
JPL PUBLICATION 86-44 

Multiple Trellis Coded Modulation 
(MTCM) 

D. Divsalar 
M.K. Simon 

An MSAT-X Report 

i 

( N A S A - C R -  1801 3U) f l U L I I P L E  ' I B E L L I S  CODED N87-16921 

C C D U L A P L C N  ( f l T C B ) :  B k  E S A T - X  E. .kiCBT [Je t  E r o p u l s i c n  LaL,) 5 2  F C S C L  1 7 B  
U n c l a s  

G3/32 43b8Q 

November 15, 1986 

1 

National Aeronautics and 
Space Administration 

Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena, California 

, 

https://ntrs.nasa.gov/search.jsp?R=19870007488 2020-03-20T12:48:01+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42838429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


JPL PUBLICATION 86-44 

~~~~ ~ 

(MSAT-X REPORT NO. 141) 

Multiple Trellis Coded Modulation 
(MTCM) 
An MSAT-X Report 

D. Divsalar 
M.K. Simon 

November 15, 1986 

National Aeronautics and 
Space Administration 

Jet Propulsion Laboratory 
California Institute of Technology 
Pasadena, Cal if or n ia 



The research described in this publication was carried out by the Jet Propulsion 
Laboratory, California Institute of Technology, under a contract with the National 
Aeronautics and Space Administration. 

Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not constitute or imply its 
endorsement by the United States Government or the Jet Propulsion Laboratory, 
California Institute of Technology. 



Abstract 

Conventional trellis coding outputs one channel symbol per trellis branch. 

channel symbol 

combination of 

performance ga 

Here we introduce the notion of multiple trellis coding wherein more than one 

the 

a 

per trellis branch is transmitted. It is shown that 

multiple trellis coding with M-ary modulation yields 

n with symmetric signal sets comparable to that prev ously 

achieved only with signal constellation asymmetry. The advantage of multiple 

trellis coding over the conventional trellis coded asymmetric modulation 

technique is that the potential for code catastrophe associated with the 

latter has been eliminated with no additional cost in complexity (as measured 

by the number of states in the trellis diagram). 
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1. Introduction 

Trellis coded modulation (TCM) refers to the technique wherein a 

rate n/(n+l) trellis code is combined (through a suitable mapping function [l]) 

with an M = 2 -point signal constellation to produce a coded modulation which 

has no bandwidth expansion relative to an uncoded 2"-point modulation of the 

same type yet gives significant performance improvement. 

n+l 

Traditionally, TCM systems have employed symmetric signal 

constellations, i.e., those with uniformly spaced signal points. Examples of 

such for multiple phase-shift-keying (MPSK) and quadrature amplitude modulation 

(QAM) may be found in 111. 

optimum for uncoded systems, the same is not necessarily true for TCM. In 

fact, it has been shown [2,3,41 that by designing the signal constellations to 

be asymrnetric, one can in many instances obtain a performance gain over the 

Although symmetric signal constellations are 

traditional synnnetric TCM designs. 

The measure of performance gain and the amount of it achieved are, 

i in general, functions of many factors, namely, signal-to-noise ratio (SNR), 

complexity of the trellis encoder (number of trellis code states), and the 

number of modulation levels (MI. For TCM systems, an asymptotic measure of 

performance gain is the comparison of the minimum free Euclidean distance 

dfree min 

modulation. This performance measure is an indication of the maximum reduction 

in required bit energy-to-noise spectra? density ratio P /N 

achieved for arbitrarily small system bit error rates. 

rate values, this measure can often be misleading since the "real" gain in 

\/No reduction due to coding and possibly asymmetry could be significantly 

less. More important, however, is the fact that in certain cases of asymmetry, 

the asymptotic improvement as measured by d 

of the trellis code relative to the minimum distance d of the uncoded 

that can be 

At practical bit error 

-b "0 

can be achieved in the limit free 
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only as points in the signal constellation merge together, i.e., the trellis 

code becomes catastrophic. 

all values of n, asymptotically results in 3 dB gain over the same bandwidth 

uncoded system [ 3,41. 

An example of such is the 2-state code which, for 

Here we demonstrate a new and novel trellis coded modulation 

technique referred to as multiple trellis code modulation (MTCM) (the 

significance of this acronym will be apparent shortly) which is capable of 

achieving the above asymptotic performance gains without resorting to 

modulation asymmetry. As such, this technique circumvents the problem of code 

catastrophe and other potential problems, e.g., increased phase jitter 

sensitivity, associated with moving signal points in the constellation 

arbitrarily close together. The principle behind our discovery is to design a 

rate nk/(n+l)k (k=2,3,4 ...) encoder and combine it (again through a suitable 
n+l mapping function analogous to that employed in [l]) with a 2 -point signal 

constellation outputting k - of these signal points (one for each group of (n+l) 

encoder output symbols) in each transmission interval. Since, in each 

transmission interval, kn bits enter the encoder and k symbols leave the 

modulator, the throughput is still n bps/Hz and we again have a unity 

bandwidth expansion relative to a 2 -point uncoded system. The surprising 

thing, however, is that values of k greater than 1 (k= l  corresponds to the 

conventional TCM system), can, for certain cases, produce increased values of 

dfree 

n 

with symmetric modulations. 

The first part of this report demonstrates this discovery for 

2-state trellis diagrams with MPSK and M-AM modulations. In particular, for 

MPSK, using k=2 when n=l, i.e., rate 1/2 trellis coded QPSK, and using k=4 for 

n>l, i.e, rate n/(n+l) trellis coded 2n+1 - PSK, we are able to achieve the 

above-mentioned 3 dB asymptotic performance gain improvement using a symmetric 

2 



modulation. Also, in the latter case (n>l), we have shown that values of k=2,3 

still give performance improvement relative to the conventional (k=l) TCM 

approach, but by an amount less than the maximum achievable 3 dB. 

For M-AM, a value of k=4 for all nil is required to achieve the 

maximum performance gain from the multiple trellis coding scheme and a 

symmetric modulation. 

gain theoretically only as M approaches infinity (the reason for this will be 

explained later on). 

brings us arbitrarily close, i.e., a gain of 2.96 dB. Also, as for MPSK, 

values of k=2,3 give proportionate gains relative to the conventional TCM 

approach. These results, including the mapping procedure for achieving the 

above-mentioned performance gains, will be discussed first. 

In this case, however, we achieve a 3 dB asymptotic 

From a practical standpoint, however, a value of M=16 

In the second part of the report, we generalize the above by 

considering trellises with more than 2 states and also allowing for 

throughputs whose values are not necessarily integers. 

I 
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2. 2-State Multiple Trellis Code Modulation 

To properly set the stage for the general 2-state case, we begin 

with two simple examples. 

Example #I 

Figure la is the 2-state trellis diagram for conventional rate 1/2 

trellis coded QPSK and Figure lb is the corresponding multiple trellis diagram 

for the same coded modulation. In Figure lb, we have n=l and k=2 and thus 

there are 2nk = 4 branches emanating from each state. Since there are only 

2 states in the diagram, this implies that there must be two parallel branches 

between each pair of states. Also, since k=2, we have two output QPSK 

symbols* assigned to each branch. The assignment of these symbols to each 

branch is made to maximize the minimum Euclidean distance between the path 

through the trellis corresponding to correct reception of the transmitted 

symbols and that corresponding to an error event path. Also, the assignment 

must be made in such a way as to prevent the code from becoming catastrophic, 

i.e., a finite number of channel symbol errors producing an infinite number of 

decoded bit errors. 

Figure lb illustrates the appropriate assignment of QPSK symbol 

pairs for each branch in the trellis diagram. Assuming the all zero sequence 

as the transmitted bit sequence with corresponding all "0" QPSK output 

symbols, then the error event path of length one, i.e., the parallel path 

between successive zero states, produces a squared Euclidean distance 

n n 

dL = 2dL(0,2) = 2(4) = 8 

*For convenience, we denote the QPsK symbol s j  simply by its subscript "j" 
on the branch labels. 
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2 where d (i,j) denotes the squared Euclidean distance between 

and s For the error event path of length two (illustrated 

in Figure lb), we see that the squared Euclidean distance is 
j' 

QPSK symbols si 

by dashed lines 

d2 = d2(0,0) + d2(0,2) + d 2 (0,1) + d 2 (0 ,3 )  

= 0 + 4 + 4 sin 2 4/2 + 4 cos 2 4/2 = 8 (lb) 

independent of the asymmetry angle C. 
QPSK) and obtain a rate 1/2 trellis coded QPSK mdulation which achieves a 

squared free distance equal to 8 .  We recall that for the conventional TCM of 

Figure la, we can achieve d 

dfree 

together, i.e., the code becomes catastrophic [ 3 , 4 ] .  

Thus, we may choose 4 = n/2 (symmetric 

= 6 for the symmetric QPSK constellation and 2 
free 

= 8 for the asymmetric constellation whose adjacent signal points merge 2 

Example IC2 

Figure 2 is the 2-state trellis diagram for conventional rate 1/2 

trellis coded 4-AM (note that the output symbois assigned t o  the transit' ians 

emanating from state "1" are reversed with respect to those in Figure la so as 

t o  get maximum gain from the asymmetry of the modulation [5]). 

trellis diagram for rate 1/2 multiple (k=2 for this example) trellis coding of 

synmetric 4-AM (distance 2 between adjacent signal points) is identical to 

Figure lb with the understanding that the branch assignments now correspond to 

two 4-AM symbols per branch. 

then the error event of length one., i.e., the parallel path between successive 

zero states, produces a normalized (by the average power of the signal set 

which, in this case, has value equal to 5 )  squared Euclidean distance 

The appropriate 

Assuming the ali :'O:' 4-Aii sequence transmitted, 

n n 
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For the error event path of length two, the squared Euclidean distance is 

given by 

Thus, the minimum free distance squared is the smaller of (2a) and (2b) namely, 

= 4.8 d;ree 

Relative to the squared minimum distance of uncoded 2-AM (same bandwidth as 

rate 1/2 trellis coded 4-AM) which has value 4 [5], we achieve a gain of 

0.792 dB. We recall that conventional rate 1/2 trellis coded symmetric 4-AM 

produced no gain relative to the uncoded 2-AM [51. Thus, even for just k=2, 

multiple trellis coding has bought us an advantage. 

We recall [5] that when asymmetry was introduced into the 4-AM 

modulation, then asymptotically the squared Euclidean distance achieved by 

conventional TCM could approach 32/4 = 8.0 or a gain of 3 dB over the uncoded 

system. Once again to achieve that gain it was necessary to merge signal 

points together (i.e., with s and s with s ) which results in a catastro- 

phic code. Here we will see shortly that with k=4, we can achieve a squared 

Euclidean distance equal to 32/5 = 6 . 4  or a gain of 2.041 dB over the uncoded 

system. For larger values of k, we are limited by the Euclidean distance of 

the error event path of length one, and thus dfree cannot increase beyond 

the above value. 

1 2 3 

The reason that we cannot achieve with multiple trellis coding of 

symmetry M-AM the same maximum gain "achieved" with conventional trellis 

coding of asymmetric M-AM is explained as follows. 

simple example that, ignoring the normalization by the average power of the 

We see from the above 

6 



signal set, we can in either case achieve a squared free distance equal to 

32. 

the normalization is constant, e.g., a value of 5 .  When asymmetry is 

introduced into M-AM modulation, as in Figure 2 for example, the average power 

is reduced, e.g., to a value of 4 in the limit as adjacent 4-AM signal points 

merge together. Thus, the difference in performance gain between the two 

schemes relative to an equivalent bandwidth uncoded system is attributed to 

the reduction in the average power of the latter. A s  the number of levels, M, 

gets larger, the reduction of the average power of the signal set due to 

asymmetry becomes smaller; thus in the limit of large M, the multiple trellis 

coded symmetric M-AM will approach the 3 dB gain over the uncoded system. 

Numerical justification of this discussion will appear later on in Table 2.  

With multiple trellis coding, the signal set remains symmetric and hence 

A. The General Mapping Procedure for 2-State Multiple Trellis Encoding 

A s  in [l], we begin by partitioning the original signal point 
I constellation into two constellations each xith maximum distance mong its 

signal points. This is tantamount to assigning alternate points of the 

original constellation to each of the two partitions (see Figure 3 for 

example). Then, the first observation is that signals in partition 411 will be 

used for transitions emanating from state "0" and signals in partition 412 will 

be used for transitions emanating from state "1". 

From tne above discussion of k-iiiiiltly;?e trellis csding, we nrrte 

that there will be 2 parallel paths between like states, e.g., "0" and 

"0" or "1" and "l", and the same number of parallel paths between unlike 

states, e.g., "0" and "1" or "1" and "0". For tne Lransition between like 

states, we assign to each parallel path a sequence of k symbols (we shall 

refer to this as a k-tuple) all chosen from a fixed partition (of 2 

nk-1 

n points) 

7 



such that the minimum squared distance between any two of these parallel paths 

is equal to twice the minimum squared distance between points in the partition, 

i.e., 8 sin w/2" for M P S K  and 32/[(2 -1)/31 for M-AM*. The remaining 

2nk-l 

parallel paths corresponding to a transition to an unlike state. The minimum 

squared distance among all pairs of parallel paths between unlike states will 

also be twice the minimum squared distance between points in the partition. 

2 2n+2 

k-tuples formed from symbols in the same partition are assigned to the 

However, the minimum squared distance among all pairs of paths consisting of a 

path between like states and a path between unlike states both originating 

from the same state is only equal to the minimum squared distance between the 

points in the partition, i.e., 4 sin w/2n f o r  M P S K  and 16/[(2 2 2n+2 -1)/31 for M-AM. 

Note that thus far the distances discussed have been independent of the 

mu1 tiplici ty k . 
The place where the trellis multiplicity k has its influence is in 

regard to the minimum squared distance among all pairs of paths consisting of 

a path between like states and one between unlike states where the two paths 

originate from two different states. With the above k-tuple assignments, this 

minimum squared distance is k times the minimum squared distance between points 
2 n+l in one partition and points in the other, i.e., 4k sin ~f/2 for M P S K  and 

4k/[(22n+2-1)/3] for M-AM. As we shall see in the next section, it is the 

increase in these distances with k that increases the minimum distance 

associated with the error event path of length 2 and thus allows for an 

improvement in d performance. The examples provided by the trellis 

diagrams of Figure 4 are further illustrations of the general mapping 

procedure. 

free 

~ ~~ 

*Herein in our discussion of M-AM distances, we shall assume that the signal 
point constellation and its partition have been normalized by Pa, = (2n+2-1)/3. 



B. Evaluation of Minimum Squared Free Distance 

If one constructs a 2-state trellis based upon the above mapping 

procedure then clearly the minimum squared distance for an error event path of 

length 1 is the minimum squared distance among parallel paths between like 

states, i.e., d: = 8 sin n/2" for MPSK and 32/[(2 -1)/3] for M-AM. For 

the error event path of length 2 (see the dashed curve in Figure lb for 

example), the minimum squared distance is made up of two parts. The first 

2 2n+ 2 

part corresponds to the minimum squared distance between two paths originating 

from the same state one of which terminates in a like state and the other in 

an unlike state. 

16/[(22n+2-1)/3] for M-AM. 

distance between two paths which originate from two different states and both 

2 n  As discussed above, this is given by 4 sin n/2 for MPSK and 

The second part corresponds to the minimum squared 

terminate in the same state. 

by 4k ~in~n/2~+' for MPSK and 4k/[(2 

Again from the above discussion, this is given 

2n+2 -1)/3] for M-AM. Thus, the minimum 

2 n  squared distance for the error event path of length 2 is d2 = 4 sin n/2 + 2 
2 2 2n+2 

4k sin 1f/2~+' for MPSK and d2 = (16 t 4k) / [ (2  

then the minimum squared free distance for the 2-state multiple trellis coding 

scheme is the smaller of dl and d2, namely, 

-1)/3] fer M-AM. Finally, 

2 2 

2 n  2 2 n+l = min ( 8  sin n/2 , 4 sin ~ / 2 ~  + 4k sin n/2 } for MPSK 2 
dfree 

2n+2 2n+2 
= min {32/[(2 -1)/3], (16 t 4k)/[(2 -1 ) /31}  for M-AM 2 

dfree 
!3! 

It is interesting to investigate, as a function of n, the value of 

trellis multiplicity k which if increased causes d2 to become greater than 

dl, i.e., the largest value of k beyond which there is no performance 

improvement in d 

2 
2 .  

In particular, we seek the largest integer k for which free' 

9 



2 2  dl > d2. From the above, using straightforward trigonometric manipulations, 

we arrive at the result 

k = 4 for M-AM (4) max 

From ( 4 )  we see the following interesting results. 

yields k-= 2 whereas for any n>1, 

all nil. 

For MPSK, a value of n = 1 

= 4 .  For M-AM, we have k = 4 for knlax max 

as 2 
Tables 1 and 2 tabulate, for MPSK and M-AM respectively, dfree' 

computed from ( 3 ) ,  versus n for values of k from 1 to k 

1) the performance gain (in dB) of multiple trellis coded MPSK (M-AM) relative 

to conventional TCM obtained by taking the ratio of dfree for the given value 

of k to dfree for k=l, and 2) the performance gain (in dB) of multiple 

trellis coded MPSK (M-AM) relative to uncoded symmetric 2"-MPSK (M-AM). 

Also tabulated are: max' 

C. New Description of Multiple Trellis Coding 

A few years back, Calderbank and Mazo [ 6 ]  introduced a new 

description of conventional trellis codes which expressed the modulator output 

as a series expansion of products (of all order) of the encoder input bits. 

The advantages of this new approach were manyfold. First, it was no longer 

necessary, as in previous discussions, to treat the overall design as a 

two-step process, i.e., specify an underlying trellis code and then map the 

output code symbols into the fixed signal constellation based on the "mapping 

by set partitioning rule" [l]. The new trellis code description given in [ 6 ]  

allowed these two steps to be combined into one. 

description of the system afforded by [ 6 ]  allowed the implementation of the 

Second, the input/output 

10 



transmitter to be drawn by inspection. Finally, the representation of [6 ]  was 

particularly convenient for studying the behavior of trellis coded modulations 

in an intersymbol interference (ISI) environment. 

In [ 7 ] ,  the work of Calderbank and Mazo [ 6 ]  was reviewed and 

discussed in the context of its application to the optimum design of trellis 

coded asymmetric modulations. Here, we generalize the work of [61 and [71 to 

multiple trellis coding. 

Let (bi} be a sequence of 21-valued real variables which are a 

mapping of the 0 ,  1-valued encoder input sequence {a.} according to the linear 

transformation 

1 

bi = 1 - 2ai (5) 

Then, for a conventional (k=l) trellis code, the modulator output x(bl,b2,. . . ,b )* m 

may be written as a sum of products of the b ' s  [ 6 , 7 1 ,  namely, i 

m m 
x(bl,b2, ..., b ) = d + Z dibi t 1 di jbib 

i=l i, j=1 m 0 

m 
b.b.b + ... + dl b b ... b, 

+ dijk 1 J k ... m 1 2 i,j,k=l 
k> j >i 

where the d's are a set of constraints that can be determined by a simple 

vector multiplication as foiiows. 

m 
Let = (x(l),x(2), . . . ,x(~ ) )  denote a column vector of length 2"' 

m whose components represent the 2 values that x(bl,b2, ..., b ) can take on. m 
m m) denote a 2 -length column ..., dl Next let 4 = (do,dl~".,dm,d12,d13, .. 

*The sequence length m is equal to the sun of n, the number of input bits per 
channel symbol, and v, the memory of the code (2v is the number of states of 
the encoder). 

11 



vector of the unknown constants. 

each row represents the 2 

in Eq. (6) for each sequence bl,b2, ..., bm. 
Eq. (6) can be written in the matrix form 

Finally, let B be a 2m x 2m matrix where 
m values taken by all products of the bigs called for 

In terms of these definitions, 

If I3 is a vector corresponding to a particular prouct of the b ' s  i.e., a 

column of B), then as shown in [6,71, the corresponding coefficient of that 

product in the expansion of Eq. ( 6 )  is simply obtained from 

i - 

1 T  d = - - B x  
2m - - 

i.e., the Hadamard transform of the vector x. - In ( 8 1 ,  the "T" superscript 

denotes the transpose operation. 

To apply this description to multiple trellis coding, we simply 

note that a description such as Eq. ( 6 )  is appropriate for each of the k 

elements in the k-tuples assigned to the trellis branches. Thus, letting 

x(~); i = 1,2, ..., k denote the jth modulator output corresponding to an input 
sequence of length nk, then the matrix representation of (7) is appropriate to 

x(~) - and yields a vector - d(i) in accordance with ( 8 ) .  

(4 }; i = 1,2, ..., k determined as above completely describes the multiple 
trellis code. 

The set of vectors 

(i) 

Example 411 

As a simple example of the above, consider the case of rate 1/2 

(n=l) multiple (k=2) trellis coded 4-AM with memory v=l (2 states). The 



length of the input sequence upon which each output symbol x(~); i = 1,2 

depends is now m = nk + v = 3. For m=3, Eq. ( 6 )  simplifies to* 

x(b ,b ,b = dlbl + d2b2 + d3b3 + d12blb2 1 2 3  

+ d b b + d b b + d123blb2b3 1 3 1 3  2 3 2 3  (9) 

Here b3 denotes the previous state and bl the present state. 

neither the previous nor the present state depend on b2. 

decide between the parallel paths between states.) 

of Figure lb (with state "0" and "1" respectively replaced by "1" and "-1" in 

accordance with Eq. (5) and the signal constellation of Figure 2 (with A = 0 )  

(Note that 

Rather b2 is used to 

From the trellis diagram 

we have 

I 
X(l)(l,l,l) = -3 

x(l)(l,-l,l) = 1 

x(l)(-l,l,l) = -3 
x(l)(-l,-1,1) = 1 

X(l)(-l,l,-l) = -1 

x(l)(-l,-l,-l) = 3 

X(l)(l,l,-l) = -1 

x(l)(l,-l,-l) = 3 

x(2)(l,l,l) = -3 

x(2)(l,-l,l) = 1 

x(2)(-1,1,1) = 1 
x(2)(-~,-1,1) = -3 

x(2)(-l,l,-l) = -1 

x(2)(-l,-l,-l) = 3 

x(2)(l,l,-l) = 3 

x(2)(l,-l,-l) = -1 

Then, using Eq. (lo), the expansion of Eq.  ( 6 )  can be put in the matrix form 

of Eq. ( 7 )  where 

*As in [61 ,  we choose the additive constant do = 0 with no loss in generality. 
This ass1m.ption reduces the dimensionality of 4 and B t o  Zm - 1 and Zm x Zm -1, 
respectively. 
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and 

B =  

r -  

- 
bl b2 b3 b l b 2  blb3 b2b3 blb2b 
1 1 1  1 1 1 1 
1 -1 1 -1 1 -1 -1 

-1 1 1 -1 -1 1 -1 
-1 -1 1 1 -1 -1 1 
-1 1 -1 -1 1 -1 1 
-1 -1 -1 1 1 1 -1 
1 1 -1 1 -1 -1 -1 
1 -1 -1 -1 -1 1 1 - 

To s o l v e  f o r  t h e  elements  of g(i); i = 1 , 2 ,  w e  make use  of Eq. (8).  

example, using t h e  second and t h i r d  columns of B f o r  g( ' )  and t h e  t h i r d  and 

seventh  columns of B f o r  d ( 2 )  w e  would have 

For 

1 

(2)  = 1 [l 1 1 1 -1 -1 -1 -11 
d3 8 

- -  
-3 
1 
1 

-3 
-1 

3 
3 

-1 - -  

d3 ( l )  = f [l 1 1 1 -1 -1 -1 -11 

11 -1 

( 1 3 )  11 -1 
-1 

= -2 
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Application of Eq. (8) to the remaining columns of B results in zero values 

for all other d 's .  Thus, the trellis of Figure lb is represented by the relations 

= -2b2 - b3 
(1) X 

X (2)  = -bg - 2blb2b3 

A simple implementation of Eq. (14) as a transmitter is illustrated in 

Figure 5. Note that Figure 5 represents the combined modulation/coding process 

without the necessity of separating it into its component parts, i.e., a 

trellis code followed by a rule for mapping and an AM modulator. 

Example #2 

As a second example, consider the case of rate 1/2 (n=l) multiple 
I 

(k2) trellis coded QPSK with memory v=l. Since once again m=3, Eq. (9) holds 

for the input/output relationship of the trellis encoder. Here, however, the 

output s_vmbol, x, represents phase instead of amplitude and the true encoder 

output, y, is given (in complex notation) by y = eJx [ 7 ] .  Similarly, the 

trellis diagram of Figure lb is appropriate together with the signal 

constellation of Figure la (with 4 = 0). In particular, 

x(2)(l,l,l) = -n/4 

x(l)(-l,-l,l) = 3n/4 

x(l)(-l,l,-l) = n/4 

x ( l + l , l , - l )  = r/4 
x ( l ) ( l , - l , - l )  = -3n/4 

x(2)(-l,-l,l) = -n/4 

x(2)(-l,l,-l) = n/4 

J2)(-l,-1,-l) = -3n/4 

x'2)(1,1,-lj = -3n/4 

x(2)(l,-l,-l) = n/4 

(1) x (-l,-l,-l) = -3w/4 
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Putting Eq. (15) in vector form as in Eq. (111, then using Eq. (12) and 

solving f o r  cJ'~); i=1,2 from Eq. (8) gives the desired result, namely, 

X = 4 (b3 - 2b2b3) 

( 2 )  - E (bj - 2blb2) - 4  X 

Figure 6 is an implementation of Eq. (16) where the phase modulator is used to 

convert x to y in accordance with the relation given above. 

D. Bit Error Probability Performance 

Thus far our entire discussion has focussed on performance gain as 

measured by improvement in minimum free distance of the trellis code. In the 

limit as the system bit error probability becomes arbitrarily small, this 

measure is equivalent to the improvement in required bit energy-to-noise 

spectral density ratio. 

interested in the reduction of bit energy-to-noise spectral density ratio for 

a given average bit error probability. Previous results [2-51 on conventional 

trellis coding showed that such reductions were possible. 

diagrams and upper bounds on bit error probability computed from the transfer 

function of these diagrams [2-51, we shall now determine the magnitude of 

these performance gains for multiple trellis codes. 

From a more practical standpoint, one is often 

Using pair-state 

Without going into great detail, it has been shown [41 that a tight 

upper bound* on the bit error probability of trellis codes is given by 

T(D,Z) dz 
z=1 

*This bound was shown in 141 to be an excellent match to numerical results 
obtained by computer simulation. 
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where erfc x is the complementary error function, D is the Bhattacharyya 

distance defined by 

D = exp (- 2) (18) 

with E /N denoting the bit energy-to-noise spectral density ratio, and b O  

is, as before, the squared free distance of the trellis code, and dfree 
T(D,z) is the transfer function of its pair-state diagram. Provided that one 

finds the proper pair-state diagram for multiple trellis codes, then Eq. (17) 

also applies in this case except that the factor of 1/2n is replaced by 1/2nk. 

We also note that the Bhattacharyya distance for multiple trellis codes is 

still given by (17) independent of the value of k. 

2 

I As an example consider a rate 1/2 multiple (k=2) trellis coded QPSK 

system with trellis diagram as in Figure lb. The corresponding state diagram 

is illustrated in Figure 7 and the equivalent pair-state diagram [31 for 

computing T(D,z) is shown in Figure 8 .  In Figure 7 the branches are labelled 

with the input bit and output QPSK symbol pairs that cause that particular 

transition whereas in Figure 8 the branches are labelled with a gain of the form 

I 

Here z is an index, CI is the iiamming tiistaxice between input  b i t  aeqmnzes 

and 6 is the squared Euclidean distance between MPSK output symbols for 

the transition between the pair states. 

2 

The transfer function of Figure 8 is easily computed as i 3 j  

3 12 (22 + 2z2 + 23)~8 - (z2 + z ID 
T(D,z) = Q I .  (20) 

1 - (z + zL)Dq 
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where, in accordance with (191, 

2 4  a = - 1 (Z + z ID 
2 

1 4 
2 b = - (1 + z)D 

1 8  c = - z D  2 

Substituting (21) into (20) and performing the differentiation required in (17) 

yields the desired upper bound on Pb, namely, 

Figure 9 is an illustration of the upper bound of Eq. (22). 

this figure, for purpose of comparison, are the upper bounds on P 

PSK and conventional (k=l) rate 1/2 trellis coded symmetric and optimum* 

asymmetric QPSK modulations. 

with the relations 

A l s o  shown in 

for uncoded b 

These results are obtained from [41 in accordance 

r 

1 - erfc 
2 

and 

1 
2 D ,  

(uncoded PSK) (23) 

(coded symmetric) (24) 

'b 1 2 
(1 - exp(-Eb/INo(l+cl)I ) )  

(coLzd optimum asymmetric) (25) 

*The value of asymmetry as given in (26) is exactly optimum for a slightly 
looser upper bound (see [3]) but only approximately optimum for (25). 
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with 

- 1  Eb/NO a =- an 3 

We observe from these results that, over the range of E /N illustrated, the 

multiple trellis scheme is slightly better in performance than the conventional 

trellis code with optimum asymmetry. 

b O  

3 .  Generalized Multiple Trellis Coded Modulation 

As mentioned in the introduction, here we generalize the results of 

Section 2 by considering trellises with more than 2 states and also allowing 

for throughputs whose values are not necessarily integers. In particular, we 

propose an encoder with b binary input bits and s binary output symbols which 

are mapped into k M-ary symbols in each transmission interval (see Figure 10). 

For such a transmitter, the throughput is b/k bps/Hz which depending on the 

choice of b and k may or may not be integer-valued. 

To produce such a result, we partition the s binary encoder output 

symbols into k groups of m = log M symbols each. Each of these groups 

results in an M-ary modulator output symbol. Thus, the only constraint on the 

transmitter parameters is that s ,  k, and M must be chosen such that 

2 

s = k log M (27) 2 

Furthermore, b is not required to be an integer multiple of the multiplicity k 

and thus the trellis code rate b/s is not constrained to be the ratio of 

adjacent integers. 

It is interesting to note that the non-integer throughput MTCM's do 

not have equivalent uncoded counterparts. Thus, in these cases, the notion of 

unity bandwidth expansion of the trellis coded scheme relative to the uncoded 
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scheme has no meaning. 

directly characterizes the generalized MTCM technique. For this purpose, we 

shall use the computational cutoff rate Ro [ 8 ]  of the channel as a basis for 

demonstrating the efficiency of the above technique (in terms of the required 

bit energy-to-noise ratio at a sufficiently small error rate). 

is analogous to but simpler than that performed by Ungerboeck 111 who used 

channel capacity as his basis of comparison. 

Instead, we must define a performance measure which 

This procedure 

A. Computational Cutoff Rate for Generalized MTCM Channels 

The computational cutoff rate is dependent only on the coding 

For MPSK modulation, and discrete channel and not on the coding scheme. 

memoryless channels, R is given by 0 

3 2 M-1 
= log2M - log2[ + X D  4sin (in/M) 

RO 
i=l 

where D is again the Bhattacharyya distance that depends only on the decoder 

metric. In our case, i.e., a maximum-likelihood metric, D is given by 

ES 

4 N ~  
D = exp(- -1 

where E 

is related t o  the input bit energy by Es = (b/k)Eb. For the simple MTCM case 

discussed in Section 2 where b/k = n, (29) becomes (18), which is independent 

of multiplicity and thus also characterizes conventional TCM. 

is the energy of an M-ary channel symbol. For generalized MTCM, E 
S S 
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B. Error Probability Performance 

Analogous to (171, an upper bound on the bit error probability 

performance of generalized MTCM is given by 

Similarly, an upper bound on first error event probability Pe [91 is given by 

Both of these bounds require determining the transfer function of the pair 

state diagram [9] associated with the trellis. For trellises with large i 

numbers of states, this process can become analytically quite cumbersome. 

I 

I 
Thus, instead we consider an approximate (asymptotically approached at high 

SNR) lower bound which for first error event probability is given by 
I 

where N(dfree) is the number of error event paths at distance dfree from the 

all zeros path, i.e., the multiplicity of error events at distance d, . 
In effect, (32) represents the result that would be obtained from (31) by 

keeping only the first term in the power series expansion of T(D). 

ree 

The approxigate lower bound of (32) can be simplified (at a slight 

expense in tightness) still further by ignoring N(d 1. Thus, for a given free 

P , e.g., we can readily compute the required E /N for any particular -e b--O 
generalized MTCM with given values of b, k, and M once we determine its dfree. 
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Next, we give several examples illustrating the procedure and then examine 

their communication efficiency relative to R 0'  

Example 1 

Consider a trellis encoder with b=3, s=6,  whose binary output 

symbols are mapped into 8PSK symbols with multiplicity k=2 in accordance with 

( 2 7 ) .  The throughput of this MTCM scheme is thus b/k = 1.5 bps/Hz. We again 

note that there is no equivalent (same throughput) uncoded modulation. In 

fact, the above MTCM scheme is exactly midway between BPSK with a throughput 

of 1 bps/Hz and QPSK with a throughput of 2 bps/Hz. For the above example, 

the number of transitions emanating from each state in the trellis diagram is 

2b = 8 .  

transitions (later examples will relax this requirement), then the minimum 

number of states for the trellis must be 8 ,  i.e., a fully-connected trellis. 

Thus, we begin by considering this specific case. 

If we postulate that there are to be no parallel paths between 

1. 8-State Trellis 

In accordance with the above, we must assign a pair (k=2) of 8PSK 

symbols to each trellis branch in such a way as to maximize the free distance 

of the code. For the symmetric 8PSK signal set illustrated in Figure 11, 

define the sets (pairs of 8PSK symbols)* 

A o = O O  A 4 = 2 2  B o = 0 2  B 4 = 2 0  

A = 4 4  A 5 = 6 6  B 1 = 4 6  B 5 = 6 4  

B 2 = 0 6  B = 2 4  A 2 = 0 4  A 6 = 2 6  6 
A 3 = 4 0  A 7 = 6 2  B j = 4 2  B 7 = 6 0  

1 
(33) 

*For simplicity, we denote the MPSK symbol merely by its subscript. 
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These sets have the following minimum squared Euclidean distances: 

(Ai,A.) = 4 

(Bi,B.) = 4 

dmin (Ai,Bj) = 2 

2 
dmin J 

dmin J 
2 

(34) 

We assign the Ai's to the paths leaving the --numbered states each time 

permuting the assignment by one. 

leaving the even-numbered states with the same permutation (see Figure 12). 

When this is done, the minimum distance path will be of length 2 (see Figure 12) 

and thus the squared free distance for the code is 

Similarly, we assign the Bi's to the paths 

2 2 = d (Ai,A.) + dmin (Ai,B.) = 4 + 2 = 6 
2 

dfree min J J 
(35 1 

Note that, in effect, we require only a QPSK signalling set to achieve the 

above. We remind the reader that conventional rate 1/2 trellis coded QPSK 

1 

(throughput = Z bps/Hz) with an 8 state trellis resulted in d = 12.0 

whereas conventional rate 2/3  trellis coded 8PSK (throughput = 2 bps/Hz) 

= 6 - Jj = 4.586 [3]. with an 8 state trellis produced dfree 

free 
I 

2 

2. 16-State Trellis 

Here we still assume no parallel paths between states but use a 

half-connected trellis (each state transitions to only half the total number 

of statesj. The treiiis and muitipie 8PSK sy~ibol. set assiezent 8 r e  illus- 

trated in Figure 13. In particular, we do as before, namely, we assign the 

A.'s to the paths leaving the bdd-number states and the Bi's to the paths 

leaving the even-numbered states. With the assignment of Figure 13,  the 

minimum distance path is of length 2 and 

1 
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2 
- - dmin 2 (Ai,A.) + dmin (Ai,A.) = 4 + 4 

3 dfree 1 
(36) 

= 8  

= 5 . 1 7 2  for = 14 and dfree 2 2 
free This is to be compared with values of d 

16-state conventional rate 1 / 2  trellis coded QPSK and rate 2/3  trellis coded 

8PSK respectively. 

used. 

Again, we note that, in effect, only QPSK signalling, is 

Example 2 

The free distance of the MTCM schemes of Example 1 can be increased 

by defining the mapping sets such that transitions between states contain 

parallel paths. 

as follows: 

In  particular, we define sets containing 2 elements per set 

00 
co = ( 4 4  

04 
‘1 = (40  

22 
‘2 = (66 

c3  = 1:; 

24 
D3 = 160 

- 111 Eo - 155 

- 137 
E3 - I 7 3  

17 
F1 = 153 

- I31  
F2 - I75 

24 

( 3 7 )  



These sets have the following squared Euclidean distances: 

d2(Ci) = 8 d2(Ei) = 8 

n dmin(Ci,Dj) L = 2 (E~,F.) = 2 
J dmin 

d2(Di) = 8 d2(Fi) = 8 

2 where d (Xi) is the squared Euclidean distance between the two elements in the 

set, d (Xi,Y.) is the squared Euclidean distance between either element in 2 
J 

2 X. and either element in Y 

Euclidean distances between either element in X. and either element in Y 

and dmin(Xi,Yj) is the minimum of the squared 
1 j’ 

j’ 1 

= 8 paths emanating from a given state) and there are b Since b = 3 ( 2  

two parallel paths per transition (i.e., each corresponding to one of the tvo 

elements in a given set), then each state will now have a transition to only 4 

other states. We begin by considering a trellis with 4 states which implies a 

fully connected trellis. 

I 

I 

1. 4-State Trellis 

Consider the treiiis of Figure i4 where the C sets have been i 

assigned to the paths leaving states 1 and 3 and the Di sets have been 

assigned to the paths leaving states 2 and 4. Again we permute the assignment 

by one between paths leaving state 1 and paths leaving state 3 ,  and similarly 

for states 2 and 4. By inspection of Figure 14, we immediately find that the 

minimum distance path is of length 2 with squared Euclidean distance 
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+ dmin(Ci,Dj) 2 = 4 + 2 = 6 
J I i#j 2 d (Ci,C.) ( 3 9 )  

Since this squared distance is smaller than the squared distance between 

= 6. We note that by using parallel parallel paths, i.e., d = 8, then dfree 

paths between transitions, we are able to achieve a larger free distance with 

only 4 states than we achieved previously in Example 1 using 8 states. Also, 

the set assignment in Figure 14 does not require the use of the Ei and Fi 

sets. 

above. 

2 2 

Thus, in effect, we require only a QPsK signalling set to achieve the 

2. 8-State Trellis 

Here we have a half-connected trellis as illustrated in Figure 15 

with the Ci's assigned to the --numbered states and the Dits assigned to 

the even-numbered states. Again the minimum distance path is of length 2 and 

achieves 

Since this is identical to the squared distance between parallel paths, we 

2 
have dfree 

parallel paths in Example 1. 

= 8 which is the same as that achieved with 16 states and no 
Again, only a QPSK signalling set is needed 

since sets E. and F. are not assigned to the trellis. 
1 1 

Since the maximum free distance achievable is limited to the distance 

between parallel paths, we cannot achieve any further improvement by going to 

16 states. 
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Example 3 

Consider next a trellis encoder with b=7, s=12, whose binary output 

symbols are mapped into 8PSK with multiplicity k=4 in accordance with (27). 

The throughput of this MTCM scheme is b/k = 1.75 with no equivalent uncoded 

system. 

that for any number of trellis states less than 128, we must have parallel 

paths between states. 

fully-connected 8-state trellis which implies that the number of parallel 

paths between states is 128/8 = 16. 

There are now 2b = 128 transitions emanating from each state so 

The first case we consider is again that of a 

1. 8-State Trellis 

In accordance with the above we must assign 16 4-tuples of 8PSK 

symbols to each trellis branch in such a way as to maximize the free distance 

of the code. We can use the trellis diagram of Figure 12 but first we must 

define and then assign the sets of 8PSK 4-tuples. 

sets is as follows: 

The construction of these 

1 

Set 

1) 0 0 0 0  

4 4 4 4  

2) A 1 = A o + 0 0 4 4  

A2 = A o  + 0 4 0 4 

A3 = A. + 4 0 0 4 

Number of Elements Per Set 

2 

2 

= A  L ! A 1 L ! A  LTA 3 ,  Bo 0 2 3  

4) B 1 = B o + 2 2 2 2  
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Set - 

1 5) Co = Bo U B 

6) C 1 = C o + O O 0 4  

c2 = co + 0 0 2 2 

c3 = co + 2 2 0 0 

c4 = co + 2 0 0 2 

c5 = co + 2 0 2 0 

C6 = co + 0 2 2 0 

c7 = co + 0 2 0 2 

7) 

8)  

Di = Ci + 0 0 0 2 ; 

Ei = Ci + 1 1 1 1 ; 

= Di + 1 1 1 1 ; Fi 

i = 0,1,2, ..., 7 
i = 0,1,2, ..., 7 

i = 0,1,2, ..., 7 

Number of Elements Per Set 

16 

16 

16 

16 

16 (41 1 

Only the final sets, i.e., Ci, Di, Ei, and Fi, with 16 4-tuples each, are of 

interest insofar as assignment to the trellis. 

squared Euclidean distances: 

These sets have the following 

2 2 
dmin(Ci) = dmin(Ei) = 8; i = 0,1,2 ,..., 7 

(Ci,Ej) = 4(2 - 16) ; i = 0,1,2 ,..., 7, j = 0,1,2 ,..., 7 2 
dmin 

2 where dmin(Xi) is the minimum squared Euclidean distance between elements 

(4-tuples) in the set Xi, and dmin(Xi,Yj) 2 is the minimum squared Euclidean 

distance between any element in X. and any element in Y.. 
1 J 
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If we replace the trellis branch assignments Ai and B. of Figure 12 
1 

with Ci and Ei, respectively, then, since the distance between parallel 

branches is 8, the free distance is determined by the minimum distance path of 

length 2, namely, 

(Ei,E.) 
J - (Ci,C.) 1 + dmin dfree - dmin 

2 
J ifj i+j 

= 4 + 4(2 - 42) = 6.343 

= d 2 (Ci,C.) + dmin(Ci,C.) 2 
J J min ifj 

(43) 

i+j 

2. 16-State Trellis 

Using the half-connected trellis of Figure 13 and again replacing 

the A. and Bi branch assignments with Ci and Ei, respectively, the 

minimum distance path of length 2 has a squared Euclidean distance 
1 

J 
d -  

= 4 + 4 = 8  

Since (44) is equal to the minimum squared distance between parallel paths 

(i.e., 8) ,  then the squared free distance of the trellis is 

I 

= 8  2 
dfree 

(44) 

(45 1 

Example 4 

As a last example, we consider b = 6 ,  k = 4 and a 4-state trellis. 

This example has the same throughput as Examples 1 and 2, namely, b/k = 1.5 

but with an increase in multiplicity from 2 to 4. 

diagram is illustrated in Figure 16. 

(41) are assigned to the paths leaving states 1 and 3 while the odd-numbered 

C. sets are assigned to the paths leaving states 2 and 4. 

distance path is of length 2 and achieves 

The appropriate trellis 

Here, the even-numbered Ci sets of 

The minimum 
1 
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= 4 + 4 = 8  I if j d 2 (Ci,Cj) + d 2 (Ci,Cj) 
if j 

which is equal to the squared distance between parallel paths. Thus, 

dfree 

equivalent performance to what required 8 states when the multiplicity was 

only 2 (see Example 2 ) .  

result in no gain, since a free distance equal to the distance between 

parallel paths has already been achieved. 

= 8. Hence, we can achieve with 4 states and multiplicity 4 the 2 

Once again going to a larger number of states will 

Illustrated in Figure 17 is a plot of R versus E /N with M as a 0 s o  

parameter as computed from (28) and (29). 

points, corresponding to the various examples given in this report, whose 

abscissa is the required Es/N 

factor N(dfree)) equal to 

setting Ro = b/k for each case at hand. 

Superimposed on these curves are 

to achieve the upper bound on Pe (ignoring the 

The ordinate of these points is obtained by 
0 

4. Conclusion 

Multiple trellis coding, wherein more than one channel symbol per 

trellis branch is transmitted, has been shown to yield a performance gain with 

symmetric signal sets comparable to that previously achieved only with signal 

constellation asymmetry. 

conventional trellis coded asymmetric modulation technique is that the 

potential for code catastrophe associated with the latter has been eliminated 

with no additional cost in complexity (as measured by the number of states in 

the trellis diagram). While indeed additional computations per branch are 

needed for the multiple trellis coding scheme, this is thought to be a small 

price to be paid for the relatively large performance gains achievable. 

The advantage of multiple trellis coding over the 

Also, extension to higher dimensional modulations such as 

quadrature amplitude modulation ( Q A M )  is obvious from the results of [I] and 
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[SI. 

would be regarded as the coordinates of a QAM symbol. 

In particular, each pair of M-AM symbols per branch (assuming k is even) 
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Table 1. Minimum Squared Free Distance Performance of Multiple 
Trellis Coded MPSK - 2 States. 

Performance Gain Relative Performance Gain Relative 
G r e e  n k to Conventional TCM (k=l) to Uncoded 2"-PSK 

6.0 

8.0 

2.586 

3.172 

3.757 

4.0 

0.738 

0.8903 

1.0425 

1.172 

1 

1 

2 

2 

2 

2 

3 

3 

3 

3 

1 

2 

1 

2 

3 

4 

1 

2 

3 

4 

0.0 dB 

1.25 

0.0 

0.887 

1.623 

1.895 

0.0 

0.814 

1.50 

2.01 

1.76 dB 

3.01 

1.116 

2.003 

2.739 

3.01 

1.00 

1.814 

2.50 

3.01 



Table 2. Minimum Squared Free Distance Performance of Multiple 
Trellis Coded M-AM - 2 States. 

Performance Gain Relative Performance Gain Relative 
n k to Conventional TCM (k=l) to Uncoded 2"-AM G r e e  

4.0 

4.8 

5.6 

6.4 

20121 

24/21 

28/21 

32/21 

20185 

24/85 

28/85 

I 32/55 

1 

1 

1 

1 

2 

2 

2 

2 

3 

3 

3 

a a 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

0.0 dB 

0.792 

1.461 

2.041 

0.0 

0.792 

1.461 

2.041 

0.0 

0.792 

1.461 

2.041 

0.0 dB 

0.792 

1.461 

2.041 

0.757 

1.549 

2.218 

2.798 

0.918 

1.71 

2.379 

2-95? 
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52 

0 
53 

s1 

ASYMMETRIC 4-PSK 

Figure la. Trellis Diagram for Conventional Rate 1/2 Trellis Coded QPSK. 

Figure lb. Trellis Diagram for Rate 1/2 Multiple Trellis Coded QPSK; k=2. 
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Figure 2. Trellis Diagram for Conventional Rate 1/2 Trellis Coded 4-AM. 
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Figure 4a. 2-State Multiple Trellis Diagram for Rate 2/3 Coded 8-PSK and 8-AM; k=2. 
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Figure 4b. 2-State Multiple Trellis Diagram for Rate 2/3 Coded 8-PSK and 8-AM; k=3. 
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Figure 5. Transmitter 
( 2  States); 

Implementation for Rate 1 / 2  Multiple Trellis Coded 4-AM 
k=2 .  

Figure 6. Transmitter Implementation for Rate 112 Multiple Trellis Coded QPSK 
(2  States); k=2. 
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Figure 7. State Diagram for Rate 1/2 Multiple (k=2) Trellis Coded QPSK. 
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Figure 8. Pair-State Diagram Corresponding to Figure 7. 
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Figure 9. A Comparison of the Performance of Several Rate 1/2 Trellis Coded 
QPSK Modulations. 
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Figure 10. Generalized MTCM Transmitter. 
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Figure 11. Symmetric 8PSK Signal Set. 
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Figure 13. 16-State T r e l l i s  for  Example 1 .  
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Figure 17. Comparison of Computational Cutoff Rate of MPSK with 
Throughput Performance of Trellis Coded MPSK 
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