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Abstract

Current SSME high pressure fuel tﬁrbopump problems have generated a
desire to analyze the flowfield of rotating machinery. The status of CFD
has reached the point that soon the capability to solve unsteady three-
dimensional viscous flowfields will be at hand. The work presented here
involves upgrading the coéputational efficiency of an operational three-~
dimensional algorithm. The modifications include algorithm development,
algorithm approximation and acceleration, and special coding optimiza-

tions. The overall result of these modifications has reduced processing

time by nearly 80%.




Introduction

Presently, there exists a need for a robust and accurate computa-
tional algorithm to compute three-dimensional flow over a rotor-stator
configuration. An internal flowfield analysis of rotating machinery
necessitates the use of an advanced time-accurate three-dimensional
algorithm with dynamic grid capability. Additionally, this algorithm
must be computationally efficient, i.e., be capable of producing solu-
tions of engineering accuracy to real world flows in a reasonable length
of time. Until recently, the CFD community didn't even consider routine
calculations of a typical three-dimensional unsteady viscous flow. This
was primarily due to the large number of cells required to resolve the
pertinent flowfield phenomena. The domain must be subdivided into sev-
eral million cells, requiring approximately 30 computer words each,1 the
result of which is excessive computational processing times using pres-
ent day codes. The introduction of the Cray 2 supercomputer and the
availability of Cray's SSD storage have alleviated much of the concern
regarding storage for those with access to this state-of-the-art equip-
ment.

The initial step toward developing a code which can fulfill the
requirements stated above begins with the choice of a baseline
algorithm. The baseline algorithm chosen for this endeavor is that de-
scribed in Ref. 2. This algorithm has been shown to yield satisfacto-
rily resolved solutions of the flow past a variety of geometries in many
flow regimes. The baseline computer algorithm, herein referred to as
BMULE, is 1lacking in the computational speed required to accomplish the

task previcusly mentioned. The storage problem is of a lesser concern



in light of the recent advances in computer hardware introduced by Cray
Research. An estimate at the onset of this project placed the memory
requirement at approximately 100,000,000 words and CRAY X~MP CPU time
at approximately 400 hours for a typical three-dimensional rotor-stator
configuration flow analysis. It is evident that improvements in the
baseline algorithm are in order, before any three-dimensional viscous
rotating machinery flowfield solutions will be feasible.

This first year effort lays the ground work for an algorithm, the
purpose of which will be to perform the tasks outlined in the first
paragraph of this section. The intention here is to improve an opera-
tional computer algorithm, keeping in mind the basic goal of approaching
the computational efficiency required if one ever expects to produce
routine flow analysis of rotating machinery.

The material presented in this report entails three basic
approaches to enhance computational efficiency. These are: 1) algorithm
improvement, 2) acceptable algorithm approximations, and 3) coding modi-
fications. The first section of this report briefly describes the equa-
tions and the baseline algorithm. This is followed by the note-worthy
accomplishments in each of the specified approaches, given in the second
through the fourth sections. The results of this first year effort are
then presented in the fifth section. Finally, the sixth section presents
the conclusions of this report based on the year's findings. Also, pre-
sented are suggestions for future development in the field of rotating

machinery flow analysis.




Equations & Algorithm

The present work is based on the equation set developed in Ref. 3
and the algorithm developed in Ref. 2. Consider the fully discretized
linearized integral form of the flux split fluid dynamic equations writ-

ten as

[I+ AT(8,A% + §.A7 + 887 + 6587 + §,C° + §,C7)18Q" = -arR" (1)

J
where
aQ" = Q™1 - Q" (2)
and the flux jacobians
at - (ZEn (3)
aQ
- 3Fh n
A= (5)
+ 3G \n
8" = (5]
with
R™ = (8;F + §4F7 + 856" + 8467 + 8 H" + §H) (3

for inviscid flow analysis, or

n _ + - + - + - n
RT = (§;F + §;F + 5jc + GjG + § H + § H + 87) (5)

where

n



for viscous flow analysis. For a detailed review of F+, F, G+,...etc.,

the reader is referred to Refs. 2 and 3. F G

v and Hy (not mentioned

v’
in Refs. 2 and 3) represent the effects of the viscous stresses acting
on a cell. They are implemented in an explicit fashion and have been
shown not to markedly affect the speed of the baseline algorithm.

In the interest of limited computational funds, it was deemed im-
practical to operate with the viscous stresses activated when running
the test cases presented herein. This is solely due to an inabililty to
adequately resolve a flowfield when restricted to coarse mesh funding.

It should be noted that the additional computations per cell introduced

by the viscous stresses are minimal.




Algorithm Improvement

The matrix structure of Eq.(1) tends to be cumbersome and difficult
to invert, not to mention very costly. Presently, two well-“known methods
are used to approximate Eq.(1), approximate factorization (AF) and re-
laxation methods. As in Ref. 2, the AF approach is preferred to a
relaxation method.

There exist several methods for approximately factoring Eq.(1).
Some retain the ful; implicit nature of the system, yet they require
relatively sophisticated solution algorithms. Others possess only a
point implicit nature and 1lend themselves to much simpler solution
algorithms. These methods are inevitably multi-step, upper or lower
block triangular in matrix structure with the attractive feature of re-
quiring point simultaneous solutions and backward or forward substitu-
tion.

Two of the attractive factoring schemes were scrutinized during the
course of this project. The first of these is that which the baseline
algorithm utilized as a solution procedure. It will be referred to here
as the six factor(6F) scheme. This scheme involves the factorization of
Eq. (1) based on the sign of each spatial direction in computational

space yielding the following

(I*ATﬁiAt)(I*AT51A:)(I+AT6-Bt)(I+AT5jB:)(I+AT5kCt)(I+A16kC:)AQn=‘ATRn

J (7)

The solution of Eq. (7) can be carried out as follows:

!

(I + at8,A5)X' = -aTR" (8a)

x! (8b)

f

(1 + AusiA'-')x2



(1 + at6;89)%3 = X2 (8c)
(I + at6;8)X" = %3 (84)
(1 + A18,CH)X> = X (8e)
(I + 816,C7)x8 = X5 (8f)

aQh = x5 (8g)

An alternate factorization is based on the like sign of all three

spatial directions in computational space yielding the following

+ + + - - -
[I+ at(8;A" + 6B+ + §,C)I[I + At(8;A+ + 8B+ + §,C-)1aQ" = -AtR"

This factoring scheme is referred to as the two factor(2F) scheme, the

solution of which can be carried out as follows

[T + AT(5;A° + 6B + §,C0)Ix' = A" (9a)
[T+ AT(8;A% + 64B% + §,CT)Ix% = x! (9b)
AQ" = x2 (9¢)

The error introduced via the 6F scheme has the form

(av25 AT 0T(T + o) (T + 8) + [AT(§;A% + 6,AT)II8 + (I + 8)] +
25 .B 6 .Be : : 25,C%6,C-1aQ"
At°8B+83B+ (I + 8) + [AT(§;B+ + §;B+)18 + AT%6,C6,C-1AQ (10)
where

= : : 25 .B+5 B

a = [AT(8B+ + §4B+) + AT“6;B+6;B-] (11a)
+ - + -

B = [AT(8,C* + 8,C7) + AT%8,C*5,C"] (11b)



An examination of the terms indicates the error to be of higher order of
accuracy than that of Eq.(1), consequently the overall order of the
scheme is maintained. The error introduced via the 2F scheme has the

form

+ + + - - -
[at(s3As + 8B+ + 6,Ce)1[At(8;A+ + 8;B+ + 6,C-)1aQ" (12)

Inspection of this error also indicates it to be of higher order of
acccuracy than Eq.(1), again the overall order of the scheme is main-
tained.

Judging from Eq. (10) and Eq. (12), it seems plausible to expect
the 2F scheme to be somewhat superior to the 6F scheme. Although Eq. (1)
represents an unconditionally stable scheme, due to the error introduced

by the factoring process a restriction may be imposed on the time-step
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ain stability., A stability analysis of both schemes was pres-

ented by Anderson, et al.,u

the results of which are given in Fig. 1.
For the Courant numbers sampled, the figure indicates the 6F scheme to
be more restrictive than the 2F scheme regarding maximum allowable
timewstep. It is encouraging to note that the 2F scheme seems to retain
the favorable quality of unconditional stability.

There are advantages and disadvantages to both factoring schemes.
For example, the 2F scheme tends to have an appetite for in-core memory
stemming from the simultaneous storage of at least three flux jacobians,
whereas the 6F scheme sequentially overwrites the same memory cells al-
located for a single flux jacobian. Another example is the number of

linear systems solved per cycle; the 6F scheme requires six compared to

only two for the 2F scheme. Based on all the aspects of both schemes,




the 2F scheme seems to stand out as a superior factorization method. As
a consequence of this analysis, the 2F scheme was implemented in all
following results unless indicated otherwise.

Although the 2F scheme is superior to the 6F scheme, there is still
the ever present AF error (Eq.(12)) introduced by this scheme,
Presently, there is much interest regarding the elimination of this AF
error. One method to eliminate the AF error of the 2F scheme is to alter

the second step as follows

{1+ atlI + BT(84A° + 5B + §,C)17'[6;A7 + 6,87 + 6,712 = x! (13)

Total elimination of the AF error is achieved by the premultiplication
of the At term in the second step by the inverse of the first step op~
erator.

y is that it involves the inversion
of a matrix of difference operators., An approximate version of this in-
verse method can be formulated by substituting the following matrix for

the proposed inverse of the first step

[T+ at(8;A" + 658" + §,c) 17 (14)

Notice the operator dot (+) has been removed leading to a method which
could readily be investigated. Although Eq.(13) should completely
eliminate the AF error, the approximate version (Eq.(14)) falls short of
this goal. Evidently Eq.(14) retains enough AF error to adversely affect
the solution process. This method, when condensed to a single line equa-
tion, closely mimies a relaxation scheme, which was avoided from the

beginning.



Approximation and Acceleration

The previous section was concerned with reducing or eliminating the
error introduced as a consequence of factoring Eq.(1). This section ap=
proaches the problem from what could be considered an opposite view-
point, i.e., what can one get away with and still obtain an acceptable so-
lution. The primary objective here is to shorten and/or simplify the
path to the desired solution.

First, consider a method which substitutes the true flux jacobians
(TFJ) given by Eq.(3) with their corresponding spectral radii. A matrix

of the following form is used in lieu of the TFJ matrices

Asr,k I (15)
where
Agr,x = max (Agl) (16)
with
Ai = eigenvalues of K, i=1,2,3,4,5

+ - +

and K is either A*, a~, BY, B7, ¢* or C°. 1In Eq. (15), I has the usual
meaning of the identity matrix.

The inclusion of the matrices given by Eq.(15) yields the following

1 - n
[1+ Ar(six S0 ij PR Sy A +I-)] X ATR (18a)
SR,A SR,B SR,C

x! (18b)

[T+ Aat(8h  _Io+ 6 _Io+ 82  _I)] X2
SR, A SR,B SR,C

AQM = X2 (18¢)

10



Equations (18) represent an uncoupled system thus eliminating the need
for the simultaneous solution at a point. The solution process is sim-
plified to that of a backward and a forward substitution. Thus far eve-
rything sounds great, the drawback happens to be multi-faceted.

The first difficulty is the isolation of the dominant eigenvalue.
This can be accomplished using an iterative scheme referred to as the
power method.5 Although it is a simple iterative routine, it tends to be
costly. Secondly, the stability of the spectral radius method is much
more restrictive than that of the 2F scheme, as expected. This degrada-
tion in stability imposes a stringent time-step limitation. Together,
the two drawbacks cited are enough to exclude the spectral radius method
as an integral part of the solution algorithm.

Another approximation technique involves the infrequent updating of
the flux jacobians (flux jacobian freezing). The method is quite simpie
assuming a large quantity of in-core memory is available (or rapid
transfer out-of-core storage devices are accessible). The basic approach
is to calculate, store, and periodically update the flux jacobian matri-
ces. The period of acceptable flux jacobian "freezing" varies from flow
to flow. In many instances (steady state solutions), the flux jacobians
need only be calculated once.

This approach of flux jacobian freezing cuts per cycle computation
time nearly in half depending, of course, on the frequency of updating.
Although run time is significantly reduced, the storage requirement is
doubled. The availability of abundant Cray SSD storage encouraged the
inclusion of this approach as an integral part of the solution algo-

rithm.

11



The final topic in this section, the use of multiple grids, is both
an approximation and an acceleration technique. The multi-grid
technique used here is that of a full approximation scheme (FAS). The
theory is that the low frequency (LF) errors which are not damped well
by the solution algorithm on a fine grid appear as high frequency (HF)
errors on coarser grids and subsequently can be damped out on these
grids. This is assuming, of course, that the solution algorithm damps HF
errors well. This scheme can be applied to progressively coarser grids
to damp most of theAcomponents of the error. For an in-depth study of
the FAS method as it is applied to a similar finite volume code, the
reader is re

The basic approach involves solving an error equation on increas-
ingly coarse meshes. This error equation and background material are
given in Ref. 6 thus they will not be repeated here. The coarsening can
be accomplished in a variety of ways. The simplest procedure involves
starting with a fine grid then eliminating every other grid point in
each computational direction to construct a coarser grid. The use of
multi=grid requires increasing the total storage by no more than 25%.
Also, the computations on the coarser grids are relatively insignificant
because each coarse grid contains only 1/8 as many points as it's parent
grid.

Reference 6 gives a detailed outline of the steps involved in the
FAS multi-grid V cycle which is used in this study. Various investiga-
tive studies were performed to access the benefits derived from the
multi-grid procedure. An ONERA M6 wing (49x9x9) was used as a test case

to examine the multi-grid characteristics; such as, acceleration of con-

12



vergence, additional memory penalties, runtime per cycle per grid point,
ete. In Fig. 2, the effect of the multi~grid procedure on reducing the
number of cycles to reach a given level of convergence is shown. The
asymptotic spectral radius (convergence rate) for the single grid was -
.95, whereas that using a 2-level multi=grid V cycle with 3 iterations
on the coarse grid was - .87. From the data collected, a computational
savings of 32% was realized using the multi-grid procedure.

Thus far, it is evident that multi-grid is beneficial for steady-
state solutions. It also has applications to unsteady solutions.
Jesperson has successfully demonstrated the use of a time-accurate
multi-grid algorithm.7 Recently, significant savings have been realized
using a time-accurate multi-grid approach for a harmonically plunging

air'f‘oil.8

It is expected that multi-grid will become a useful aspect of
rotor-stator flow analysis, consequently it has been included in the

solution algorithm.

13



Coding Developments

The following section deals with computer algorithm modifications
which do not alter the solution, yet represent significant advances.
Some of these were developed by colleagues and integrated into the flow
code. Several less significant code modifications have also been imple-
mented over the past year. With the exception of the freezing of the
flux jacobians, code developments have resulted in the largest reduction
in code length and execution time.

The first of the significant developments is referred to here as
ribbon vector dynamic allocation, a concept developed by Belk.3 The
principle of ribbon vector storage is frequently used to compress stor-
age to avoid wasting memory space (achieve a minimum core requirement).
It functions well with modular codes hecause the bulk memory requirement
can be allotted in the main calling routine, and floating dimensions can
be used in the subroutines. Belk has demonstrated the use of this prin-
ciple, coupled with the flexibility of the Cray to allow user defined
dynamic memory management, to enable a dynamic mesh size. The plan is to
use this in connection with a multi=block procedure to minimize in-core
requirements. A version similar to thal proposed by Belk has been intes
grated into this solution algorithm.,

This leads to another concept exhaustively investigated by Belk.
It involves the segmenting of the computational domain into relatively
compact computational blocks. The impetus for such an approach emanates
from the difficulties encountered when generating a single grid about a

complex geometrical shape such as a wing-pylon-store or the blades in

rotating machinery. An additional attractive feature of multi=block is

14



the ability to sequentially solve several smaller flowfields comprising
one larger, nearly insurmountable flowfield. As mentioned before, this
section 1involves coding mods which do not alter the solution.
Frequently, some slight degradation of a solution is acceptable when
dealing with multiple block solutions.

Belk has shown that some liberties can be taken regarding the in-
ter-block transfer of data while still maintaining acceptable solution
development. Based on these findings, a multi-block procedure is
expected to function well in the analysis of a rotor-stator configurati-
on. Related work has indicated that multi-block dynamic grid procedures
are not d ement. The detailed analysis of this procedure
is on-going relative to its quantitative results and the influence of
inter-block communication in rotating machinery analysis.

The final contribution to code development was an attempt to opti-
mize the solution procedure of the 2F scheme. The 2F scheme involves a
point simultaneous solution and backward (or forward) substitutions. The
substitution portion poses quite a problem when attempting to utilize
vector hardware to it's fullest. The difficulty, referred to as a vector
dependency9 (or a recursion problem), occurs when all the elements of a
computational vector are not independent. For example, the equation

X1=Xi_1 i=1,---o,N (19)

i
involves a vector dependency when coded, because the ith element depends
on the (i = 1)th element. A method has been developed in order to

circumvent this problem in a multi~dimensional space. The concept of

15




this method was originally conceived by Belk10 and has no previous pub-
lication.

To begin, consider the example of a two-dimensional space in Fig. 3
and the following equation

X; + = X;

i,3 1‘,’1"]' + Xi,j—1 i=1,...,Ni, j""",..-N- (20)

J

If one attempts to logically construct computational vectors using the
elements lying on any computational line, as shown, a vector dependency
will be present. Thus the equation can only be solved in a much slower
scalar mode. Now consider Fig. 4 and Eq. (20). If computations are car=
ried out along the computational vectors (diagonal lines) as shown, the
be

1 ~A $ +
solved In a vector mod

equation can use 2all the
elements in a single computational vector are independent of one
another. The elements of each computational vector are given by the line

i+ 3j=2¢C (21)

where C is the vector number, ranging from 0 to (Ni + Ni;). In addition,

J
the vector length varies from 1 to min{(Ni+1),(Nj+1)}. This is a very simple
procedure in two dimensions, now for the easy extension to three=dimen-
sions.,

Consider the three~dimensional analogy to Egq. (20)

1= 1,.000,N;

Xi,j,k=xi"-1,j,k+xi,j“1,k+Xi,j,k"~'1 j=1,..o,Nj (22)
k = 1,...,Nk

Referring to Fig. 5, a similar procedure can be followed in order to
vectorize a three~dimensional problem. The points lying on a diagonal
plane constitute the computational vector with independent elements.

These points are given by the equation of the plane

16




i+Jj+k=¢C (23)

where C is the vector number, ranging from 0 to (Ni + Nj + Nk). In addi-
tion, the vector length varies from 1 to min{(Ni+1)(Nj+1),(Ni+1)(Nk+1),
(Nj+1)(Nk+1)}. This procedure for vectorizing a backward (or forward)
substitution has become an integral part of the solution algorithm. A
timing analysis is difficult to obtain due to the maximum vector length -

depending on the mesh structure. It is anticipated that the significance

of the diagonal plane method will increase as the mesh sizes increase.

17



Results

The year's progress can be accessed by comparing the status of the
code of September 1985 to that of September 1986. The comparison can be
made using the ONERA M6 wing (49x9x9) case presented in Table 1 of Ref.
2. A comparable flow trace was generated using the modified version of
BMULE, refer to Table 1b. Although a direct comparison cannot be made
regarding individual subroutines, a direct comparison can be made
between subroutine groups serving the same function. Consider, for exam-

ple, the following 1list of modified BMULE subroutines and the cor-

responding BMULE counterparts.

September 1986 September 1985 Performance Ratio %ggg

METRIC METRIC .86
BC BC 2.09
RESID + ~(3x9x9) x FLUX FLUX .43
TSTEP EIGENV 1.14
2 X AE
6 X CMAT 2 x BE 1.00
2 x CE
DOOIF
DOOIB
DOOJF
2 x DOO DO0OJB .25
DOOKF
DOOKB

18



The performance ratios should be examined in light of the percent
of total runtime spent in each subroutine, given in Tables 1. This is
accounted for when one examines the overall code performance ratio,
found to be .21. Thus the modified version operates nearly 5 times as
efficient as the previous version. This is mainly attributed to flux
Jjacobian freezing and the diagonal plane solution path. The code now op~
erates at 2.1 x 107> seconds per grid point per cycle.

The code was used to analyze the flowfield of a typical cascade

1 Fig. 6 gives a view of the H-mesh used in this test case.

geometry.
Figs. 7 and 8 are Mach and pressure contour plots, respectively, of the
flowfield resolved by the flow code. The qualitative agreement repre-
sented in these figures is good. No quantitative solutions are presented

here because the final solution of the modified BMULE code is the same

as that of the original code, whose validity was established in Ref. 2.
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Conclusions

Several modifications were made to an'operational implicit upwind
finite volume computer algorithm. These include: ribbon vector storage,
two=-factor scheme, multigrid, diagonal plane solution path, etec. The
goal of improving computational efficiency has been modestly achieved,
although more improvement is necessary. The present computer code oper-
ates 5 times more efficiently than it did previously. Advanced CFD pro-
cedures have been integrated to produce a robust, accurate and efficient
algorithm with the potential to provide advanced three-dimensional flow
analysis of rotating machinery.

Future emphasis should continue to be focused toward improving com-—
putational efficiency. At the present rate of improvement, the analysis
of rotating machinery flowfields is well within view. Once the effi~
ciency is achieved, then and only then, should detailed flow studies be
expected.

The modified version of the BMULE code presently resides on the

NASA Marshall CRAY X-MP.
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Table la. Flow Trace September 19852

ROUTINE

BMULEWR
IC
METRIC
BC
STEP
FLUX
EIGENV
AE
DOOIF
DOOIB
BE
DOOJF
DOOJB
CE
DOOKF
DOOKB
PVAR

TOTAL
OVERHEAD

Table 1b.

ROUTINE

BULLYII
POINTER
SETMEM
INDEX
IC

GRID
METRIC
BC
DPMAP
STEP
RESID
FLUX
TSTEP
CMAT
DOO
UPDATE
PVAR

*%**¥TOTAL
*¥%**QVERHEAD

TIME

. 306154
.001208
.010898
.275058
.351348
. 024503
. 337293
. 961722
. 540607
.611240
.575230
2.043788
2.129168
6.588037
2.021897
2.129334
0.007076

AN OO O0OOOO

43.914561

0.051794

9

.70
.00
.02
.63
.80
.72
.77
13.58
10.34
10.50
14.97

4.65

4,85
15.00

4.60

4.85

0.02

OQWOoOOoOOOO

CALLED

1

1

1
101
100
100
100
200
100
100
200
100
100
200
100
100

Flow Trace September 1986

TIME

0.000213
0.000077
0.007671
0.000360
0.000888
0.017251
0.009412
1.146532
0.063612
0.557665
0.602808
1.676988
0.383998
0.191312
4 .435661
0.064985
0.005143
9.164578
0.593479

TS e

CALLED

—_
o
—_ ) 2 .

201
100
100
100
20800
100

200
100

AVERAGE T

.306154
.001208
.010898
.002723
.003513
.060245
.003373
.029809
.045406
.046112
.032876
.020438
.021292
.032940
.020219
.021293
.007076

[eNeoNeNeNeoNoNoeNo N lo oo RNe i io o Rl

AVERAGE T

0.000213
0.000077
0.007671
0.000004
0.000888
0.017251
0.009412
0.005704
0.000636
0.005577
0.006028
0.000081
0.003840
0.031885
0.022178
0.000650
0.005143
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Fig. 3 Two-Dimensional Dependent Computational
Vectors
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Fig. 7 Mach Contours
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