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ABSTRACT

An orbiter and its payload substructure are linked together by five
trunnion joints which have thirty degrees-of-freedom. Geometric com-
patibility conditions require fourteen of the interface physical coor-
dinates of the orbiter and payload be equal to each otﬁer and the
remaining sixteen are free to have relati?e motions under Coulomb
friction. This report presents the component modes éynthesis method
using fourteen inertia relief attachment modes for the formulation of
the coupled system. The exact nonlinear friction function is derived
based on the characteristics of the joints. Formulation is applicable

to an orbiter that carries any number of payload substructures.
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NOMENCLATURE

Aa’ A, a, inertia relief attachment modes, Eqs. (2.14), (2.21)
Bk’ B_, bk free-free normal kept modes, Eqs. (2.12), (2.21)
Do’ Dp, D defined by Eq. (2.33)
| ff friction force
% fs applied force on substructure
I unit matrix
k, k, K stif fness, generalized stiffness, system stiffness
matrices

ka’ kb’ kr’ ks spring constants of joint shafts, Eq. (2.6)

ko, kp number of kept normal modes of orbiter and payload,
respectively
m, m, M mass, generalized, system mass matrices, respectively
Nn normal force on nth free coordinates
0 zero matrix
} P, generalized coordinate of attachment modes
Py generalized coordinate of normal modes
q set of independent generalized éoordinates, Eq. (2.20)
S transformation matrix of p to q
2 uy coordinates of built-in end of joint shaft opposite
‘ to ug
ug free coordiantes of joint nodes
uj constraint coordinates of joint nodes
u_ coordinates of interior nodes of substructure

Greek Alphabets:

A diagonal matrix of mz

Y, ﬁ kinematic and static coefficients
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] angular displacement

w natural frequency of substructure
Superscripts:

o, P orbiter and payload

( )T matrix transpose

( )"1 matrix inverse
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I. INTRODUCTION
1.1 Objective of This Research

An orbiter and its payload substructure are linked together by five
trunnion joints: two primary joints support load in the axial (x) and
normal (z) directions, two stabilizing joints transfer forces in the
normal direction and the keel joint carries load in the transverse (y)
direction. The joint shafts of the payload and the support bearings of
the orbiter are free to have motions relative to each other under Coulomb
friction. The objectiﬁe of this research is to make analytical formula-

tion of this nonlinearly coupled system for dynamic response.
1.2 Method of Approach

Component modes synthesis has been accepted as the most efficient
method for coupling substructures of large degrees—of-freedom for
dynamic analysis in the last decade. The five nodes of the joints have
thirty DOF's (3 translations and 3 rotations) of which the fourteen
restrained coordinates are the interface coordinates and the remaining
sixteen coordinates free to move under Coulomb friction are a subset of
the interior coordinates. The orbiter and its payload are treated as
two free-free substructures for which two sets of free-free normal modes
are generated by their finite element models. These modes constitute
the generalized coordinates. Fourteen inertia relief attachment modes

for the interface coordinates form the dependent generalized coordinates.

The friction forces acting on the free coordinates depend on whether
the joints are in stuck state (no relative motion) or in a motion state.
Any number of coordiantes may be stuck and the others in motion. Non-
linear friction functions will be derived for the joints. A set of
motion equations of the coupled system in terms of the generalized
coordinates are obtained by using the geometric compatibility conditions

and equilibrium of the joint interaction forces.
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1.3 Component Modes Synthesis Method

Since Hurty[ll first proposed the method of coupling large sub-
structures by component modes synthesis for dynamic analysis in 1965,
numerous papers have been published, such as references 2, 3, and 4,
for extension and modification of the original concept. Among the
various versions of this method, the inertia relief attachment modes for
unconstraint substructures and the residual attachment modes for con-
straint substructures have proven to be the most accurate methods

up-to-date.

An outline and examples of the various approaches of the component
modes synthesis can be found in chapter 19 of Craig's book[S]. Because
of the limited pages allowed for this report, the detail of this method
will not be presented, but rather, the readers are referred to reference
5. The formulation of the coordinates transformation matrix and the
generalized mass and stiffness matrices in chapter 2 of this report are
very similar to that giﬁen in Craig's book. Some of the Greek alphabets
used in the equations in Craig's book are replaced by English alphabets

for typing convenience.
1.4 Description of Substructures

Figure 1 shows the payload structure and its finite element model
is shown in Figure 2. This structure is to be linked to an orbiter by
five joints which can be seen from these figures. The joint shafts and
the support bearings can be seen in Figure 3. Coordinates x, y, and z
are axes along the body axis, transverse, and normal directions of the

orbiter as shown in Figure 1.

It is important for engineering designers to determine the loads on
the payload structure and its interfacing structure accurately during
the orbiter launching phase. The existing computing program has not
been analytically formulated for dealing with frictional joints and is
based on some simple assumptions on the joint friction forces. It is
doubtful that such a simple model can produce accurate data for the

designers. This is the motivation for this research.
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(b) Keel joint.

Figure 3. Trunnion joints of payload.
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II. ANALYSIS
2.1 Characteristics of Trunnion Joints

An orbiter may carry one or more payload substructures and each of
them is attached to the orbiter by five trunnion joints. As shown in
Figure 3(a), the two primary joints support loads in x and z directions
while the joint shafts are free to slide and rotate relative to the
support bearings mounted on the orbiter. The two stabilizing joints
shown in Figure 3(a) are designed to transfer load along z direction
only and the joint shafts may have sliding and rotation motions in x
and y directions relative to the orbiter. The keel joint which is
located at the bottom of the payload structure as shown in Figure 3(b),
has the same function as the stabilizing joint except the direction of

y and z are interchanged.

Consider that each interface node of the orbiter and payload has
six degrees-of-freedom (3 translations and 3 rotations) which are denoted

by u,s uy, u_, ex, ey, and Oz. The geometric compatibility, or con-

straint, conzitions for the five joints are summarized in Table 1. An
inertia relief attachment mode denoted by P, is assigned for each con-
straint physical coordinate, uj, as shown in Figure 4 and listed in the
third column of Table 1. The coordinates which have free motion rela-
tive to the support, uc, are given in the last column. Discussion of

inertia relief attachment modes will be given later.
2.2 Coordinate Numbering for Joint Nodes

Let uy and uj denote the physical coordinates of the interior and
interface nodes, respectively. As shown in Table 1, among the 30 coor-
dinates of the joint nodes there are 16 coordinates that have free

motions (uf) which must be treated as a subset of u, and the remaining

i
14 coordinates form the set uj. These physical coordinates and the
generalized coordinates for the attachment modes are arranged in

sequence as shown in Table 2.
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Table 1.

Characteristics of Trunnion Joints

Joint uj Constraint P, Attachment Mode ue Free Motion
. S -, F -
Primary u, = ug X force uy
u® = P z - force 6
z z y
6° = oP X - moment
X X
8% = oP z - moment
z z
Stabilizing uZ = uz z - force u,
g% = oP z - moment u
z z y
ex
6
y
Keel u; = u? y - force u
g% = oP y - moment u
y y z
ex
ez
Total Number 14 14 16

Superscripts "o" and "p"

Special notation is
which is a subset of uss

friction forces. These

denote orbiter and payload respectively.

giﬁen to another set of physical coordinates
for the convenience of formulation of joint

are the coordinates of the nodes of the joint

shafts at the built-in end of the payload structure. The coordinates at

the built-in end opposit
shown in Figure 4.

In Figure 4 parts (
of the two primary joint
joints, and part (c) is
sent nodes of the joint

e tou. at the free end is denoted by up as

a) and (b) depict the pairs of bearing and shaft
s, parts (c) and (d) are for the stabilizing

for the keel joint. Nodes B1 through B5 repre-
shaft at the built-in end. Other symbols are:
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P13a
(e) Keel Joint

Figure 4. Coordinate system of trunnion joints.
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Table 2. Sequence of Joints Coordinates

Sequence ue (joint) uj (joint) P, (joint)
1 uy (1 u, (1) fx (1)
2 o, (1) u, (1) £, (D)
3 ug (2) 0, (1) M (1)
4 0, (2) 6, (1) M (1)
5 u_ (3) u_ (2) £ (2)
6 uy (3) u, (2) £, (2)
7 ) 6. (2) M (2)
8 Gy 3) Bz (2) Mz (2)

9 u  (4) u, (3) £, (3)
10 uy %) ez 3 Mz 3
11 8, (4) u, (4) £, (4)
12 . 8, (&) o (4) M, (4)
13 u (5 u, (5) fy (5
14 | u, (5) ey (5 . M& (5)
15 6, (5) - - - - - -
16 8 . (5) - - C-- -

z .

2d = distance between supports of the shaft in x direction
L = length of joint shaft

r = radius of joint shaft

r, = radius of bearing support in x direction

The above dimensions may have different values for different joints.
The numbering system for all coordinates and forces are given according
to Table 2.
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2.3 Friction Force Acting On Free Coordinate
2.3.1 Primary Trunnion Joint 1

If the axial elastic force in the joint shaft is smaller than
the axial friction resistance, there will be nd sliding motion between
the shaft and the bearing. With the aid of Figure 4(a), one may state
the following. If

p_ -
Iulf u | k, < N | (2.1a)
then,
P _ o
Uje = U (stuck) (2.1b)
P_._¢0_ P _
£if Frg = Klugp = upy) (2.1¢)
where

u = static coefficient of friction

ka = axial stiffness of shaft = ﬂrzE/L
= Young's modulus of elasticity
N = pressure between shaft and bearing = [(Pla)z + (p2a)2];5

Once the sliding starts, one may state that if

ul? # ulg » (sliding) (2.2a)
then
P _ 0 _ . .. P _
£1f fr1g = ka(ugp —upy) = N (2.2b)

When the elastic force in the joint shaft becomes smaller than the

friction force,

ka|u1§ -up ] cw o, (2.2c)
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then sliding stops,

th 'O

u, =ul§ (stuck) (2.24)

where p is the kinematic coefficient of friction.

In dealing with the coordinate Uyes tWo sets of equations similar
to Equations (2.1) and (2.2) may be written by replacing subscript "1"
by '"2", N by rN, and ka by ks = nr4G/2L. The spring constant represents
the shear stiffness of the shaft and G is the modulus of shear. The
equations for the above two cases and the cases to be discussed for other
joints can be represented by a simple figure as shown in Figure 5. ‘Let
x =ulb - u . n-1,2,...,16

(2.3)

°=
nf - fnf knxn

The function fnf and the "stuck" and "sliding" conditions are shown in

Figure 5.

As x increasing reaches point A where

f . =kx = urnN (2.4)

relative motion of the coordinate u ¢ starts; and then, the friction

force drops immediately to point B where

fnf = knxn = urnNn (2.5)

If elastic forcé in the joint shaft decreasing passes point B, relative
motion stops (stuck state). To the negative side points A' and B' are

the equivalent points of A and B, respectively. It is important to

note that the magnitude of Nn is a function of the generalized coordinates
P, which determine the magnitudes of A and B. Next, with the aid of

Figure 4, the notations k, N, and r are derived for n equal to 1 through
16.
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Figure 5. General function of friction in joints

2.3.2 General Function of Friction in Joints

‘The following spring constants of the joint shaft are defined:

ka = an/EL (axial)
4 4
kS = 1r G/2L (shear) k = nrxG/ZL
sx (2.6)
kr = 4EI/L (end moment with zero deflection)

12EI/L3 (end deflection with zero slope)

of

One may define the following for Equations (2.3), (2.4), and (2.5):

w
[}
=

n=1,3,6,10,14

n -]
kn = kr n = 2,4,8,12,16
k =k n = 5,9,13

n SX

XIXX-12




r =1 n=1,3,6,10,14
r =1 n=2,4,8,12,16
11
ro=r, n=5,7,9,11,13,15
Lk
No= [0, 07 + (0,07 n= 1,2
N = [(pe)? + ( )21;i = 3,4
n Ps5,y Pea n ’
5
- 2 2 -
Nn = [(Pga) + (ploa/d) ] ns= 5,7
N = [(py, )%+ (@ /‘1)2];i n=9,11
n l1a 12a J
2 k!
Nn = [(P13a) + (P14a/d) ] n = 13,15
2 2.% P o
N = n=6,8
n 2 2.% . P_ .0 ?
g )" + (kyx5)™] 1f ugp = uge
[(p,, )2 + (ung)2]% 1f ul #ul
1la 9 9f T Yof - lo.1o
N = - ’
| 1epy 02 + (kxg) 2 i#f ul =u0
P11a b*9 9f 9f
[(pya)2 + (N, 021" i u P #uC
{ P13, N3 13f 7 Y13f
N = n = 14,16
n 2 2.% P _ 0 ?
[(Py3,)" + (yxp3)7] 1f uyqp = U3¢

2.4 Component Modes for Unrestraint Substructures
2.4.1 Physical Coordinates

Consider that the orbiter and its payload are two unre-
straint substructures to be coupled together by the 14 interface coor-
dinates described in Section 2.1. Now, let's begin the formulation from

the equation of motion of a substructure,

mi + ku = f 2.7)
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The mass and stiffness matrices m and k are generated by finite element
models, and f denotes external forces applied to the substructure. Note
that the superscripts "o" for orbiter and "p" for payload will be used
when the situation requires to identify the substructure, otherwise,
expressions without these superscripts are applicable to both. The
physical coordinates u are separated into two subsets: u, for interior
nodes and uj for interface coordinates. As described in Section 2.2,
~the free coordinates of the joint nodes, Ucs belongs to a subset of ug.
Thus, uy consists of us the physical coordinates of interior nodes, and

uc. The m and k matrices must be rearranged and consistent with u in

the form,

u = [uS uc S pj]T = [ui E uj]T (2.8)
and so is the matrix f,

£= £, £, £07 = (£, fj]T | (2.9)
where

fs = external loaQ’acting on interior nodes

ff = friction force acting on ue

fj = external load acting on u, = 0

The dimension of these elements are as follows:

u

£ 3 l6x1 uj ¢ 14x1 (for orbiter and payload)

and dimension for u is arbitrary and different for orbiter and payload.
2.4.2 Free-Free Normal Modes

Solving eigenvalues and eigenvectors of Equation (2.7) for
free vibrations, one obtains six rigid-body modes (zero frequency) and

free-free elastic normal modes as follows:

(k - wip)bi =0 (2.10)
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with

3

brmbr =1 r=1, 2, ..., 6 (2.11)
blmb =1

e e

blkb = w? Ce=1,2, .ous k (2.12)
e e e

where br and be are normalized nxl eigenvectors of rigid-body and elastic
modes respectively, n is the dimension of u and k is the number of elastic
medes to be kept in the formulation (k £ n - 6). The modes higher than
k are dropped to reduce the size of the coupled structural system. - Now,

denote the matrix of the eigenvectors of the kept elastic modes by
Bk = (b1 b2 .o bk) | (2.13)

.and let Py be the generalized coordinate associated with the normal
mode bk' Note that the orbiter and payload may have different values
of k, 1i.e., ko # kp.

2.4.3 Inertia Relief Attachment Modes

An attachment mode a, is a set of physical coordiantes u due
to a unit force applied to one of the interface coordinates, uj, while
forces on all the rest of the interface coordinates are zero. Let P,
be a set of generalized coordinates associated with the attachment mode
a# (a=1, 2, ..., 14), as shown in Figure 4. Let matrix Aa denote the

set of attachment modes,

Aa = (a1 8y »eo a14)v (2.14)

Since the orbiter and its payload are unrestraint structures, the attach-

ment modes are due to a self-equilibrated force system,

f =f -mi
e r

which is the result of applied and rigid-body inertia forces. Hence, Aa
is called inertia relief attachment modes. For more detail the reader

is referred to Reference 5, pages 479-487.
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By definition, the inertia relief attachment modes may be obtained

from the equation,

Aa = GeFa (2.15)

where the elastic flexibility matrix may be formulated from

-1.T -1 _ 2
Ge Be AeeBe Aee = diag(l/we) (2.16)
and matrix Fa represents unit force at each coordinate uj,
0ij Oij = ixj zero matrix
Fa = 1.7 (2.17)
Ijj Ijj = jxj unit matrix
Thus, Equations (2.15), (2.16), and (2.17) result in
_ -1 T
Aa = Bk(Akk Bak) (2.18)

Note that if only the first k elastic modes are kept for formulation of
Ge’ and Be = Bk as defined by Equation (2.13), and

., 2 ]
1/u)1

=
]

Kk . (2.19)
.llmﬁ

L -

it can be seen that the contribution due to the neglected high frequency

modes is small, if k is sufficiently large.

It is easy to show that Equation (2.16) yields the flexibility.
From Equation (2.12)

-1 _ [T -1 _ _-1-1, T.-1
Aee = [BekeBe] = Be ke (Be), (2.20)
Premultiplying Be and postmultiplying BZ to both sides of the above
equation leads to

A—IBT _ -1

k" =G
e eee e e
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2.4.4 Coordinate Transformation

It can be seen that the physical coordinate u is the result
of the generalized cuvrdinaies Pie and the actiocn of the generalized

interface forces P, Thus,
Py
u = (Bk Aa) P, (2.21a)

or in partitioned forms,

[“1] MBi  Ajal [Pk]
N =|_Bjk A J ; (2.21b)

j ja a
and
Ug Bsk Asa [pk]
u = Bfk Afa P, (2.21¢)
B, A
% jk ja

2.5 Equation of Motion of Structural System
2.5.1 Equation of Motion in Terms of Generalized Coordinates

Substitution of the coordinate transformation and premulti-
plication of the transpose of the transformation matrix given by Equation
(2.21) to Equation (2.7) results in the equation of motion in terms of

the generalized coordinates,

- =T T T
P * RuP = Baxfs * Bucfe * ByPa
(2.22)
BoaPa * KaaPy = Al + A e Ajapa

Making use of the orthogonality conditions given by Equations (2.11) and
(2.12) and taking into account that Aa is a linear combination of the
normal eigenvectors By» it can be shown that the generalized mass and
stiffness matrices in the above equation can be written in the following

forms,
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mkk = Ikk ’ mka - mak =0
By = Aguh, = By Ao A B (2.23)
B ™ e Ko = _a: =0

koa = A:“Aa = By A;;lef = A, (2.24)

2.5.2 Equations of Constraints

Two sets of constraints on the interface coordiantes of the

two substructures (orbiter and payload) that must be satisfied are

o

Geometric Comﬁatibility: u, —u., =0 j 1,2,...,14 (2.25)

Equilibrium of Interface: p_  + p

m oo
[+ e o SO
|

=0 a=1,2,...,14 (2.26)

Rewriting Equation (2.25) in terms of the generalized coordinates given
by Equation (2.21) and putting Equations (2.25) and (2.26) into a single

matrix equation, one obtains

Cp =0 (2.27)
where
p = [py p° pp pPI" (2.28)
e hia B Byt ;
C = . . E 6 o = [caa : cak] (2.29)

Let q denote the set of independent generalized coordinates pE and pi

and express the set of dependent generalized coordinates pZ and pz in

terms of q. It giﬁes

o o
Fa = - c.1 c = Pk (2.30)
p aa ®ak 4 9 ) :
pa pk
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P
k1 klAja

o

c = k, = (A

aa _ _ P ja
kl I klAja

p -1
+ Aja) (2.31)

2.5.3 Transformation of p to q

The complete set of the generalized coordinates p given by
Equation (2.28) can be expressed in terms of the set of independent

generalized coordinates q given by Equation (2.30) by the transformation,
p = Sq ' (2.32)

where matrix S can be readily obtained by using Equations (2.29) and
(2.31) in the form,

B D 7
o} p o
-0, -D Do = = kB
S = P D = [D, D] (2.33)
0 - P
Dp = lejk

2.6 Equation of Motion of Coupled Structural System
2.6.1 Equation of System in Terms of p

Writing equations for orbiter and payload and putting
together according to Equation (2.28), one obtains an equation of motion

of the coupled structural system in the form,

mp + kp = P+ P +P (2.34)

where the elements are given in the following. The mass and stiffness

matrices are
F - o b -
aa aa
m P kP

‘ aa = - o (2.35)

By L g

=
]
s
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The matrix Ps which denotes the external applied load, is

o o T .0
Ps [Asa 0 Bsk 0] fs (2.36)

and note that the external applied load on the payload is zero. The
matrix Pf which represents friction load acting on the joint free coor-
dinates U, is

= O _ P o o PT
Pf [Afa Afa Bfk B ] (2.37)
and note that fg = -fg. The term»Pa is due to the constraint forces
acting on the interface coordiantes uj. With pg = - pg, one has
_ © ., P o _,pT 0
Pa [Aja Aja Bjk Bjk] Pa (2.38)
2.6.2 Elimination of the Dependent Generalized Coordinates

Substitution of Equation (2.32) into Equation (2.34) and pre-
multiplication of the resulting equation by ST leads to equation of
motion of the coupled structural system in terms of the independent

generalized coordinates q in the form,
My + Kq = Q £ + Q.£° (2.39)
s's f°f

The elements in the above equation are given in the following. The sys-

tem mass matrix may be written in the form,

M M
T - 00 op
M=S" mS-= (2.40)
MPO' Mbp
where :
o =M T _ _ o,T P
Moo = T + (B k) B o Mop T Mo = - By myBy
PyT P = L I(= O p
Mpp kk + (B ) mlBJk > Wy kl(maa + m.aa)k1 |
where

- o p\-1
k1 (Aja + Aja)
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The system stiffness matrix has the form,

K K
_— STES - 00 OP-I

¥ = (2.41)
L, x_J
po PP
where
_ o o\ T o e I o oT+ P
Koo = M ¥ Byp) ™ KBy » Koy = Ky, By kpByk
S PyT p T Tgo,L P
Kpp Akk + (Bjk) lejk R k1 kl(kaa + kaa) kl
The matrix Qs’
T o\T o\T
T 1)o(Asa) + (Bsk)
Qs =8 ps = DT(A o)T (2.42)
P sa
The matrix Qf,
T,, 0 PyT o, T
D (A +A0) + (B.)
Qf - STP, - 2 fa fa fk (2.43)

T o P\T _ pPy\T
Dp (Afa + Afa) (Bfk) 'l

The matrix product STPa = 0. With the aid of Equations (2.29) through
(2.33), Equation (2.38) can be rewritten in the form,

Dq]
T
a1

Dq]
T, _ AT
S Pa = (CS) ['0

It can be seen from Equations (2.27) and (2.32) that

CS =0 and sTPa =0

Then

2.6.3 Equation of Motion of Coupled Structural System

Now, the formulation of equation of motion of the coupled
orbiter and payload system, Equation (2.39), is completed. This equation

is nonlinear as a result of the friction force being a nonlinear function
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of the independent variables. Therefore, the usual modal analysis of
free vibrations can not be applied. However, one may examine three
special cases from Equation (2.39).

Case 1. Free vibration with frictionless joints (W = u = 0)

M4 + Kq = 0 (2.44)
Case 2. Forced response with frictionless joints

M + Kq = Q_£2 (2.45)
Case 3. Free vibration with frictional joints

M3 + Kq = Q.fy (2.46)

Both cases 1 and 2 are linear and can be treated by the common approach.
The third case is nonlinear and its natural frequencies depend on initial

conditions and amplitudes of motion.
2.7 Orbiter Coupled with Two Payload Substructures

Any number of payloads may be coupled with the orbiter at the same
time. The modification of the formulation is simple and straightforward.
To be specific, an orbiter with two payloads is illustrated in the
following. .

2.7.1 Physical Coordinates Transformation

The transformation given by Equation (2.21) is expanded as

follows.

(1) Coordinates of the orbiter

p- - p- -

Us Bsk ' Asa1 sa,

s %tk A e % a, [Py ] | Bk 2sa] [P

“e2] T | P,k Ae,e) 4,4, Pa |71 Bk %ea| LPa] (247
Yi1 lek Ajlal Aj1a2 _paz_ __Bjk Aja |

L 42. "szk Ajzal AJ'2‘“2'
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uf; = free coordinates of joints of payload 1
uf2 = free coordinates of joints of payload 2
uj1 = inte;face coordinates of joints of payload 1
uj2 = interface coordinates of joints o# payload 2

(2) Coordinates of payloads

eyl P2 Py T

u_ BSk 0 Asa 0

Py P1 Py le
u 0 Bsk 0 Asa P

P P P

ul Bl o Al o || P2

£ }_]| fk fa Py . (2.48)

Py Py Py

ug 0 By 0 Ay P

P1 Bpl 0 A?l 0 ?
%3 ik ja P,

P P p,||P
u.2 0 B.2 0 A.2 L- 8
%51 L jk ja |

where superscripts "pl" and "pz" denote payloads 1 and 2, respectively.

2.7.2 The Generalized Corodinates

The generalized coordinates defined by Equation (2.28) are

increased and arranged in the form,

P, Py Py Ppp

p= [pa: pa: P, P,° | P P P ) (2.49)
P1 P2t

q=1[p, P Py ] (2.50)

2.7.3 Other Symbols Used in the Formulation

According to Equations (2.47) and (2.48), the following are
defined:
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A A 0
3k ik
o p
= A; = 2.51
A1k o jk 6 P, (250
Aj zk Ajk

These expressions also apply to Aja’ Afa’ Bjk’ Bja’ and Bfa'
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III, OUTLINE FOR NUMERICAT COMPUTATION

Ledede @

3.1 Elements of Formulation

Formulation of equation of motion of the orbiter and payload coupled
structural system has been presented in Chapter II. Here, the essential
elements for numerical computation will be discussed. Suppose that the
finite element models for the orbiter and payload are available from
NASTRAN, the first thing one must do 1is to identify the physical coor-

dinates according to Table 2 and Equation (2.21). Then, do the following:

(1) Make modal analysis of substructures to generate B (2.21)
(2) Form inertia relief attachment modes A (2.18)
(3) Compute the generalized mass and stiffness ﬁatrices:
m (2.23), k (2.24), M (2.40), K (2.41)
(4) Formulate the loading functions: Qs (2.42), Qf (2.43)

(5) Program the friction force functions, Section 2.3.
3.2 Friction Force in Terms of the Independent Coordinates

The friction force function derived in Section 2.3 must be expressed
in terms of the independent coordinate q for the solution of the equation
of motion. The elastic deformation of the joint shaft X given by Equa-
tion (2.3) may be written by making use of Equations (2.21) and (2.33)

in the form,

x=u¥ = (B +AP)

PP
£LPE ByyPp + A,oP)

P_gxP
O Bge = Bk
- . (3.1)
(g = Ac)
The normal force acting on the joints which causes friction is a function
of pa_which is given by Equation (2.33),

(o}

a = Dq (3.2)

P
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As shown by Sections 2.2 and 2.3 and the above equations, the friction
in the joints is a nonlinear function of q.

3.3 Dimensions of Matrices

In the following the dimensions of each symbol will be given in the
parenthesis following the symbol.

3.3.1 Physical Coordinates and Generalized Coordinates

Let 8, and sp denote the degrees-of-freedom of the interior

nodes, and ko and kp denote the number of kept normal nodes for the

3.3.3 Other Matrices

orbiter and payload, respectively. Then,
u: (soxl) ' u? (16x1) ug (14x1)
u? (s,x1) uf (16x1) ug (14x1)
py (kx1) P (14x1)
pp (kx1) pP (14x1)
q [k + K )xl] P [k, + k, + 28)xl]
3.3.2 Transformation Matrix A and B
Orbiter: i = s, t 16 j=16, k= ko’ =16, a =14
Payload: 1i = sP + 16 j =16 k = kp’ =16, a =14

f: (soxl) Qo [(kO + kp)xso]

fg (16x1) Q [(k, + kp)x16]
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VI. CONCLUSIONS

The formulation is exact, i.e., there is no assumption or approxima-

tion in dealing with the friction force in the joints.

Formulation applies to structural systems with any number of pay-

loads coupled with an orbiter.

The equation of motion of the coupled orbiter and payload system can
be used for the following cases:
" (a) Free vibration of a system with frictionless joints (linear
problem)
(b) Load response of a system with frictionless joints (linear)

(c) Load response of a system with frictional joints (nonlinear)

For free vibration of the system with frictional joints, the natural

frequencies depend on initial conditions and amplitudes of vibrationm.

The usual eigenvalue numerical procedure can not apply, since the

system is nonlinear.
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