearings of
the orbiter are free to have motions relative to each other under Coulomb

friction. The objective of this research is to makeanalytical formula-
tion of this nonlinearly coupled system for dynamic response.

1.2 Method of Approach

Componentmodessynthesis has been accepted as the most efficient
method for coupling substructures of large degrees-of-freedom for

dynamic analysis in the last decade. The five nodes of the joints have

thirty DOF's (3 translations and 3 rotations) of which the fourteen
restra_._nedcoordinates are the interface coordinates and the remaining

sixteen coordinates free to moveunder Coulombfriction are a subset of

the interior coordinates. The orbiter and its payload are treated as
two free-free substructures for which two sets of free-free normal modes

are generated by their finite element models. These modesconstitute

the generalized coordinates. Fourteen inertia relief attachment modes
for the interface coordinates form the dependent generalized coordinates.

The friction forces acting on the free coordinates dependon whether

the joints are in stuck state (no relative motion) or in a motion state.

Any numberof coordiantes maybe stuck and the others in motion. Non-
linear friction functions will be derived for the joints. A set of

motion equations of the coupled system in terms of the generalized
coordinates are obtained by using the geometric compatibility conditions

and equilibrium of the joint interaction forces.

XXIX-I



1.3 ComponentModesSynthesis Method

Since Hurry [I] first proposed the method of coupling large sub-

structures by component modes synthesis for dynamic analysis in 1965,

numerous papers have been published, such as references 2, 3, and 4,

for extension and modification of the original concept. Among the

various versions of this method, the inertia relief attachment modes for

unconstraint substructures and the residual attachment modes for con-

straint substructures have proven to be the most accurate methods

up-to-date.

An outline and examples of the various approaches of the component

modes synthesis can be found in chapter 19 of Craig's book [5] . Because

of the limited pages allowed for this report, the detail of this method

will not be presented, but rather, the readers are referred to reference

5. The formulation of the coordinates transformation matrix and the

generalized mass and stiffness matrices in chapter 2 of this report are

very similar to that given in Craig's book. Some of the Greek alphabets

used in the equations in Craig's book are replaced by English alphabets

for typing convenience.

1.4 Description of Substructures

Figure 1 shows the payload structure and its finite element model

is shown in Figure 2. This structure is to be linked to an orbiter by

five joints which can be seen from these figures. The joint shafts and

the support bearings can be seen in Figure 3. Coordinates x, y, and z

are axes along the body axis, transverse, and normal directions of the

orbiter as shown in Figure I.

It is important for engineering designers to determine the loads on

the payload structure and its interfacing structure accurately during

the orbiter launching phase. The existing computing program has not

been analytically formulated for dealing with frictional joints and is

based on some simple assumptions on the joint friction forces. It is

doubtful that such a simple model can produce accurate data for the

designers. This is the motivation for this research.
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. 

(b) Keel j o i n t .  

Trunnion joints of payload. Figure 3 .  
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II. ANALYSIS

2.1 Characteristics of Trunnion Joints

An orbiter may carry one or more payload substructures and each of

them is attached to the orbiter by five trunnion joints. As shown in

Figure 3(a), the two primary joints support loads in x and z directions

while the joint shafts are free to slide and rotate relative to the

support bearings mounted on the orbiter. The two stabilizing joints

shown in Figure 3(a) are designed to transfer load along z direction

only and the joint shafts may have sliding and rotation motions in x

and y directions relative to the orbiter. The keel joint which is

located at the bottom of the payload structure as shown in Figure 3(b),

has the same function as the stabilizing joint except the direction of

y and z are interchanged.

Consider that each interface node of the orbiter and payload has

six degrees-of-freedom (3 translations and 3 rotations) which are denoted

by ux, Uy, uz, 8x, By, and ez. The geometric compatibility, or con-

straint, conditions for the five joints are summarized in Table I. An

inertia relief attachment mode denoted by Pa is assigned for each con-

straint physical coordinate, uj, as shown in Figure 4 and listed in the

third column of Table I. The coordinates which have free motion rela-

tive to the support, uf, are given in the last column. Discussion of

inertia relief attachment modes will be given later.

2.2 Coordinate Numbering for Joint Nodes

Let u i and uj denote the physical coordinates of the interior and

interface nodes, respectively. As shown in Table i, among the 30 coor-

dinates of the joint nodes there are 16 coordinates that have free

motions (uf) which must be treated as a subset of u i and the remaining

14 coordinates form the set u.. These physical coordinates and the
3

generalized coordinates for the attachment modes are arranged in

sequence as shown in Table 2.
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Table I. Characteristics of Trunnion Joints

Joint u. Constraint Pa Attachment Mode uf Free MotionJ

o = up x - force uPrimary u
x x y

o upu = z - force e
z z y

e° = ep x - moment
x x

e° = 8p z - moment
Z Z

Stabilizing u° = up z - force u
g z x

8° = 8p z - moment u
z z y

e
x

e
y

Keel u° ffiu p y - force u
y y x

8° ffiep y - moment u
y y z

0
X

e
....... Z

Total Number 14 14 16

Superscripts "o" and "p" denote orbiter and payload respectively.

Special notation is given to another set of physical coordinates

which is a subset of ui, for the convenience of formulation of joint

friction forces. These are the coordinates of the nodes of the joint

shafts at the built-in end of the payload structure. The coordinates at

the built-in end opposite to Unf at the free end is denoted by Unb as

shown in Figure 4.

In Figure 4 parts (a) and (b) depict the pairs of bearing and shaft

of the two primary joints, parts (c) and (d) are for the stabilizing

joints, and part (c) is for the keel joint. Nodes B I through B5 repre-

sent nodes of the joint shaft at the built-in end. Other symbols are:
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P4a _._ P8a

l'P2a -_

(a) Primary Joint 1 , . (b) Primary Joint 2

Ploa .. 12a

, / J3\P. !.: -

-g(c) Stablizing Joint I " Ul . _l,0by (d) Stablizing Joint 2

'

"_7/'- P ," r .

Y Joint

Figure 4. Coordinate system of trunnion Joints.
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Table 2. Sequence of Joints Coordinates

Sequence uf (joint) uj (joint) Pa (joint)

i u (I) u (I) f (I)
y x x

2 e (i) u (I) f (I)
y z z

3 u (2) e (I) M (I)
y x x

4 s (2) e (I) M (I)
y z z

5 u (3) u (2) f (2)
x x x

6 u (3) u (2) f (2)
y z z

7 o (3) o (2) M (2)
X X X

8 o (3) s (2) M (2)
y z z

9 u (4) u (3) f (3)
x z z

10 u (4) e (3) M (3)
y z z

ii 0 (4) u (4) f (4)
X z z

12 o (4) e (4) M (4)
y z z

13 u (5) u (5) f (5)
x y y

14 u (5) 0 (5) M (5)
z y y

15 0 (5)
x

16 0 .(5)
z

2d = distance between supports of the shaft in x direction

L = length of joint shaft

r = radius of joint shaft

r = radius of bearing support in x direction
X

The above dimensions may have different values for different joints.

The numbering system for all coordinates and forces are given according

to Table 2.
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2.3 Friction Force Acting On Free Coordinate

2.3.1 Primary Trunnion Joint i

If the axial elastic force in th@ JQ!_..t @h@$t is smaller than

the axial friction resistance, there will be no sliding motion between

the shaft and the bearing. With the aid of Figure 4(a), one may state

the following. If

then,

lUl_ -Ulb I ka < _N (2.1a)

o (stuck)Ul_ = Ulf (2.1b)

o

flp = - flf = ka(UlP - Ulb)

where

= static coefficient of friction

= _r2E/Lka axial stiffness of shaft =

E = Young's modulus of elasticity

N = pressure between shaft and bearing = [(Pla )2 + (P2a)2] ½

Once the sliding starts, one may state that if

(2.1c)

o (sliding) (2.2a)Ul_ # Ulf ,

then

O

fl p = - flf = ka(Ul p - Ulb) = _N

When the elastic force in the joint shaft becomes smaller than the

friction force,

(2.2b)

kalu1_ - Ulbl < _N , (2.2c)
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then sliding stops,

u,_ = u, °F (stuck) (2.2d)

where _ is the kinematic coefficient of friction.

In dealing with the coordinate u2f, two sets of equations similar

to Equations (2.1) and (2.2) may be written by replacing subscript "I"

= _r4G/2L. The spring constant representsby "2", N by rN, and ka by k s

the shear stiffness of the shaft and G is the modulus of shear. The

....o_-= f_ the =howe two r_eq and the cases to be discussed for other

joints can be represented by a simple figure as shown in Figure 5. Let

xn = Un_ - Unb

fn_ = - f ° = k xnf n n

n - 1,2,...,16

(2.3)

The function fnf and the "stuck" and "sliding" conditions are shown in

Figure 5.

As x increasing reaches point A where
n

fnf ffiknXn ffi_rnNn (2.4)

relative motion of the coordinate Unf starts; and then, the friction

force drops immediately to point B where

fnf = knXn = _rnNn (2.5)

If elastic force in the joint shaft decreasing passes point B, relative

motion stops (stuck state). To the negative side points A' and B' are

the equivalent points of A and B, respectively. It is important to

note that the magnitude of N is a function of the generalized coordinates
n

pa which determine the magnitudes of A and B. Next, with the aid of

Figure 4, the notations k, N, and r are derived for n equal to 1 through

16.
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_Nnrn

p.Nnrn

= khxn

• 0

STUCK: unP = Unf

x
n

2.3.2

Figure 5. General function of friction in joints

General Function of Friction in Joints

The following spring constants of the joint shaft are defined:

k = _r2/EL (axial)
a

k = _r4G/2L (shear) k = ur4G/2L
S Sx x

k r = 4EI/L (end moment with zero deflection)

= 12EIIL 3 (end deflection with zero slope)

(2.6)

One may define the following for Equations (2.3), (2.4), and (2.5):

k =k
n s

n = 1,3,6,10,14

k =k
n r

n ffi2,4,8,12,16

k = k n = 5,9,13
n sx

= k n = 7,11,15kn rx
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r ffi 1
n

r = r
Ll

r = r
n x

2 %
Nn ffi[(Pla)2 + (P2a) ]

n = 1,3,6,10,14

n = 2,4,8,12,16

n = 5,7,9,11,13,15

n = 1,2

[ (P5a)2 2 ½bln = + (P6a) ] n ffi 3,4

Nn = [(P9a )2 + (Pl0a/d)2] ½ nffiS,7

%
2 (P12a/d)2N = [(Plla ) + ] n ffi9,11n

2 ½
Nn ffi[(Pl3a )2 + (Pl4a/d) ] n ffi13,15

[(P9a )2 + (_N5)2]½

• [(P9a )2 + (kbX5)2] _

N
n

- o

if u5P ffiu5f

if u5P ffiu=°#L

n ffi 6,8

[(Plla )2 + (_N9)2]½ if

Nnffi {
[(Plia)2 + (kbX9)2] ½ if

o

u9_ = u9f

n = i0, 12

2]½ o

= {[(Pl3a )2 + (_NI3) if ul3P # u13 f2 o
Sn [(Pl3a) + (_x13)21½ if u13 _ = u13 f

n = 14, 16

2.4 Component Modes for Unrestraint Substructures

2.4.1 Physical Coordinates

Consider that the orbiter and its payload are two unre-

straint substructures to be coupled together by the 14 interface coor-

dinates described in Section 2.1. Now, let's begin the formulation from

the equation of motion of a substructure,

mQ + ku ffif (2.7)
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The massand stiffness matrices m and k are generated by finite element

models, and f denotes external forces applied to the substructure. Note

that the superscripts "o" for orbiter and "p" for payload will be used

when the situation requires to identify the substructure, otherwise,

expressions without these superscripts are applicable to both. The

physical coordinates u are separated into two subsets: ui for interior

nodes and uj for interface coordinates. As described in Section 2.2,
the free coordinates of the joint nodes, uf, belongs to a subset of ui.

Thus, ui consists of us, the physical coordinates of interior nodes, and
uf. The m and k matrices must be rearranged and consistent with u in
the form,

u [us uf . uj] T " uj] T= : = [u i . (2.8)

and so is the matrix f,

• _ • fj]Tf = [fs ff fj]" = [fi (2.9)

where

f = external load_acting on interior nodes
s

ff = friction force acting on uf

f. = external load acting on u. = 0
3 3

The dimension of these elements are as follows:

uf : 16xl uj : 14xl (for orbiter and payload)

and dimension for u s is arbitrary and different for orbiter and payload.

2.4.2 Free-Free Normal Modes

Solving eigenvalues and elgenvectors of Equation (2.7) for

free vibrations, one obtains six rigid-body modes (zero frequency) and

free-free elastic normal modes as follows:

2
(k - coim)bi = 0 (2.1o)
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with

_mb = I r = I, 2, ..., 6 (2.11)b r

bTmb = i
e e

2
bTkb = _ e = I, 2, ..., k (2.12)
e e e

where b and b are normalized nxl eigenvectors of rigid-body and elastic
r e

modes respectively, n is the dimension of u and k is the number of elastic

modes to be kept in the formulation (k _ n - 6). The modes higher than

k are dropped to reduce the size of the coupled structural system. Now,

denote the matrix of the eigenvectors of the kept elastic modes by

Bk = (b I b 2 ... bk) (2.13)

and let Pk be the generalized coordinate associated with the normal

mode bk. Note that the orbiter and payload may have different values

of k, i.e., k # k .
o p

2.4.3 Inertia Relief Attachment Modes

An attachment mode a is a set of physical coordiantes u due
a

to a unit force applied to one of the interface coordinates, uj, while

forces on all the rest of the interface coordinates are zero. Let Pa

be a set of generalized coordinates associated with the attachment mode

aa (a = i, 2, ..., 14), as shown in Figure 4. Let matrix Aa denote the

set of attachment modes,

A = (a I a2 ... a14) (2.14)

Since the orbiter and its payload are unrestraint structures, the attach-

ment modes are due to a self-equilibrated force system,

f = f - m_
e r

which is the result of applied and rigid-body inertia forces. Hence, A a

is called inertia relief attachment modes. For more detail the reader

is referred to Reference 5, pages 479-487.
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By definition, the inertia relief attachment modes may be obtained

from the equation,

A a = GeF a (2.15)

where the elastic flexibility matrix may be formulated from

= A-IB T A-I dlag(i/_)Ge Be ee e ee = (2.16)

and matrix F represents unit force at each coordinate u.,
a 3

F

a

Oij Oij = ixj zero matrix

Lljjj ljj = jxj unit matrix

(2.17)

Thus, Equations (2 •15), (2.16), and (2.17) result

Aa = Bk(A Bak)

in

(2.18)

Note that if only the first k elastic modes are kept for formulation of

Ge, and Be = Bk as defined by Equation (2.13), and

=i
Akk =

"1/_,

(2.19)

it can be seen that the contribution due to the neglected high frequency

modes is small, if k is sufficiently large•

It is easy to show that Equation (2.16) yields the flexibility.

From Equation (2.12)

A-lee= [BTkeBe l-I = BelkeI- - (BT)' 1 (2•20)

and postmultiplying BT to both sides of the above
Premultiplying Be e

equation leads to

B A-IB T= k -I = G
e ee e e e
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2.4.4 Coordinate Transformation

It can be seen that the physical coordinate u is the result

of the generalized _uu_dL-Late_ Pk and _,,=....=_v,,4^- v_^__,._......g I_=A

interface forces Pa" Thus,

u = (Bk A a) Pa

or in partitioned forms,

uj gjk Aja Lp a

and

[] pk
Us[BskAsalui,kA,al[pa]
uj 4 Bjk AjaJ

(2.21a)

(2.21b)

(2.21c)

2.5 Equation of Motion of Structural System

2.5.1 Equation of Motion in Terms of Generalized Coordinates

Substitution of the coordinate transformation and premultl-

plication of the transpose of the transformation matrix given by Equation

(2.21) to Equation (2.7) results in the equation of motion in terms of

the generalized coordinates,

T

maa_a + kaaPa = A Tf + Af_ff + T (2.22)sa s AjaPa

Making use of the orthogonallty conditions given by Equations (2.11) and

(2.12) and taking into account that Aa is a linear combination of the

normal elgenvectors _, it can be shown that the generalized mass and

stiffness matrices in the above equation can be written in the following

forms,
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mkk = Ikk '

- -1 -1 B T
maa = AaTmAa = Bjk Akk Akk jk

mka=m T=ak 0

(2.23)

= Akk %a = _ T, ak = 0

A-IB T
kaa = AaTkAa = Bjk kk jR = Aja

(2.24)

2.5.2 Equations of Constraints

Two sets of constraints on the interface coordiantes of the

two substructures (orbiter and payload) that must be satisfied are

Geometric Co_atibility: u°3 - u_ = 0

P=oEquilibrium of Interface: P: + Pa

j = 1,2,...,14

a = 1,2,...,14

(2.25)

(2.26)

Rewriting Equation (2.25) in terms of the generalized coordinates given

by Equation (2.21) and putting Equations (2.25) and (2.26) into a single

matrix equation, one obtains

Cp = 0 (2.27)

where

pP = [P: Pa Pk p ]T (2.28)

Ai° -A p B o ]

a ja jk -BjkP

C = = [Caa _ Cak] (2.29)
I 0 0

Let q denote the set of independent generalized coordinates Pk and p_

P in
and express the set of dependent generalized coordinates p: and Pa

terms of q. It gives

[.ol_,= _ Caa Cak q q =

L :J C
(2.30)

where
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iIklkA1
Caa = k I I - kiAjPa

0

k I = (Aja + AjC)-I (2.31)

2.5.3 Transformation of p to q

The complete set of the generalized coordinates p given by

Equation (2.28) can be expressed in terms of the set of independent

generalized coordinates q given by Equation (2.30) by the transformation,

p = Sq (2.32)

where matrix S can be readily obtained by using Equations (2.29) and

(2.31) in the form,

S °v1
o p

-D O -D Do klBj_

I 0 Dp = klBj_
0 I

D = [DO Dp] (2.33)

2.6 Equation of Motio_ of Coupled Structural System

2.6.1 Equation of System in Terms of p

Writing equations for orbiter and payload and putting

together according to Equation (2.28), one obtains an equation of motion

of the coupled structural system in the form,

+ kP = Ps + Pf + Pa (2.34)

where the elements are given in the following.

matrices are

"-- 0
m
aa

0

aa

m m

aa
- o

The mass and stiffness

_P
aa

-p

(2.35)

XXIX-19



The matrixP s which denotes the external applied load, is

. o 0 B o 0]T fo (2.36)Ps [Asa sk s

and note that the external applied load on the payload is zero. The

matrix Pf which represents friction load acting on the Joint free coor-

dinates uf, is

= o - A p o -Bf_ ff (2.37)Pf [Afa fa Bfk ]T o

and note that fP = -f_. The term Pa is due to the constraint forces

acting on the interface coordiantes u.. With p = o
3 Pa - Pa' one has

Pa = [Aj: -AjP a Bjk° -Bj_] T POa (2.38)

2.6.2 Eliminatlon of the Dependent Generalized Coordinates

Substitution of Equation (2.32) into Equation (2.34) and pre-

multiplication of the resulting equation by ST leads to equation of

motion of the coupled structural system in terms of the independent

generalized coordinates q in the form,

o O

M_ + Kq ffiQsfs + Qfff (2.39)

The elements in the above equation are given in the following. The sys-

tem mass matrix may be written in the form,

M ffi ST m S _[ MOO Mop]

where

(2.40)

M = o (Bj_) T mlBj _oo Ikk +

Mpp ffiIkP + (Bj_) T mlBj_ ,

Mop = MpT° = - (Bj:) T mlBjP

T _ 0

m I = k l(maa + maPa)k I

where

ffi (Aja +. )-I
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The system stiffness matrix has the form,

,, _ _Tr.= [ K K. - oo op ]

%0 %
where

T
K --K
op po

oT-

=_ (Bjk) klBjP

El kTc_ o + - p kl= I" aa kaa)

(2.4 I)

The matrix Qs'

i T oT oT 1

Do(Asa) + (Bsk)

Qs -- STPs = T o T

Dp (Asa)

(2.42)

The matrix Qf,

o. sTp. Do (Afa += = (2.43)

"r r T o AfP)T.D_ (Afa +

The matrix product sTp = 0. With the aid of Equations (2.29) through
a

(2.33), Equation (2.38) can be rewritten in the form,

Then

sTpa
It can be seen from Equations (2.27) and (2.32) that

CS = 0 and sTp = 0 .
a

2.6.3 Equation of Motion of Coupled Structural System

Now, the formulation of equation of motion of the coupled

orbiter and payload system, Equation (2.39), is completed. This equation

is nonlinear as a result of the friction force being a nonlinear function
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of the independent variables. Therefore, the usual modal analysis of

free vibrations can not be applied. However, one may examine three

special cases from Equation (2.39).

Case I.

Case 2.

Free vibration with frictionless joints (_ = _ -- 0)

M_ +Kq= 0

Forced response with frictionless Joints

O

M_ + Kq ffiQofs

Free vibration with frictional joints

fo
M_ + Kq = Qf f

Case 3.

(2.44)

(2.45)

(2.46)

Both cases 1 and 2are linear and can be treated by the co-..on approach.

The third case is nonlinear and its natural frequencies depend on initial

conditions and amplitudes of motion.

2.7 Orbiter Coupled with Two Payload Substructures

Any number of payloads may be coupled with the orbiter at the same

time. The modification of the formulation is simple and straightforward.

To be specific, an orbiter with two payloads is illustrated in the

foli owing.

2.7.1

follows.

Physical Coordinates Transformation

The transformation given by Equation (2.21) is expanded as

(i) Coordinates of the orbiter

U
S

Ufl

uf2 =

ujl

.u j2.

"Bsk Asa I Asa2

Bflk Afla I Afla 2

Bf2k Af2a I Af2a 2

Bj ik A. Aj31a I la2

.Bj2 k Aj2al A.J 2a2

"Pk "

Pa 1

,Pa 2.

Bsk Asa"

Bfk Afa

Bjk Aja

[Pk1
Pa (2.47)
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where

ufv = free coordinates of joints of payload i
A

uf2 ffifree coordinates of joints of payload 2

u. ffiinterface coordinates of joints of payload 1

31

u. ffiinterface coordinates of joints of payload 2
32

(2) Coordinates of payloads

U
s

P2
U
S

Pl

uf

P2

uf

Pl
U.

2

-Pl Pl

Bsk 0 Asa

Pl

0 Bsk 0

Pl Pl

Bfk 0 Afa

P2

0 Bfk 0

Pl Pl

Bj k 0 Aj a

P2

0 Bjk 0

I

0

P2 PI"

Asa Pk

0 P2

Pk

P2

Afa P 1

Pa

0

P2 P a

Aj -

(2.48)

where superscripts "PI" and "P2" denote payloads 1 and 2, respectively.

2.7.2 The Generalized Corodinates

The generalized coordinates defined by Equation (2.28) are

increased and arranged in the form,

o o Pl P2 I o Pl P2 T

P ffi[Pa I Pa 2 Pa Pa ' Pk Pk Pk ] (2.49)

Pl P21T
q ffi[P_ Pk Pk I (2.50)

2.7.3

defined:

Other Symbols Used in the Formulation

According to Equations (2.47) and (2.48), the following are

XXIX-23



o

Ajk ['°1= Jlk

A o
L j2 k

jk 0

Aj_ = P2

Ajk

(2.51)

These expressions also apply to Aja, Afa , Bjk , Bja , and Bfa.
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TTT /'_lrtrrT T_'I;' _tgD I_TTTM'IG'DT("AT. _M'PTT_A"I'TCI_
JL. J..a. e v_.B

3.1 Elements of Formulation

Formulation of equation of motion of the orbiter and payload coupled

structural system has been presented in Chapter II. Here, the essential

elements for numerical computation will be discussed. Suppose that the

finite element models for the orbiter and payload are available from

NASTEAN, the first thL_g one _ust do is to _.,.,-..__'1_"_'_4:"_-_°_.._physical coor-

dinates according to Table 2 and Equation (2.21). Then, do the foliowing:

(I) Make modal analysis of substructures to generate B (2.21)

(2) Form inertia relief attachment modes A (2.18)

(3) Compute the generalized mass and stiffness matrices:

_, (2.23), k (2.24), M (2.40), K (2.41)

(4) Formulate the loading functions: Qs (2.42), Qf (2.43)

(5) Program the friction force functions, Section 2.3.

3.2 Friction Force in Terms of the Independent Coordinates

The friction force function derived in Section 2.3 must be expressed

in terms of the independent coordinate q for the solution of the equation

of motion. The elastic deformation of the joint shaft x n given by Equa-

tion (2.3) may be written by making use of Equations (2.21) and (2.33)

in the form,

x up up PP PP PP+ PP= - = (BfkP k + AfaP a) - (BbkP k _aPa )

0 Bfk - Bbk

== q (3.1)
P P

(Aba - Afa)Dj

The normal force acting on the joints which causes friction is a function

of Pa which is given by Equation (2.33),

o ffi Dq (3.2)Pa
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As shown by Sections 2.2 and 2.3 and the above equations, the friction

in the joints is a nonlinear function of q.

3.3 Dimensions of Matrices

In the following the dimensions of each symbol will be given in the

parenthesis following the symbol.

3.3.1 Physical Coordinates and Generalized Coordinates

Let s and s denote the degrees-of-freedom of the interior
o p

nodes, and k ° and kp denote the number of kept normal nodes for the

orbiter and payload, respectively. Then,

o

Us (SoXl) uf (16xl)

uPs (SpXl) up (16xl)

Pk (koXl) Pa (14xl)

o (14xl)
uj

u_ (14xl)

P (kpXl) P (14xl)Pk Pa

q [(k ° + kp)Xl] p [(k° + kp + 28)xi]

3.3.2 Transformation Matrix A and B

Orbiter: i = s + 16 j = 16,
O

Payload: i = s + 16 j = 16
P

3.3.3 Other Matrices

fo (SoXl)S

o (16xl)ff

k = k o,

k=k,
P

Qo [(ko+ k)XSo]

Qf [(k ° + kp)Xl6]

f = 16,

f = 16,

affi 14

a= 14
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VI. CONCLUSIONS

le

e

.

e

The formulation is exact, i.e., there is no assumption or approxima-

tion in dealing with the friction force in the joints.

Formulation applies to structural systems with any number of pay-

loads coupled with an orbiter.

The equation of motion of the coupled orbiter and payload system can

be used for the following cases:

(a) Free vibration of a system with frictionless joints (linear

problem)

(b) Load response of a system with frictionless joints (linear)

(c) Load response of a system with frictional joints (nonlinear)

For free vibration of the system with frictional joints, the natural

frequencies depend on initial conditions and amplitudes of vibration.

The usual eigenvalue numerical procedure can not apply, since the

system is nonlinear.
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