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ABSTRACT

The SCARE (Structural Ceramics Analysis and Reli-
ability Evaluation) computer program on statistical
fast fracture reliability analysis with quadratic ele-
ments for volume distributed imperfections is enhanced
to include the use of linear finite elements and the
capability of designing against concurrent surface flaw
induced ceramic component failure. The SCARE code is
presently coupled as a postprocessor to the MSC/NASTRAN
general purpose, finite element analysis program. The
improved version now includes the Weibull and Batdorf
statistical failure theories for both surface and vol-
ume flaw based reliability analysis. The program uses
the two-parameter Weibull fracture strength cumulative
failure probability distribution model with the prin-
cipie of independent action for polyaxial stress
states, and Batdorf's shear-sensitive as well as shear-
insensitive statistical theories. The shear-sensitive
surface crack configurations include the Griffith crack
and Griffith notch geometries, using the total critical
coplanar strain energy release rate criterion to pre-
dict mixed-mode fracture. Weibull material parameters
based on both surface and volume flaw induced fracture
can also be calculated from modulus of rupture bar
tests, using the least squares method with known speci-
men geometry and grouped fracture data. The surface
flaw reliability prediction uses MSC/NASTRAN stress,
temperature, and external boundary area output,
obtained from the use of linear or quadratic shell and
three-dimensional isoparametric finite elements. The
statistical fast fracture theories for surface flaw
induced failure, along with selected input and output
formats and options, are summarized. An example prob-
lem to demonstrate various features of the program is
included.

INTRODUCTION

Brittle structures characteristically exhibit a
large variation in fracture stress which must be taken
into account in design. This variation in observed
strength of nominally identical components is due to
the presence of invisible material imperfections.

These imperfections are assumed to have a distribution
in strength and the structure is assumed to fail when
the strength of the weakest flaw or link is exceeded.
Structural ceramics are known to contain at least two
concurrent types of material imperfections or flaw
populations. One type of unavoidable flaws arise from
material processing, which are usually restricted to
the interior of the structure and are referred to as
volume or intrinsic flaws. Another flaw population
with distinctly different structural response exists
on the surface of a ceramic component. These external
surface or extrinsic flaws can arise from qrinding or
other finishing operations, or maybe the result of
environmental factors or of the intrinsic porosity
intersecting the external surface. Statistical fast
fracture models, based on weakest link theories (WLT)
of Weibull, have been previously developed for both
types of flaw populations (Weibull, 1939; Rufin et al.,
1984; Wertz and Heitman, 1980; Batdorf, 1978; Johnson,
1983). Recently, a public domain general nurpose
reliability code called SCARE has been generated
(Gyekenyesi, 1986) to predict the fast fracture
response of ceramic structures due to volume distrib-
uted flaws. It is the purpose of this paper to
describe enhancements to the SCARE program which will
allow reliability analysis with linear or quadratic
elements of ceramic components due to the presence of
a concurrent surface distributed flaw population.
Consequently, fracture caused by either internal or
external flaws can then be accounted for in the design
process.

The first probabilistic method used to account for
the scatter in fracture strength of brittle materials
was introduced by Weibull (1939). His model was hased
on the weakest link theory and required certain statis-
tical parameters to phenomenologically describe the
failure response of a material. These statistical
parameters were usually determined from uniaxially
loaded, simple geometry specimens. To predict mate-
rial behavior in other stress states using statistical
parameters from uniaxial tests, Weibull proposed calcu-
lating the risk of rupture by averaging the tensile
normal stress in all directions. Since this approach
is arbitrary and requires numerical modeling, other




approaches were subsequently introduced. The most
widely used of these is the principle of independent
action (PIA)} model, which is based on the assumption
that the principal stresses act independently. The PIA
fracture theory is the statistical version of the maxi-
mum stress failure theory, which was widely used in
early metallic structure design. Most ceramic compo-
nents in the government sponsored advanced gas turbine
(AGT) programs used either or both of the above
described polyaxial statistical failure models. Both
of these fracture theories, however, can lead to unsafe
estimates of failure (Gyekenyesi, 1986) since they both
neglect the shear force, and in case of the PIA hypoth-
esis, the effects of combined principal stresses.

In order to introduce a mechanistic fracture cri-
terion into a statistically based analysis model to
more accurately predict the nnset of catastrophic crack
propagation, Batdorf developed a new theory which also
applies to brittle materials in which the cracks are
confined to the surface (Batdorf, 1973; Batdorf and
Heinisch, 1978). He assumed that the cracks are ran-
domly oriented, that they are perpendicular to the
boundary and that they do not interact. The sizes of
the cracks are not explicitly treated and fracture
occurs when the remote macroscopic stress normal to the
crack plane exceeds some critical stress, ocp, Charac-
terizing that particular crack. Since the cracks are
assumed normal to the surface, crack orientation is
given by a single angular measure rather than two, as
in the case of volume distributed flaws. This simpli-
fication is not always invoked (Shetty et al., 1984),
although there is strong experimental evidence that it
is justified (Batdorf, 1973).

In adding the influence of shear loading on the
crack face, the external flaws are currently modeled
as Griffith cracks and Griffith notches. Unlike with
internal flaw analysis in SCARE, only the total criti-
cal coplanar strain energy release rate, G-, criterion
is used to predict mixed-mode fracture {Samos, 1982),
and the maximum tensile stress criterion, as described
by Batdorf and Heinisch (1978), is not implemented for
surface cracks in the program. It has also been con-
cluded (Batdorf and Heinisch, 1978} that the Griffith
crack is not an appropriate model of a typical surface
imperfection, and is included here mainly for histori-
cal and for academic reasons.

Surface flaw based reliability analysis has been
implemented in both the SCARE1l and SCARE2 versions of
the postprocessor program (Gyekenyesi, 1986). SCAREl
uses only elemental centroidal principal stresses to
calculate reliability. In the SCAREZ2 version of the
code, all linear or quadratic QUAD8 shell elements are
further discretized into 9 subelements, which are then
used with interpolated principal stresses to perform
all analysis. In order to identify external bound-
aries, calculate their surface areas and obtain corre-
sponding surface stress states, appropriate MSC/NASTRAN
shell elements of negligible stiffness are used,
together with the previously selected three-dimensional
HEXA and PENTA elements. The selective use of shell
elements permits the identification of only those
external areas which contain potentially failure-
causing flaws, and it can ignore boundaries from which
fracture is not likely, such as finite element model
symmetry planes or compressively loaded external
surfaces.

PROGRAM CAPABILITY AND DESCRIPTION
The architecture and basic computational elements

of the postprocessor program are described by
Gyekenyesi (1986). Figure 1 shows the flowchart for

the new surface flaw SCAREZ reliability analysis code,
which is designed to be identical in its sequence of
calculations to the previously developed volume flaw
analysis. For computational efficiency, all experi-
mental fracture stresses as well as all elemental
principal stresses are normalized. When using the
Weibull scale parameter, oq, as the normalizing
factor, it is important to note that different values
of o, are generally used in the volume and surface
flaw calculations. For efficient transfer of
MSC/NASTRAN output data to SCARE, FORTRAN logical units
3, 4, and 7 are used. Input to SCARE is handled
through logical units 3, 5, and 7 while the outout is
stored on unit 1.

Presently, the program permits use of several
fracture criteria, crack configurations, and tempera-
ture dependent statistical material parameters. Uni-
axial, surface flaw induced, fracture data along with
specimen geometry from four-point bend tests can be
used to calculate Weibull parameters and the Batdorf
flaw density coefficient. Fiqure 2 contains the avail-
able options in fracture criteria and flaw confiqura-
tions used to model surface imperfections., Note that
two of the failure criteria are for shear-insensitive
cracks, even in multidimensional stress states. The
other two are used for the shear-sensitive models,
where the mechanistic G; fracture criterion is
employed to predict component reliability. Among the
available criteria and crack configurations shown in
Fig. 2, the Griffith notch with the G. criterion
has the highest shear-sensitivity and hence, the high-
est failure probability for a given structure, while
the PIA approach yields consistently the lowest failure
estimate. It should also be noted that the Batdorf
shear-insensitive fracture model is conceptually iden-
tical to the originally proposed Weibull normal stress
averaging method, although it has been recognized early
that, when using this method, an amplification factor
is required to accentuate the materials sensitivity to
surface defects (Paluszny and Wu, 1977). No such fac-
tors, however, are used in the current version of the
SCARE code.

In selecting thin shell elements to determine
surface stress states, the existence of only two sur-
face princinal stresses is intrinsic to the analysis.
In order to use WLT, any compressive elemental princi-
pal stress is not permitted to exceed three times the
tensile principal stress in ahsolute value. Otherwise,
compressive stress state predominates and the corre-
sponding reliability is set equal to unity. Just like
in uniaxial compressive loading, when using the PIA
model with Weibull statistics, fracture due to com-
pression is inadmissible.

INPUT INFORMATION

The SCARE computer program reguires output from
MSC/NASTRAN elastostatic analysis to determine compo-
nent fast fracture reliability. Gyekenyesi (1986)
discusses some of the available rigid format solution
sequence options and also how the NASTRAN and SCARE
programs interface on the Lewis laboratory computer
system. The surface flaw analysis capability uses only
HEXA, PENTA, QUAD8, and TRIA6 MSC/NASTRAN library ele-
ments, and modeling with axisymmetric elements is not
permitted for external flaw reliability predictions.
This restriction is due to NASTRAN finite element prop-
erties which rule out mixing of axisymmetric elements
with any other element type in a qiven mesh. Only the
HEXA and PENTA isoparametric elements should contribute
to structural stiffness and the planar shell elements
should have neqligible thickness, t, specified in
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NASTRAN (t = 106 in. for the rotating disk example

in this paper). In addition to the previously listed
reasons for using shell elements, modeling a ceramic
structure with them will also avoid the need for ele-
mental stress transformations when calculating required
surface principal siresses. Fur avaiiabie siress
recovery options, users should consult the appropriate
analysis code manuals. With today's automatic mesh
generation programs, little difficulty will be encoun-
tered in adding the required external elements. A
solid element face is identified as an external sur-
face when its nodes are shared by a shell element. The
midside nodes may or may not be present, but current
capability requires that either they are all there con-
sistently, or they are all absent. Mixing of linear or
quadratic elements in a given finite element mesh is
not permitted. When using shell elements, only the
membrane properties should be invoked and the uncoupled
bending stiffness should not be included in the model.

SCARE input requirements for external flaw analy-
sis are almost identical to the input data for internal
flaw analysis, which has been previously summarized
(Gyekenyesi, 1986). The postprocessor program is cap-
able of doing the volume and surface flaw analysis in
one execution. However, only the surface distributed
crack capability will be described in this paper. As
before, program input can be grouped into three cate-
gories. -The first category, shown in Fiq. 3, is called
the master control deck, which includes organization of
control indices for fracture criteria, finite element
model requirements, and material parameter format.

Note that for calculating statistical parameters, data
only from four-point bend test can currently be used.
In addition, two-lines or cards of data entry are now
required rather than one as in the previous volume flaw
analysis. The fracture criteria and flaw shapes for
representing volume and surface imperfections can be
independently specified, and users can select to per-
form analysis for volume flaw based fracture only, for
surface flaw based fracture only, or for both simul-
taneously in one execution. Details on included
options and Timitations can be found in the program
user's manual.

The second category, called the specimen deck,
uses fracture specimen data required in calculating
statistical fracture parameters, or direct input of
material properties including Poisson's ratio, These
material parameters are generally temperature depend-
ent. Therefore, provision is made for input of multi-
ple fiaw populations at different temperatures. Unless
material parameters are directly read, this section
requires four-point bend bar geometry and surface flaw
based failure stresses of the sample population. These
extreme fiber failure stresses must be arranged in
ascending order and currently up to 200 specimens can
be used for a given temperatire. The specimen deck
also requires test temperatures, arranged in ascending
order for multiple temperatures, since calculated mate-
rial parameters are interpolated within SCARE, At a
specified temperature, fracture stresses must be unique
and multiple values of identical magnitudes are not
permitted. The number of available fracture readings
for all temperature tests must be the same. Additional
explanation of the required input, including size limi-
tations, can be found in the user's manual.

The last SCARE input category, called the struc-
tures deck, contains results of the finite element
structural analysis required for failure probability
predictions. These include solid element volumes,
shell element areas, nodal temperatures (MSC/NASTRAN
does not permit access to element temperatures), ele-

mental principal stresses and corresponding element
identification numbers. In the present version of
SCARE, which relies on MSC/NASTRAN output files, all
of this data is internally manipulated through sub-
routine ELEM, and the structures deck requires no

specitic input by the uscr.
QUTPUT INFORMATION

Grid point temperatures in a finite element mesh
of a selected component can be obtained at transient
or steady state conditions from performing MSC/NASTRAN
thermal analysis. Combining the resulting thermal
loads with additional mechanical loads, the displace-
ment and elastic stress fields can then be calculated.
For surface flaw based fracture analysis, shell element
stresses, areas and temperatures are the required out-
put from the analysis code. For available output
options, users should consult the appropriate program
manuals. The shell element stresses as well as the
nodal temperatures from MSC/NASTRAN are stored in
specified punch files, while surface element areas are
listed in the program output file. Consequently,
NASTRAN's punch option must be invoked to store the
required stress and temperature data with the program's
parameter call feature needed to calculate the required
elemental areas.

The first part of all SCARE output data contains
an echo of important NASTRAN finite element analysis
results. Identifying labels, element type, and number
of elements in the model are noted. Since in a large
finite element mesh the stress output could be exces-
sive, printed element stress tables in the new version
of SCARE are optional as shown in Fig. 3. In addition,
two new element cross-reference tables are printed.

The first table 1ists the shell element number and
gives the corresponding solid element with which its
grid points are shared. The second table lists the
solid element identification number and gives up to six
associated shell elements (a HEXA element could have
all of its six faces as an external surface). Element
areas and temperatures (nodal averaged) are summarized
in the following table. Next the selected fracture
model is jdentified and the room temperature statisti-
cal fracture parameters are shown. Additionally, a
table of discrete input temperatures with corresponding
material parameters, which were either internally cal-
culated or directly supplied, is printed. For the
shear-sensitive fracture models, the crack shape is
identified along with a more specific description of
the fracture criterion. The last table in the SCARE
output file contains an element results summary, list-
ing the shell element number, corresponding element
survival and failure probabilities, and interpolated
(based on temperature) element material parameters.
Finally, the overall component probability of failure
as well as the component probability of survival are
printed.

THEORY

The most widely used mathematical models describ-
ing the statistical nature of fracture in brittle mate-
rials have been previously summarized by Gyekenyesi
(1986). It is generally recognized that the weakest
link hypothesis and the two-parameter Weibull cumula-
tive strength distribution are appropriate to modeling
surface flaw induced failure in ceramic structures.
Consequently, the uniaxial fracture data is approxi-
mated by
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where the subscript s denotes parameters associated
with the surface, Pgg is the cumulative failure
probability, o5g 15 the scale parameter with

1/m
dimensions of stress x {area) s’ me is the Weibull
modulus which measures the degree of variability, o¢
is the applied surface tensile stress, and A the
stressed area. The scale parameter is often called
the unit area characteristic strength, and as mq
increases it approaches the material's ultimate
strength. The selectively used Weibull threshold
stress parameter, o,q, is taken to be zero in Eq. (1)
and is not shown therein.

In the analysis of failure of brittle materials
subject to multiaxial stress states, the Weibull model,
when combined with the PIA hypothesis, yields

o mS g mS
Pee=l-em|-[|[2) +(& al (@)
A %s %s

where o]g and opg are the principal in-plane
stresses acting on the surface of the structure.
Equation (2) has been widely used in the past to esti-
mate failure probabilities of ceramic components (Wertz
and Heitman, 1980). The failure probability using the
normal stress averaging method, as extended to surface
distributed flaw problems, can be calculated from

m
S
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where kyne is the polyaxial Weibull crack density
coefficient for surface flaws. This constant can be
obtained by making the result of integrating Eq. (3),
using the normal stress o,g distribution on an
arbitrary plane, obtained from the reduced, plane-
stress Cauchy infinitesimal tetrahedron in principal
stress space as shown in Fig. 4, for uniaxial stress
cases, agree with the results obtained from the uni-
axial, two-parameter Weibull equation. Unlike for
volume flaw based analysis where closed form integra-
tion is possible, the polyaxial Weibull surface crack
density coefficient must be evaluated numerically. The
contour integration is performed on the circumference
of the unit circle C where the normal stress is
tensile and neglecting regions where the normal stress
is compressive. The crack-like ftaws can then be
regarded as located in these arbitrary planes which are
tangent to the unit circle and are acted upon by ong
which is induced by the principal stresses o1g and
09g. Since Eq. (3) is just the shear-insensitive

case of the more general Batdorf polyaxial stress frac-
ture model, its SCARE implementation follows a somewhat
different format. The polyaxial Weibull equation has
also been selectively used in the past (Paluszny and
Wu, 1977), but since it neglects the effects of shear
loads, it also underestimates failure for the more
general loading condition. These unconservative pre-
dictions have been recognized early in ceramic struc-
tures and the use of amplification factors was proposed
to better correlate predictions with measurements.

In the previously described two multidimensional
stress fracture models, no mechanistic fracture crite-
rion was needed to predict impending failure. In prior
work by Batdorf (1973), Batdorf and Heinisch {1978),
Shetty et al., (1984), and Samos (1982), attention is
focused on cracks and their failure under stress.
Since there is yet no consensus regarding how to treat
mixed-mode fracture, even in metallic structures, the
SCARE program includes several fracture criteria and
flaw shapes. These criteria and flaw confiqurations
include those traditionally treated, although recent
research in ceramic fracture emphasizes more advanced
fracture criteria and better modeling of flaw shapes
(Petrovic, 1985).

Consider now a small uniformly stressed material
element of area AA. The probability of failure
under an applied state of stress can be written as

Pfs = P1g Pos (4)

where P1g 1is the probability of existence in aA

of a crack having a critical stress in the range of
agcy to ocp + dogp, and Pog  denotes the probability
that a crack of critical stress o, will be ori-
ented in a direction such that an eFfect1ve stress aogg
equals or exceeds aep. ocp 1is defined as the )
remote, uniaxial, normal fracture stress of a given
crack. Failure will occur when the effective stress (a
function of chosen crack confiquration and fracture
criterion) exceeds oc, for a particular crack. Pyq
has the form

dN

S
= M — do (5)
1s d°cr cr

P

and

Pos = % (6)

where N¢(ocy) is the surface crack density function
(the dens1ty of cracks having a critical stress <°cr)
and o s the angle in principal stress space contain-
ing all the crack orientations for which ocr
Using the weakest link theory, the overall $a1Th
probability can be calculated from (Samos, 1982)

= 1-exp J I du do.. (7)

The surface crack density function Ng (ocp) is a
material property which is expected to be of Weibulil
form since it is directly the cause of the observed
Weibull strength distribution. However, for values
of mg >> 1.0, and assuming that large number of

cracks are sampled, that is ocp << gpgA 1’"%, the

Weibull distribution can be approximated by a power
function, leading to

m
Ng (“cr) kBs cr (8)

The surface flaw distribution parameters kpg and
me can be evaluated from experimental data using
uniaxial specimens and an appropriate fracture crite-
rion. Since cracks in a real material are assumed to
have an equal 1ikelihood of orientation, and it is




believed that there are so many cracks present that
there is always one crack with the least-favorable ori-
entation and that crack growth from this flaw causes
failure, mode I fracture is intrinsic to uniaxial load-
ing and the cr1t1ca1 norma] stress fracture criterion
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However, finishing operations sach as grinding and
environmenta] damage from erosion or oxidation may lead
to anisotropic surface conditions, which then must be
carefully accounted for in material characterization.

it is important to note that the use of various
mixed-mode fracture criteria to evaluate kgg from
uniaxially loaded specimens will result in different
corresponding values of this flaw density parameter,
from which it follows that the component reliability
predictions will also change (Shetty et al., 1984). In
fact the use of an identical mixed-mode fracture crite-
rion to evaluate kgg from MOR bars first, and then
subsequently calcu]ate multiaxially loaded component
reliability with it will result in contradictory
trends, where with increased shear-sensitivity, compo-
nent failure rate predictions will decrease. In the
present version of SCARE, failure rate predictions
increase with increasing shear-sensitivity, which
follows from always assuming mode I fracture in uni-
axial tests. Limited experimental data with monolithic
ceramics {Samos, 1982) tend to validate the present
approach, and the need for more pessimistic failure
predictions than those obtained from the early phenom-
enological models is evident from component test
records.

The statistical analysis of fracture is greatly
simplified by assuming that cracks are shear-
insensitive., For this case fracture occurs when
0eg = opg > ocy and there is no need to specify the
crack shape or the materials Poisson's ratio. The
effective stress just equals the normal stress acting
on the crack plane.

When cracks are shear-sensitive, equations for
oes Using various fracture criteria can be derived by
equating selected parameters, induced by a uniaxial
normal stress acting on a specified crack shape, to the
selected parameters calculated for the mixed-mode or
multiaxially loaded identical crack confiquration.
Some of the most widely used parameters to predict
impending failure include the total coplanar strain
energy release rate or crack extension force G,
the maximum strain energy release rate Gp,y, the
minimum strain enerqgy density S., the normal stress
gpgs and the maximum tangential or hoop stress og4.
The Gpaxs Scs and ogy fracture parameters predict
out-of-plane crack extension, and consequently, are
believed to be the most accurate for mixed-mode crack
propagation. 1In any event, for polyaxial stress
states, the effective stress ges is a function of
both ¢, and 1 where =g 1s the shear stress
in the crack plane. Both o, and 1, acting on a
plane whose normal and the maximum principal stress
direction form an angle a, can be calculated from con-
sidering the equilibrium of forces in Fiq. 4. Summing
forces in the normal and tangentical directions gives,
respectively

2 .2
= + 0, 51N
Uns OlsCOS a 2s a

_ (9)
TS = (015 - cZS)COS a SIn a
Using the G. criterion and the two selected crack

conf1gurat1ons, the effective stress equations obtained
are (Samos, 1982)
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(Griffith crack)

(10)
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where v is Poisson's ratio and Sg 1is the out-of-
plane shear stress since tg does not cause crack
growth in a Griffith notch. In general, the total
coplanar strain energy release rate can be expressed in
terms of stress intensity factors, summing damage in
all appropriate crack growth modes. From equality of
cross-shears, Sg = v and Eq. (9) can be used

to evaluate o, for both cracks.

The angle w depends on the fracture criterion
selected, the assumed crack configuration and on the
applied stress state. Closed form expressions for o
can be derived for some fracture criteria in uniaxial
and equibiaxial stress states (Samos, 1982). Assuming
a uniaxial stress s = 0g, and the normal stress
(shear-insensitive) }racture criterion, we obtain from

(5 Y
— 3 1 (Griffith nateh)
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Eq. (9) at ops = ocps @ = agp, ANd @ = 2a¢, that
a
8 2 oslg/C0 (11)
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Note that when a shear-sensitive fracture criterion is
used, the crack shape must also be specified. In
general, for two-dimensional stress states, » must be
determined numerically. Using the shear-insensitive
case as an example, we obtain at fracture

= = = 2
9es = Ons = der = Ols COSTacy

+ 02s Sinzdcr (12)

If we define K = o9g /c} and we note that
acp = w/2, Eq. (12) yie 33

("c_r)_ K Lz
a
Py, =2 =2 ot [N (13)

2s I - K

In order to avoid singular conditions (o15 = o02¢)
in Eq. (13), the following constraints must be imposed
in calculating Ppg:

if (oeplfo1g - K)/{1-K) < 0.0 then o
if (f’cr/"ls - K)/{(1-K)} > 1.0 then

(]
E)

"
[=]

w=n if 91s 2 %y

if K=1.0 then {

=0 if o, <
9 1s < %r

A similar procedure can be followed for the shear-
sensitive Griffith crack using both of Eq. (9) in
Eq. (10). However, for the Griffith notgh it is compu-
tationally convenient to define ¢ = cos®acp, SO that
the fracture condition oag 2 0¢p can be written
as (Samos, 1982)

CIQZ + C2¢ + C3 = 0 (14)



Solving for ¢ gives

‘f 2
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where
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cp=(1-K (1 - T_?_G>

¢y = (1K) [2K+ (1 - K% 795] (16)
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From Eq. (15), acr = cos~l4fs. Consequently,

2 1/2
2 2 1|2 * ¥ o4 (17)
7 %r % 2cy
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Following an analogous procedure to the above in using
fracture criteria and flaw shapes, similar expressions
for Ppc in terms of principal stresses and ocp can
be developed. Results of this analysis are summarized
in Table I and details are given by Samos (1982). In
addition, special stress states such as the equibiaxial
loading case where K = 1.0 and when £Eq. (17) becomes
singular, are treated.

The equations in Table I apply only when opg is
tensile. When a compressive normal stress state
exists, the angle where the normal stress changes from
tensile to compressive is calculated. This transition
angle divides all possible crack orientations into a
tensile normal stress region and a compressive normal
stress region, where each region has a different effec~
tive stress equation. In the compressive stress region
ops 15 set equal to zero, and with friction between
crack faces ignored, opq 1is a function of only the
applied shear load. In each region, the anqle at which

s = ogr s calculated. This angle further divides
tﬁe reglon into areas where oag > ocp  aNd opg < oy
If there is no such angle within The given region, then
either there is no contribution to w from that region
or the entire region is included. A calculation com-
paring egg to ocp for a selected angle «
identifies which subregion, or whether the whole
region, contributes to w. After determining each o
from the tensile and compressive regions separately,
the total angle w s simply the sum of the two
contributions.

An alternate approach to calculating Py has
also been previously developed, where the ang?e a is
incremented over the unit circle, and at each discrete
point the contribution of apg or oog is summed
depending on whether they are equal or greater than
ocr. Since oy 1S always positive, compressive
opg Or ogeg Will never contribute to fracture.

The same method can also be used in volume flaw based
failure analysis, where two angles must be incremented
so that the stresses are checked at all points on the
unit sphere. This procedure, when compared to the
previous method used to calculate Ppg, is computa-
tionally much more intensive. Consequently, SCARE
employs the more efficient approach and the eguations
summarized in Table 1 are coded to calculate critical
crack orientations.

In the SCARE program the required integration is
performed by using Gaussian auadratures. Employing the
power function form of Ns(acr) and the appropriate

equation for Poc in Eq. (7), the failure probabil-
ity using the Baidorf approach for surface flaws can bhe
calculated. Unltike for volume flaw analysis where a
double numerical integration is generally required,
surface flaw analysis uses only a single integration
for the critical stress. Assuming that the stress
state is constant in any given shell element (SCAREl
version) or subelement (SCARE2 version), the area inte-
gration over the material surface becomes trivial. For
component reliability analysis, the elemental survival
probabilities are summed according to established prob-
ability axioms, that is, we evaluate the product of alil
the individual, constant stress state elemental reli-
abilities. For two mutually exclusive events, such as
the calculation of Pgg and Pgg, it is well known
that for a given area increment their sum is always
unity, where Pgo denotes surface survival proba-
bility. Finally, if a component includes

two concurrent modes of possible failure, such as due
to simultaneous internal or external flaws, its total
reliability can be determined from the product of its
individual cause reliabilities.

MATERTAL STRENGTH CHARACTERIZATION

Uniaxial ceramic strength data is usually obtained
from flexure testing simple geometry specimens, and
recording the extreme fiber tensile stress in the most
highly loaded area at fracture. The Weibull parameters
ogg and mg as well as the Batdorf flaw density
paramenter k are evaluated in SCARE using four-
point MOR data with known genmetry, Fracture is some-
times assumed to always occur between the symmetrically
placed inner loads on the tensile side (Samos, 1982),
but in SCARE an effective area is used which permits
failure in any tensile loaded areal element of the bar
(Govila, 1983). It should be noted that for uniaxial
tensile loading the effective area A, reduces to
A, the specimen gauge surface area. In all other types
of loading, Ay s a function of specimen geometry
and material Weibull modulus. If we express the uni-
axial flexure failure probability in terms of the maxi-
mum extreme fiber fracture stress of or MOR using
Weibull form, that is

Mg
Pfs =1-exp]|- CScf (18)

then after evaluating Cg and mg by the least-
squares method, Yos and kgg can be calculated.
Using the effective area for a rectangular beam in
four-point bending (Govila, 1983)

L
2
('[T) mo* 1 (msw
A =

+ 2L, (h +w)  (19)
e 2(m5+1)2 W+ h ) 1 W

where Ly is the length between the outer Toads, Ly
is the length between the inner loads, w is the beam
width, and h s the beam height, we can rewrite

Eq. (1) as
Uf ms
Pec=1-exp |- Ae(GOS> (20)

Comparing Eqs. {18) and (20) where in both egquations
the maximum extreme fiber stress is used as the refer-
ence value, we conclude that for the same failure
probability,
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In addition to determining o455 and mg, the
SCARF nrnnram reanires knowledge of kp-. Assuming
shear-insensitive fracture, Eg. (11) can be
substituted into Eq. (7) to obtain

g
cr dN
=exp| - de (22)
ss f f °1s d°cr cr

Taking the natural log of Eq.
parts yields

(22) and integrating by

s
A N, (o))
e s ‘er
In PSS = - o—_——-dc (23)
v crvols %r
0
where A, is given by Eq. (19) (A, = wLp) for the

four-point bend specimen. Equation (23) is an Abel
integral equation with the solution (Batdorf and
Chang, 1977)

! N T 2‘/__-:,‘ dol

1n Peg (oy )] (28)
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From Eq. (18) with

o1s = 9f as the reference
stress
d2 mS-Z
P [ln Pss (°1s)] = (mg = 1) |- Coopg (25)
1s

Introducing a new variable n defined as
n = (20 % slocy) - 1 and substituting Eq. (25) into

. (24), we obtain
3/2-m 1
? S oy s

Ng (ogp) o l’sms(ms - Loy

m -2
x (1+a)° (1- n)llz dn  (26)

..ms
. (21) CS = AEGOS

can be eliminated from Eq.

Now from Eq
and Ae

, and consequently CS

rs ~\ n
\%o; and Tos

. . 3
used instead. Since Ns(acr) = kBS Ops kBS can be
evaluated by numerically integrating Eq. (26) using

Gaussian quadratures. Since ogg is used, the
effective area given by Eq. (193 1s 1nherent in
It is interesting to note that N can be deter-

mined more easily from equibiax1a? tens11e tests since

for 0ls = 02g = opg = O, w/m = 1.0 and
C m m
1 S S S
Ng (o) = - K;; In P = ——E = *gs %r (27)
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where Agp is the effective equibiaxially loaded
tensile area and the equibiaxial! failure rate is
assumed to also follow Eq. (18). When using the least
squares method with Eq. (18) to evaluate Cg and

mg, Pgg can be determined from ranked fracture stress
data using the simple equation

Pes (°js) = N_%"T (28)

where N is the total number of uniaxial or equibi-
axial tests and j is the rank of the surface fracture
stress ogjs.

EXAMPLE

In order to test the surface crack distributed
reliability analysis in SCARE, several example problems
were analyzed from the open literature. In addition,
the rotationally loaded, silicon nitride annular disk
(Gyekenyesi, 1986) was reanalyzed assuming that frac-
tures in the MOR bars as well as the disks were caused
by surface flaws. The Weibull modulus mg was set
equal to m = 7.65 as before, but the previously used,
volume flaw based scale parameter ¢y, was readjusted
so that Pg = Pgg in the MOR bars, when both are
loaded in uniform tension. As a result of this
requirement, we obtain for the four-point bend speci-
men that,

1/m 2(msw +w+*h) 1/ms
%s TV % |7 —wh % (29)
e

From Gyekenyesi 61986; = 74,82 MPa m0.3922
(45,800 psi in. ) and the “"A-size" test bars had
dimensions of w = 0.635 c¢m (0.25 in.), h = 0.3175 cm
(0.125 in.), L1 = 1.905 cm (0.75 in.) and

Lp = 0.9525 cm (0.375 in.). A, is given by Eg. (19)

and Vo is the effective volume in four-point bending,
that is
L Ly *msbp (30)
e "7 |7 L \2
(m + 1)

Using the given dats 12 (29), we obtain ﬁat

oqs = 232.0 MPam (87,891 psi in, 0-2614) ° The
dimensions of the disk are given in Fig. 5, and the
same MSC/NASTRAN analysis was performed as for volume
flaws with the exception that shell elements were
added to identify external surfaces, to calculate
their areas and to identify appropriate surface stress
states. Reliability calculations were made at various
speeds using several surface crack fracture models.
Selected results from these analyses are shown in

Fig. 5 and Table II. For a given speed, failure prob-
abilities are considerably less than those obtained by
Gyekenyesi (1986) for all fracture models, indicating
that failure was most likely due to volume flaws as
originally concluded. Obviously, the main reason for
the greatly decreased failure estimates is the much
higher equivalent surface Weibull scale parameter
Results for the shear-sensitive Griffith crack and
notch were practically identical, with the notch being
slightly more shear-sensitive as expected. The impor-
tance of post-mortem fractography to identify the
nature of the fracture causing flaws is evident from
the two widely different set of answers obtained for
the same problem. Furthermore, the difference between
predictions from various available surface crack frac-
ture theories for a specified loading is considerably

Goge




Jess than the difference found in volume flaw based
failurc models.

In addition to comparing surface and volume flaw
based analyses for the same ceramic structure, failure
probability was calculated for a transversely loaded
circular alumina disk and compared to data obtained by
Brockenbrough et al. (1985). This data consisted of
calculated failure probabilities obtained from using
Batdorf's shear-insenitive fracture theory in conjunc-
tion with the finite element analysis code ANSYS. The
selected disk had an outside radius rgy = 25 mm
(0.984 in.), a thickness of t = 2.5 mm (0.098 in.},
was loaded by a circular line Yoad at r = 1.5 mm
(0.059 in.) and was simply supported at a radius of
22 mm (0.866 in.). After matching the stress solu-
tions for a given load from the two different finite
element codes (MSC/NASTRAN and ANSYS), the failure
probabilities were calculated at various loads.
Typically, to obtain a Pfg = 0.50, SCARE2 predicted
a total line load of 1105 N (248.3 1b), while accord-
ing to Brockenbrough et al. (1985) (corrected version)
a line load of approximately 1130 N (253.9 1b) had to
be applied, showing good agreement between the two load
oredictions.

CONCLUSTONS

The general purpose, statistical, fast fracture
failure probability code SCARE has been enhanced to
include the possibility of failure due to two con-
current but not interacting flaw populations. In addi-
tion, reliability analysis with linear finite elements
is now also possible. The program includes a number
of widely used polyaxial fracture models, appropriate
extreme value statistics and the ability to calculate
material failure distribution parameters for both vol-
ume and surface distributed flaws. Current work
includes the planned addition of more advanced increas-
ingly shear-sensitive failure criteria which permit
out-of-plane crack extension for both types of imper-
fections. In addition, the influence of bimodal flaw
populations on individual material parameters, through
censored data analysis, needs to be determined.
Finally, the problem of a transversely loaded circular
plate will be anewly studied to resolve some of the
contradictory trends reported by Rufin et al. (1984)
and Shetty et al. (1984).
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TABLE I. - FORMS OF P, FOR VARIOUS SHEAR-SENSITIVE FRACTURE CRITERIA
AND SELECTED SURFACE CRACK CONFIGURATIONS (uns IS TENSILE)

Fracture Crack O
criterion configuration P2 where K = —=
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cpps 1/2
Coplanar Griffith crack L 2 2
strain energy (6.C.) K
release rate o2 1{\Vs
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2 173 w=0if o, <o
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2 2 173 2 2 173
Let 4y = e and by = C
1 1
¢ < 0.0 and 9, < 0.0
or ¢ < 0.0 and 05 > 1.0 w=wif Ops 2 Ty
if then
or ¢y > 1.0 and by < 0.0 w =0 if Opg < Oy
or 41 > 1.0 and 4y > 1.0
w=1r‘ifcls_>_ocr
if K =1.0 then
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TABLE IT. - EXAMPLE 1 FATLURE PROBABILITIES AS A FUNCTION OF ROTATIONAL
SPEED FOR VARIOUS FRACTURE MODELS

m
[mg = 7.65; 0o = 232.0 MPa (m)0-2614; yp > _ 4.986; NGP = 15]
s 0s Bs%os

Angular SCARE2 (HEXA AND QUADS elements) Experimental
speed, (Ford Motor Co.)?2
rpm (Gyekenyesi, 1986)
Weibull | Batdorf shear- | Batdorf shear- | Batdorf shear-
PIA insensitive sensitive G.C. | sensitive G.N.
Ge criterion | Go criterion
80 000 0.0031 0.0034 0.0044 0.0045 0.2017
85 000 .0078 .0087 L0113 .0114 .3367
93 000 .0304 .0339 .0438 .0441 .6321
100 000 .0898 .0996 .1276 .1283 .8714
105 000 L1796 .1979 .2496 .2508 .9640
110 000 .3309 .3610 .4418 .4436 .9949
115 000 .5497 .5889 .6857 .6877 .9997
120 000 .7828 .8176 .8908 .8922 1.0000
125 000 .9417 L9579 .9838 .9842 1.0000
130 000 .9945 .9970 1.0000 1.0000 1.0000

G.C. - Griffith crack
G.N. - Griffith notch
dExperimental data fitted to a Weibull equation and calculated at the speeds shown.
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FIGURE 2. - FLOWCHART FOR SUBROUTINE ANGLE BASED ON SURFACE FLAW FRACTURE ANALYSIS.




COLUMNS | VARIABLE ENTRY AND DESCRIPTION
1-5 ID1 CONTROL INDEX FOR EXPERIMENTAL DATA
2: 4-pt. BENDING TEST DATA
3: ALL THE MATERIAL PARAMETERS mg- 0gg-
kBs ARE KNOWN AS INPUT
6-10 1D2 CONTROL INDEX FOR FRACTURE CRITERIA
1: SHEAR-INSENSITIVE. NORMAL STRESS
CRITERION
3: TOTAL ENERGY RELEASE RATE CRITERION
4: WEIBULL PIA SHEAR-INSENSITIVE MODEL
11-15 ID3 CONTROL INDEX FOR CRACK SHAPES
1: GRIFFITH TYPE CRACK
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16-20 1DYy CONTROL INDEX FOR TYPE OF ANALYSIS
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FRACTURE ANALYSIS
21-25 IPRINT CONTROL INDEX FOR PRINTING STRESSES
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END OF FIRST CARD OR STATEMENT NUMBER ONE
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1-5 NE NUMBER OF TOTAL HEXA AND PENTA ELEMENTS
6-10 NH NUMBER OF HEXA ELEMENTS USED
11-15 NP NUMBER IF PENTA ELEMENTS USED
16-20 NES NUMBER OF TOTAL QUAD8 AND TRIA6 ELEMENTS
21-25 NSQ NUMBER OF QUAD8 ELEMENTS USED
26-30 NST NUMBER OF TRIA6 ELEMENTS USED
31-35 NA NUMBER OF TRIAX6 ELEMENTS USED IN THE MODEL
(VOLUME FLAW ANALYSIS ONLY)
36-40 NT THE NUMBER OF TEST SPECIMENS AT A GIVEN
TEMPERATURE
41-45 NGP NUMBER OF GAUSSIAN QUADRATURE POINTS
46-50 NS NUMBER OF SEGMENTS REQUIRED TO FORM THE
ENTIRE STRUCTURE
51-55 JT NUMBER OF TEST TEMPERATURES AT WHICH
MATERIAL DATA IS SPECIFIED
56-60 LONL CONTROL INDEX FOR SELECTING USE OF LINEAR

OR NONLINEAR (QUADRATIC) ELEMENTS

0: ONLY LINEAR ELEMENTS ARE USED IN THE
MODEL

1: ONLY QUADRATIC ELEMENTS ARE USED IN
THE MODEL

FIGURE 3. - SCARE SURFACE FLAW BASED ANALYSIS MASTER CONTROL
DECK DATA REQUIREMENTS.
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PROBABILITY OF FAILURE
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FIGURE 5. - EXAMPLE 1 PROBABILITY OF FAILURE VERSUS DISK
ROTATIONAL SPEED FOR VARIOUS FRACTURE MODELS (SCARE2
DATA). SURFACE FLAW INDUCED FAILURE IS ASSUMED IN ALL
ANALYSIS.
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