@ https://ntrs.nasa.gov/search.jsp?R=19870008007 2020-03-20T12:59:50+00:00Z

Algorithms and Programming Tools for
Image Processing on the MPP: #2

Report for the Period
March 1986 to August 1985

Anthony P. Reeves
School of Electrical Engineering
Cornell University
Ithaca, New York 14853

Work Supported by NASA Grant NAG 5-403

Algorithms and Programming Tools for
Image Processing on the MPP: #2

| Report for the Period
March 1986 to August 1985

Anthony P. Reeves
School of Electrical Engineering
Cornell University
Ithaca, New York 14853

Work Supported by NASA Grant NAG 5-403

Summary

The work reported here was conducted by Maria Gutierrez and Marc
Willebeek-LeMair, who are graduate students at Cornell University, and myself. The
work for this period iof the grant falls into two main categories: algorithms for the
MPP and performance analysis of data manipulations for the MPP and related archi-
tectures. Maria has developed a number of novel algorithms for image warping and
pyramid image filtering. Marc has investigated techniques for the parallel processing
of a large number of independent irregular shaped regions on the MPP. In addition
some new utilities for dealing with very long vectors and for sorting have been
developed. Documentation pages for the new algorithms which are available for dis-
tribution are given in Appendix A. Not all algorithms have been made to work on
the MPP. The effort in the final period of the grant will concentrate on the MPP im-
plementation.

The performance of the MPP for a number of basic data manipulations has been
determined. From these results it is possible to predict the efficiency of the MPP for a
number of algorithms and applications. Some of these results have been published
[1, 2, 3] and these papers are included as Appendices C, D and E. The Parallel Pascal
development system, which is a portable programming environment for the MPP, has
been improved and better documentation including a tutorial has been written. This
environment, allows programs for the MPP to be developed on any conventional com-

- puter system; it consists of a set of system programs and a library of general purpose

Parallel Pascal functions. The new tutorial is included as Appendix B.

During this report period Maria, Marc and myself have visited the NASA God-
dard Space Flight Center. Algorithms have been tested on the MPP and a presenta-
tion on the development system was made to the MPP users group. We have distri-
buted the UNIX version of the Parallel Pascal System to number of new sites.

Some of the highlights of the results of this research are listed below.

Image Processing Algorithms

Algorithms for image warping are described in Appendix A. The two main
functions are nearest neighbor, NNWARP, and bilinear interpolation BLWARP. Both
of these functions are guided by the same heuristic technique which is very efficient
for small arbitrary warps but can also deal with large image distortions.

Building on the pyramid processing primitives, which were mentioned in the
previous report, Laplacian and Gaussian pyramid image filters have been implemented
by the functions LAPLACIAN and GAUSSIAN respectively as outlined in Appendix
A. These algorithms are used to decompose an image into a number of bandpass
filtered subimages. A number of interesting efficient image analysis and image filter-
ing algorithms have been based on this pyramid of subimages.

Local Region Processing

A new approach to the parallel processing of independent regions in parallel on
the MPP is being investigated. For each region in an image a tree is created which
spans the region and can be used to compute features of the region. Special provisions
have been made for generating trees for non-simply connected regions. Techniques
for parallel region merging have been developed. After merging two regions, a new
tree is generated which covers the region in a minimum amount of time. Using these
tree procedures, an image segmentation algorithm, based on the split and merge para-
digm, has been implemented. An initial paper on these techniques is in preparation.

General Utilities

A general purpose sorting algorithm has been implemented; this is described in
the SORT documentation page in Appendix A. Based on the bitonic sorting technique
this program can sort the rows, the columns or treat the whole PE matrix as a long

vector. Any basic data type can be sorted.

There are new utilities for local mean, local median and local maximum filters;
see LMEAN, LMEDIAN and LMAXIMUM in Appendix A. Also, a general purpose
binary matching algorithm (COMPN) has been developed.

Performance analysis

An analysis of different data permutations and manipulations on the MPP is
presented in [1] which is also included in Appendix C. This analysis expresses the
cost of data manipulations in terms of elemental arithmetic operations; Boolean, in-
teger and floating point data types are considered. Results are computed for arrays of
size 128 x 128, 256 x 256, and 512 x 512. An extended version of this paper, which
includes a general description of the MPP, is given in [2] which is also included as Ap-
pendix C.

There has been much recent interest in the implementation of parallel pyramid
data processors. Such a processor could be maded with the MPP by augmenting the
processor array with a pyramid structure of additional processing elements. A py-
ramid processor based on the MPP is considered in [3] which is also included as Ap-
pendix D. The results from an analysis of the proposed system indicate that, in gen-
eral, there would be little advantage in having the additional pyramid hardware for
implementing many of the pyramid algorithms.

References

1. A. P. Reeves and C. H. Moura, "“Data Manipulations on the Massively Parallel
Processor,” Proceedings of the Nineteenth Hawaii International Con ference on
System Sciences, pp. 222-229 (January, 1986).

2. A, P. Reeves, “The Massively Parallel Processor: A Highly Parallel Scientific
Computer,” pp. 239-252 in Data Analysis in Astronomy 11, ed. V. Di Gesu, Ple-
num Press (1986).

3. A.P. Reeves, *Pyramid Algorithms on Processor Arrays,” pp. 195-213 in Pyram-
idal Systems for Computer Visison, ed. V. Cantoni and S. Levialdi, Academic
Press (1986).

Appendix A

BLWARP (2) PPS-PDS Users Manual BLWARP (2)
NAME

blwarp — Bilinear interpolation warping
SYNOPSIS

{8library blwarp.pl}

function blwarp(mx:pli; rp:pli;ep:pli; rf:plr; cf:plr):pli; extern rl, rh, cl, ch;

TYPES
plr = array [rl..rh,cl..ch] of btype;
pli = array [rl..rh,cl..ch] of itype;
plb = array [rl..rh,cl..ch] of boolean;
Where btype is any type and itype is an integer or subrange base type

EXTERN CONSTANTS
rl = the smallest row number of the input matrix
rh = the largest row number of the input matrix
cl = the smallest column number of the input matrix
ch == the largest column number of the input matrix

DESCRIPTION
Blwarp is a two dimensional bilinear interpolation warping function. It first finds the four ver-
tices of the squares that contain each of the points that we want to interpolate. The function
nnwarp is used to find these vertices and the points are given by the matrices (rp+rf) and
(cp+cf). Rp and cp define the mapping to be implemented.

The bilinear interpolation is performed in the following way: _

cf

Pl et * P2
Pl

3
I =P

P3 « + P4

P = (1 - cf)s(1 - ff)sP1 + (1 -rf)scfsP2 + (1 - cf)srf¥P3 + cfsrf+P4

for all points P in the matrix.

AUTHOR
Maria C. Gutierrez

SEE ALSO
rotation(2),nnwarp(2)

A. P. Reeves v PPL 1

COMPN (2) PPS-PDS Users Manual COMPN (2)
NAME

compn — near neighor comparison function
SYNOPSIS

{Slibrary mx.pl }

compn (m:mtype; w:wtype):mtype; extern size;
TYPES

mtype = parallel array [lol..hil, 102..hi2] of boolean;
wtype = array [0..size, 0..size] of 0..2;

DESCRIPTION
Compn compares the local neighborhood of each element of the boolean input matrix m with the
window w. If a match occures then the result element is true, otherwise it is false. A zero in w
matches with false in m, a one in w matches with true in m and a two in w is a don’t care.

AUTHOR
A. P. Reeves

A. P. Reeves PPL 1

GAUSSIAN (2) PPS-PDS Users Manual GAUSSIAN(2)
NAME

gaussian — gaussian pyramid: low pass filter
SYNOPSIS

{8library Pyramid.pl }

function gaussian(image:gtype; weight:real):rtype;
extern nrows ncols;

TYPES
gtype = parallel array [0..nrows, 0..ncols| of (real or integer);
rtype = parallel array [0..nrows, 0..ncols| of real;
itype = parallel array [0..nrows, 0..ncols] of integer;
btype = parallel array [0..nrows, 0..ncols] of boolean;

EXTERN CONSTANTS
nrows = The largest row number of the image matrix
ncols = The largest column number of the image matrix

VARS
id1,id2,upl,dnl,up2,dn2: itype
pyrmsk: btype; ,
Id1 and 1d? are two global index identifying matrices as created by twodid (see mat(2)). These
must be initialized first. The other matrices specify transformations for managing pyramid data;
see pyramid(2) for more information.

DESCRIPTION B
Gaussian is a low pass filter function for pyramid structure images stored in a two dimensional
matrix. The successive levels of the pyramid structure are stored in successive rows of the image
matrix with the highest level image (1 pixel image) being located at position [0,0] in the input
matrix. Each level is a low pass filtered copy of its predecessor and it is obtained by convolving
the predecessor with a Gaussian weighting kernel. This kernel is generated from the weight
parameter; if a gaussian kernel is desired the weight should be equal to 0.4.

The pyramid operations require several constant matrices; these are declared globally for
efficiency. The global variables are generated with the functions twodid (see mat(2)), pyrmaskg
and pyrgen (see pyramid(2)).

AUTHOR
Maria C. Gutierrez

SEE ALSO
pyramid(2), xshift(2), xconv(2), mat(2), gather(2)

A. P. Reeves PPL 1

NNWARP(2) PPS-PDS Users Manual NNWARP (2)
NAME

nnwarp — Near neighbor warping
SYNOPSIS

{Slibrary nnwarp.pl }

function nnwarp(mx:pa; r:pi; c:pi; mask:pb):pajextern lol, hil, lo2, hi2;
TYPES

pa = array [lol..hil l02..hi2] of btype;

pi = array [lol..hil,l02..hi2] of itype;

pb = array [lol..hil,}02..hi2] of boolean;

Where btype is any type and itype is an integer or subrange base type.

EXTERN CONSTANTS
lol = the smallest row number of the input matrix
lo2 = the largest row number of the input matrix
hil = the smallest column number of the input matrix
hi2 == the largest column number of the input matrix
VARS
id1,id2: pi;
Idl and id2 are two global index identifying matrices as created by twodid (see mat(2)). These
must be initialized before using nnwarp.

DESCRIPTION
Nnwarp is a two dimensional near neighbor warping function. The transformation implemented
by nnwarp is as follows:

nnwarp(i,j] := mx|r[i,j],c[i,i]];
The r and ¢ matrices contain the row and column indices, respectively, of where each element in
nnwarp is to be obtained from in mx. i.e. r and ¢ define the mapping to be implemented.

AUTHOR
Maria C. Gutierrez

SEE ALSO
mat(2)

A. P. Reeves PPL 1

LAPLACIAN (2) PPS-PDS Users Manual LAPLACIAN (2)

NAME

laplacian — laplacian pyramid: band pass filter

SYNOPSIS

TYPES

{Slibrary Pyramid.pl }

function laplacian(image:gtype; weight:real):rtype;
extern nrows ncols;

gtype = parallel array [0..nrows, 0..ncols| of (real or integer);
rtype = parallel array [0..nrows, 0..ncols| of real;

itype = parallel array [0..nrows, 0..ncols] of integer;

btype = parallel array [0..nrows, 0..ncols| of boolean;

EXTERN CONSTANTS

VARS

nrows = The largest row number of the image matrix
ncols = The largest column number of the image matrix

id1,id2,upl,dnl,up2,dn2: itype

pyrmsk: btype;)
Id1 and {d2 are two global index identifying matrices as created by twodid (see mat(2)). These
must be initialized first. The other matrices specify transformations for managing pyramid data;
see pyramid(2) for more information.

DESCRIPTION

Laplacian is a band pass filter function for pyramid structure images stored in a two dimensional
matrix. The successive levels of the pyramid structure are stored in successive rows of the image
matrix with the highest level image (1 pixel image) being located at position [0,0] in the input
matrix.

In the Laplacian pyramid, each level is a band pass filtered copy of its predecessor and it is
obtained by the difference of two levels of the Gaussian pyramid. See gaussian(2) for more infor-
mation about the Gaussian pyramid.

The pyramid operations require several constant matrices; these are declared globally for
efficiency. The global variables are generated with the functions twodid (see mat(2)), pyrmskg
and pyrgen (see pyramid(2)).

AUTHOR

Maria C. Gutierrez

SEE ALSO

Pyramid(2), pyramid(2), xshift(2), xconv(2), mat(2), gather(2)

A. P. Reeves PPL 1

LMAXIMUM (2) PPS-PDS Users Manual LMAXIMUM (2)
NAME

Imaximum - local maximum filter function
SYNOPSIS

{8library Imean.pl }

function Imaximum(m:mtype; w:integer):mtype; extern shifttype;

TYPES
mtype = parallel array|il..ih,jl..jh] of btype;
shifttype = shift, Ishift, Ishiftg, crshift, or crshiftg
Where btype is integer or real

DESCRIPTION
Lmazimum computes the local maximum of the elements in the square (w*w) window. If the win-
dow goes beyond the input data then all values outside the data border are assumed zero. The
maximum value is returned at the location of the central element of the window. For the case
that the window size is even, the central element is located above and to the left of the center of
the window.

The extern parameter shift can be selected according to the type of shift operation desired. If,
for example, the local mean function is to be used on large arrays (exceeding the 128+128 array
size of the MPP) then the Ishift or lshiftg options can be used. In addition, there is a crshift and
a crshiftg operation available. For more information on these functions consult the User’s
Manual.

AUTHOR
Marc Willebeek-LeMair

SEE ALSO
Imean(2), Imedian(2)

A. P. Reeves PDS 1

LMEAN (2) PPS-PDS Users Manual LMEAN (2)

NAME

Imean - local mean filter function

SYNOPSIS

TYPES

{8library Imean.pl }

function lmean(m: mtype): mtype; extern w, il, ih, jl, jh, shifttype;

mtype = arraylil..ih,jl..jh] of btype;
shifttype = shift, Ishift, Ishiftg, crshift, crshiftg
Where btype is integer or real

DESCRIPTION

Lmean computes the local mean of the elements in the square (w*w) window. The mean value is
returned at the location of the central element of the window. For the case that the window size
is even, the central element is located above and to the left of the center of the window. Along
the border of the input array where the window contains elements outside the array boundary (of
unknown value) the mean is set to zero. Therefore, the output array contains a border of zeroes
half a window-length wide.

The extern parameter shift can be selected according to the type of shift operation desired. If,
for example, the local mean function is to be used on large arrays (exceeding the 128+128 array
size of the MPP) then the Ishift or lshiftg options can be used. In addition, there is a crshift and
a crshiftg operation available. For more information on these functions consult the User’s
Manual.

The window size (w) is specified as an extern parameter since it is used in the variable declara-
tion of Imean as a dimension parameter.

AUTHOR

M. Willebeek-LeMair

SEE ALSO

Imaximum(2), Imedian(2)

A. P. Reeves PDS 1

LMEDIAN (1W) PPS-PDS Users Manual LMEDIAN (1W)
NAME

lmedian - local median filter function
SYNOPSIS

{Slibrary Imean.pl }

function lmedian(m: mtype; w: integer): mtype; extern il, ih, jl, jh, shifttype;

TYPES
mtype = arrayl|il..ih,jl..jh] of btype;
shifttype = shift, Ishift, Ishiftg, crshift, or crshiftg
Where btype is integer or real

DESCRIPTION
Lmedian computes the local median of the elements in the square window of area wa. If the win-
dow goes beyond the input data then all values outside the data border are assumed zero. The
median value is returned at the location of the central element of the window. For the case that
the window size is even, the central element is located above and to the left of the center of the
window.

AUTHOR
M. Willebeek-LeMair

SEE ALSO
Imaximum(1), Imean(1)

A. P. Reeves PDS 1

SORT(2) PPS-PDS Users Manual SORT(2)

NAME
sort,rowsort,colsort — General two dimensional sort procedure

SYNOPSIS

TYPES

VARS

{$library sort.pl }

procedure sort(var x:pd; var y:pd;);extern pb, n;
procedure rowsort(var x:pd; var y:pd;);extern pb, n;
procedure colsort(var x:pd; var y:pd;);extern pb, n;

pd = array [lol..hil lo2..hi2] of btype;

pb = array [lol..hil,lo2..hi2] of boolean;

Where btype is the base type of the data array to be sorted and n is the dimension of one side of
the matrix. i.e., (hil - lol - 1). (n must be a power of 2)

id1,id2: pi;
Id1 and id2 are two global index identifying matrices as created by twodid (see mat(2)). These
must be initialized before using sort.

DESCRIPTION

Sort is a general purpose two dimensional sorting procedure based on the bitonic sorting algo-
rithm. It is designed for a parallel computer architecture which involves a square mesh con-
nected processor array. The matrix to be sorted is the parameter x and the result is returned in
y. X will be modified by this procedure, if this is not desirable for the given application then
simply do not specify x to be a var parameter.

Rowsort is similar to sort except that each row of the matrix is individually sorted. Colsort sorts
the columns of the matrix.

AUTHOR

A. P. Reeves

SEE ALSO

mat(2)

A. P. Reeves PPL 1

VSHIFT (2) PPS-PDS Users Manual
NAME

vshift — matrix spiral shift function
SYNOPSIS

{8library vshift.pl }

function vshift(a:atype; s:integer):atype; extern n, mtype;

TYPES
atype = arrayl[il..ih,jl..jh] of btype;
mtype = arrayl|il..ih,jl..jh] of boolean;
Where btype is any base type
n = the number of columns of m (jh-jl)

DESCRIPTION

VSHIFT (2)

Vshift performs a spiral shift on a matrix by a specified number of elements (s). That is, the last
element in the first row of the matrix spirals around to the first element of the second row, and
so forth. The last element of the last row is discarded. Zeroes are inserted at the first element
of the first row. The following is an example of a 5+5 array (m), spiral shifted by 3 elements (s)

using the vshift function.

1 2 3 4 5 0o 0o o 1 2 4 5

6 7 8 9 10 3 4 5 6 7 9 10

11 12 13 14 15 8 9 10 11 12 14 15

16 17 18 19 20 13 14 15 16 17 19 20

21 22 23 24 25 18 19 20 21 22 24 25
(a) (b)

(a) Original matrix m. (b) Vshift(m;s) using s = 3. (c) Vshift(m;s) using s = -3.

6
11
16
21
0

(c)

12
17
22
0

8
13
18
23
0

This function is useful in instances where a two dimensional array is being treated as a large vec-

tor.

AUTHOR
M. Willebeek-LeMair

SEE ALSO
vrotate(2)

A. P. Reeves PDS

VROTATE (2) PPS-PDS Users Manual VROTATE (2)
NAME

vrotate — vector spiral rotate function
SYNOPSIS

{8library vshift.pl }

function vrotate(a:atype; s:integer):atype; extern n, mtype;

TYPES
atype = array][il..ih,jl..jh] of btype;
mtype = arraylil..ih,jl..jh] of boolean;
Where btype is any base type
n = the number of columns of m (jh-jl)

DESCRIPTION
Vrotate performs a spiral rotate on a matrix by a specified number of elements (s). That is, the
last element in the first row of the matrix spirals around to the first element of the second row,
and so forth. The last element of the last row is inserted at the location of the first element of
the first row. The following is an example of a 545 array (m), spiral rotated by 3 elements (s)
using the vrotate function.

1 2 3 4 5 23 24 25 1 2 3 4 5 6 7

6 7 8 9 10 4 5 6 7 8 9 10 11 12 13

11 12 13 14 15 8 9 10 11 12 14 15 16 17 18

16 17 18 19 20 13 14 15 16 17 19 20 21 22 23

21 22 23 24 25 18 19 20 21 22 24 25 1 2 3
(a) (b) (c)

(a) Original matrix m. (b) Vrotate(m;s) using s = 3. (c) Vrotate(m;s) using s = -3.

This function is useful in instances where a two dimensional array is being treated as a large vec-
tor.

AUTHOR
M. Willebeek-LeMair

SEE ALSO
vshift(2)

A. P. Reeves PDS 1

Appendix B

PARALLEL PASCAL DEVELOPMENT SYSTEM: TUTORIAL

Anthony P. Reeves
School of Electrical Engineering
Cornell University
Ithaca, New York 14853

Abstract

This document demonstrates various features of the Parallel Pascal Development system which
consists of a Parallel Pascal Translator and a library of support functions. A basic knowledge of the
Parallel Pascal programming language is assumed. An example compilation is presented and the con-
tents of the generated files is discussed. Advanced debugging procedures are considered.

Compiling a Program

The first step is to create a source Parallel Pascal file having a .pp extension with any text editor.
An example program which is stored in a file called square.pp is shown below:

program square(input, out.put);
{8library mat }
const
diml = 2;
dim2 = 2;
type
ar = array [1..diml, 1..dim2] of integer;
var
a:ar;
procedure writemx(mx:ar; fmt:integer); extern 1, dim2;
begin
read(a);
a:=a¥*a,
writemx(a, 4);
end.

To compilé this program for a conventional computer simply type

PP square.pp

If the computer system has a Pascal interpreter in addition to a compiler for fast program development
this can be selected with a -¢ flag; i.e.,

PP square.pp -i

Assuming that the first command is typed, selecting the local Pascal compiler, then the following mes-
sages will be output to the terminal

*** Pascal Library Processor & ***
*** Parallel Pascal Translator ***
Syntax Analysis Complete,

TiJTORIAL Parallel Pascal

No Errors detected.

b Pascal Compiler b

This indicates that the compilation was successful. The following files are created:

pplist a listing of the Parallel Pascal Program
square.p a Pascal version of the Parallel Pascal Program
square a binary file ready for execution

When using the VMS operating system the file square.p may be named square.pas.

The listing file pplist has the following contents:

1 program square(input, output);
2 {library mat }
3 const
4 diml = 2;
5 dim2 = 2;
6 type
7 ‘ar = array [1..diml, 1..dim2] of integer;
8 var
9 a:ar;
10 procedure writemx{ mx:ar; fmt:integer);
11 (*8-
)($i+*)begin
12 read(a);
13 a:=a%*a,
14 writemx(a, 4);
15 end.

Syntax Analysis Complete, No errors detected.

In this program a single library mat is referenced which contains the procedure writemz. In the listing
file the extern statement in line 10 is replaced by the library preprocessor with the body of the procedure
writemx at line 11. The presence of an inserted body is indicated by the sequence (*$-. . *)(*$i+*).
Since this is usually of no interest to the programmer the body itself is not listed. In this way all line
numbers in the listing file correspond exactly with the line numbers of the source program.

Running a Program

The exact procedure for running a program varies from system to system. An example dialogue
with a UNIX operating system is shown below for the program square. Input from the user is shown in

italics.

% square
1284

1 4

9 16
% square
1
98
5

A. P. Reeves PP

TUTORIAL

TUTORIAL Parallel Pascal TUTORIAL

1 81

72 25
% square < infile > ofile
%

These examples demonstrate the free format used for data input. The last command is an example
of how, with UNIX, data may read from a file infile rather than the terminal and the result written to a
file ofile.

Program Debugging

The usual cycle of events when errors are detected is to examine the listing file and then re-edit the
source program. This procedure is slightly more difficult if an error is found in the body of a library
function since these bodies are not listed. In general, errors in library functions are rare and are usually
caused by an incorrect procedure declaration.

Consider the program square in which such an error has been made; i.e.,

program square(input, output);
{$library mat }
const
diml = 2;
dim2 = 2;
type
ar = array [1..diml, 1..dim2| of integer;
var
a:ar;
procedure writemx(mx:ar; fmt:real); extern 1, dim2;
begin
read(a);
a:=a*a;
writemx(a, 4);
end.

On typing the command

PP square.pp

the result is:

*** Pascal Library Processor & ***
*** Parallel Pascal Translator ***
Syntax Analysis complete,
1 errors detected.

e No Compilation g

Only the file pplist is created; its contents are:

1 program square(input, output);
2 {library mat }
3 const

A. P. Reeves PP 3

TUTORIAL Parallel Pascal TUTORIAL
4 dimi = 2;
5 dim2 = 2;
6 type
7 ar = array [l..dim1, 1..dim2] of integer;
8 var
9 a:ar;
10 procedure writemx(mx:ar; fmt:real);
11 (*8-
11
o’k A116
)($i+*)begin
12 read(a);
13 a:=a?*a;
14 writemx(a, 4);
15 end.

Syntax Analysis Complete, 1 errors detected.

116: error in type of standard procedure parameter
The error has occurred on line 11 of the listing, i.e. within the body of the library procedure, but it is not

clear what the cause is. In order to make library function bodies appear in the listing, specify the -s flag
for the compiler; i.e.,

pp square.pp -s

The messages to the terminal will be the same as before; however, pplist will now contain the library pro-
cedure bodies as shown below:

1 program square(input, output);
2 {library mat }
3 const
4 diml = 2;
5 dim2 = 2;
8 type
7 ar = array [1..diml, 1..dim2] of integer;
8 var
9 a:ar;
10 procedure writemx(mx:ar; fmt:real);
11 {procedure writemx(mx;fmt:integer); extern lol, hil;}
12° var
13 i:integer;
14 begin
15 fori:=1 to dim2 do
16 begin
17 write(mx[i,):fmt);
xRk A116
18 writeln;
19 end
A.P. Reeves PP 4

TUTORIAL Parallel Pascal TUTORIAL
20 end;
21 begin
22 read(a);
23 a:=—a%*a;
24 writemx(a, 4);
25 end.

Syntax Analysis Complete, 1 errors detected.

116: error in type of standard procedure parameter

The reason for the error is now clear. The format parameter fmt must be declared to be of type integer
rather than real as shown in the comment on line 11. When using the -s option, line numbers in the list-
ing file which follow the first library function no longer correspond to the line numbers in the source file.

Using the Library Preprocessor

Standard Pascal has no library facility; all subprograms i.e., procedures and functions, must be
present in the source program. A library preprocessor was developed to allow the use of libraries without
violating the rules of standard Pascal. The header line of a library subprogram is specified in the source
program with an extern directive. The library preprocessor replaces the extern directive with the
appropriate subprogram body. The type information for the library subprogram is extracted from the
declaration statement in the source program. Therefore, library subprograms can be -written to work
with any user specified array type.

If a library subprogram is to be used for more than one array type in the same block, then a sub-
program declaration statement for each unique argument type is necessary. Each unique version of the
subprogram is identified by a user specified extension to the subprogram name in both declaration and
usage.

For example, consider the ceiling function as defined below:

function ceiling(x:xtype) : rtype;
begin
where x < 0.0 do
ceiling := trunc(x)
otherwise
where x-trunc(x) = 0.0 do
ceiling := trunc(x)
otherwise
ceiling := trunc(x)+1;
end;

The following program fragment illustrates how more than one version of this function could be specified
for the library preprocessor.

type

ar = array [1..10] of real;

ai = array [1..10] of integer;

br = array [1..8, 1..8] of real;

bi = array [1..8, 1..8] of integer;
{8library math }

A. P. Reeves PP 5

€1 am———

TUTORIAL Parallel Pascal TUTORIAL

function ceiling.a(x:ar) :ai; extern;
funection ceiling.b(x:br) :bi; extern;
var

ax:ar; ay:ai; bx:br; by:bi;
begin

ay := ceiling.a(ax);
by := ceiling.b(bx);

A library file consists of the bodies of a set of library subprograms separated by their names pre-
ceded by a # symbol. The following is the contents of a library file, such as math.pl, which contains the
two library subprograms used in this tutorial. The usage of system library subprograms and their loca-
tion is given in section 2 of the Parallel Pascal Development System Manual. In addition, by convention,
a descriptive comment line for the format of the subprogram header is included with the body of each
library subprogram. For further information on the structure of the library files see extern(1) and for the
usage of these subprograms see mat(2) and math(2).

#ceiling
{
function ceiling(x:real(array)) : integer(array); extern;
}
begin
where x < 0.0 do
ceiling := trunc(x)
otherwise
where x-trunc(x) = 0.0 do
ceiling := trunc(x)
otherwise
ceiling := trunc(x)+1;
end;
Fwritemx
{
procedure writemx(mx:matrix;fmt:integer); extern lol, hil;
}
var
i:integer;
begin
fori:= 8 to $4 do
begin
write(mx|i,]:fmt);
writeln;
end
end;

#end

A. P. Reeves PP 6

TUTORIAL Parallel Pascal TUTORIAL

For the Intrepid Explorer

If errors are reported after the translator these are generated by the local Pascal Compiler or
linker. In this case the translator usually reports No errors detected then error messages appear on the
terminal. The cause of these errors may either be an incorrect translation by the translator or by a limi-
tation in the local Pascal compiler.

The translator generates a standard Pascal program and the intrepid explorer may wish to examine
this to find the cause for more obscure errors. But beware, this program is typically six times longer than
the original source program with many obscure variable names.

For example, the file square.p contains the following:

program square(input, output);

const
diml == 2;
dim2 = 2;
type
ar =array[1..2,1..2] of integer;
plityp0 = ar;
plltypl = array [1..2] of integer;
var
a:ar;
pllibool : boolean;
plivarQ: ar;

pllidx1: integer;
pllidx0: integer;
procedure writemx (mx:ar; fmt:integer);

var
izinteger;
pllvarQ: plltypl;
pllidx0: integer;
begin
for i:=1 to dim2 do
begin
for pllidx0:=1 to 2 do
write(mx[i,pllidx0]:fmt);
writeln;
end
end;
begin
for pllidx0:=1 to 2 do
for pllidx1:=1 to 2 do
read(a[pllidx0,pllidx1]);

for pllidx0:=1 to 2 do
for pllidx1:=1 to 2 do
a[pllidx0,pllidx1]:=a[pllidx0,pllidx1]*a[pllidx0,pllidx1];
writemx(a,4);
end.

A. P. Reeves PP ‘ 7

TUTORIAL Parallel Pascal TUTORIAL

If still a glutton for more punishment, there is a debug compiler option {§c+ } which inserts the
source program text as comment statements into the translated pascal file. This makes the pascal file
easier to follow. For example, for full commented output add the debug option as shown below:

{8+ } { comment option }
program square(input, output);
{$library mat }
const
diml = 2;
dim2 = 2;
type
ar = array [1..diml, 1..dim2] of integer;
var
a:ar;
procedure writemx(mx:ar; fmt:integer); extern 1, dim2;
begin
read(a);
a:=a*a;
writemx(a, 4);
end.

The file square.p generated by compilation will now contain additional comment statements as follows:

program square(input, output);

const
diml = 2;
dim2 = 2;
type
ar =array[1..2,1..2] of integer;
plltyp0 = ar;
plltypl = array [1..2] of integer;
var
a:ar;
pllibool : boolean;
pllvarQ: ar;

pllidx1i: integer;
pllidx0: integer;
procedure writemx (mx:ar; fmt:integer);

var
i:integer;
pllvar0Q: plitypl;
pllidx0: integer;
begin
for i:=1 to dim2 do
begin
(*****> TRANSLATE A PROCEDURE < *****
< < < ORIGINAL >>>
write(mx|i,):fmt);
< < < TRANSLATED >>> *)
A. P. Reeves PP 8

TUTORIAL Parallel Pascal

for pllidx0:=1 to 2 do

write(mx([i,pllidx0]:fmt);
(***************************************)

writeln;
end
end;
begin
(*****> TRANSLATE A PROCEDURE < *****
< << ORIGINAL >>>
read(a);
< << TRANSLATED >>> ¥
for pllidx0:=1 to 2 do
for pllidxl:=1 to 2 do
read(a[pllidx0,pllidx1]);

(**********t*******t********************)

(*****> TRANSLATE AN ASSIGNMENT < *****
< << ORIGINAL >>>
a:=a*a;

< << TRANSLATED >>> ¥

for pllidx0:=1 to 2 do
for pllidx1:=1 to 2 do
a[pllidx0,pllidx1]:=a[pllidx0,pllidx1]*a[pilidx0,pllidx1];

(****************#**********************)

(*****> TRANSLATE A PROCEDURE < *****
< << ORIGINAL >>>
writemx(a,4);
< << TRANSLATED >>> *)

writemx(a,4);
(*******t*********************#****t****)

end.

A. P. Reeves PP

TUTORIAL

—a

Appendix C

DATA MANIPULATIONS ON
THE MASSIVELY PARALLEL PROCESSOR

Anthony P. Reeves and Cristina H. Francfort de Sellos Moura
School of Electrical Engineering
Cornell University
Ithaca, New York 14853

Abstraz
The design of an effective processor interconnection network is a major problem in the design of
highly paraliel computer systems. A dense interconnection scheme such as the crossbar is prohibi-
tively expensive for such systems; an affordable network must be designed which is capable of
implementing the systems tasks without a significant ioss in processor utilization. In this paper the
mesh network of the Massively Paraliel Processor (MPP) is analyzed for a number of important
data manipuiaticas. The MPP is a2 SIMD computer with 16384 processing elements connected in a
128 x 128 mesh. The MPP is an interesting system to study since it represents a minimal archi-
tecture in both processing element complexity and interconnection topology. The transfer ratio,
which is the aumber of elemental processor operations required to execute a data manipulation, is
introduced t0 measure the performance of the MPP for different data manipulations and to esti-
mate the effectiveness of hardware enhancements. This type of analysis can be used to compare
the performance of different interconnection schemes and may be applied to other highly parallet

systems.

L. INTRODUCTION

In any highly paraliel processor design a majpr consideration is the
processor intercomnection scheme. Processors must communicate
with 2 speed which does not impede data processing; however, a
general processor interconnection network is usually prohibitively
expensive when a large number of processors are involved. A
major design task is to design a restricted network which is ade-
quate for the anticipated tasks for the system.

The Massively Parallel Processor consists of 16384 bit-serial Pro-
cessing Elements (PE’s) connected in 128 x 123 mesh {1} That is
each PE is connected to its 4 adjacent neighbors in a planar matrix.
The two dimensional grid is one of the simplest interconnection
topologies to implement, since the PE’s themseives are set out in a
planar grid fashion and all interconnections are between adjacent
components Furthermore, this topology is ideal for two dimen-
sional filtering operations which are common to low level image
processing such as smail window convolution.

The PE’s are bit-serial, ie. the data paths are all one bit wide. This
organization offers the maximum fexibility, at the expense of the
highest degree of parallelism, with the minimum aumber of con-
trol lines. For example, as an alternative to the MPP consider
2048 3-bit wide PE’s (on the MPP one chip contains 8 1-bit PE's)
The 3-bit version would have a les rich set of instructions res-
tricted to predefined byte operations while the bit-serial processors
can process any data format. The advantage gained with the 8-bit

Proceedings of the Nineteenth Hawaii International
Conference on System Sciences (HICSS-19) 1986

system is that full processor utilization is achieved with arrays of
2048 elements while arrays of 16384 clements are required for
full utilization of the MPP. The MPP PE is well matched to low
level image processing tasks which often involve very large data
arrays of short integers which may be from 1 to 16 bits.

In this paper the effectiveness of the MPP architecture for various
interprocessor data manipulations is considered. The MPP offers a
simple basic model for analysis since it involves just mesh inter-
connections and bit-serial PE’s. Extensions to this schemse to speed
up some manipulations are considered. The minimal architecturs
of the MPP is of particular interest to study, since any architec-
ture modifications to improve performance would result in 2 more
complex PE or a more dense interconnection strategy. The MPP is
programmed in & high level langusge calied Parnllel Puscal (2]
The algorithms in this paper will be described in Parallel Pascal
notation.

L1 THE MPP PROCESSING ELEMENT

The MPP processing element is shown in Fig. 1. All data paths are
one bit wide and there are 8 PE’s on a single CMOS chip with the
local memory on external memory chips. Except for the shift
register, the design is esentially a minimal architecture of this
type. The single bit full adder is used for arithmetic operations
and the Boolean processor, which implements all 16 pomsible two
input logical functions, is used for all other operations. The NN

select unit is the interface to the interprocessor network and is
used to select a value from one of the four adjacent PE's in the
mesh.

The S register is used for I/0. A bit plane is slid into the S regis-
ters independent of the PE processing operation and it is then
loaded into the local memory by cycle stealing one cycle. The G
register is used in masked operations. When masking is enabied
only PE’s in which the G register is set perform any operations; the
remainder are idle. The masked operation is a very similar control
feature in SIMD designs. Not shown in Fig. 1. is an OR bus output
from the PE. All these outputs are connected (ORed) together so
that the control unit can determine if any bits are set in a bitplane
in a single instruction. On the MPP the local memory has 1024
words (bits) and is implemented with bipolar chips which have a
35 ns access time.

The main novel feature of the MPP PE architecture is the
reconfigurable shift register. It may be configured under program
control to have a leagth from 2 w 30 bits, Improved performance
is achieved by Kkeeping operands circulating in the shift register
which greatly reduces the number of local memory accesses and
instructions. It speeds up integer multiplication by a factor of two
and also has an important effect on floating-point performance.

1.2 PERFORMANCE EVALUATION

In order to analyze the effectiveness of the interconnection net-
work for different manipulations it is necessary to characterizs the
processing speed of the PE and the speed of the interconnection
network. On the MPP both of these are data dependent; we have
considered three representative cases: single-bit Boolean data, $-bit
integer data and 32-bit floating-point (real) data. For each of thess
data types we have estimated a typical time for an elemental
operation. These estimates are of a reasonable order for this
minimal PE architecture but are not very precise. For example,

the MPP is 100 ns. An eilemental boolean operation may be con-
sidered to take 100 ns; however, it may be argued that an opers-
tion should inveolve two operands and have all variables in
memory in which case thres memory accesses (instructions) would
require 300ns. For our analysis a two instruction (200 ns) model
was used to represent Boolean instruction times. For the real and
integer data 2 convenient number midway between the times for
addition and multiplication was used. It should be remembered
that elemental operations aiso include many other functions such
as transcendental functions since these can be computed in times
comparable to a multiplication on a bit-serial architecture. By
adding a large amount of additional hardware to each PE it is pos-

/sible to increase the speed of multiplication by 10 times or more

(3l

For each of the data manipulations considered, times for the three
different data types will be computed. The performance of the
MPP for each manipulation will be indicated by the ratio of the
data transfer time to an elemental PE operation on the same data
type; this will be called the transfer ratio. One way to look at
this ratio is the number of elemental data operations which must
be performed between data transfers for the data transfers not to
be the dominant cost for the algorithm. On the MPP data may be
shifted between adjcent PE's in one instruction time (100 ns)
concurrently with 2 PE processing instruction.

For many applications the physical dimensions of the parallel
bardware are smaller than the dimensions of the array to be pro-
cessed. In this case the data array is processed as a set of blocks. An
extension of the data manipulation algorithms to deal with this
situation is discussed.

The program and aigorithm examples given in this paper use the
Parallel Pascal notation. This notation involves the following five
extensions to standard Pascal

1) expressions involving whole arrays are permitted; for mized
operations between a scalar and an array the scalar is repli-
cated to form a conformable array.

2) the where - do - otherwise control statement is available.
This statement is a paraliel version of the if - then - else
statement; the control expression must evaluate to a Boolean
array. All array assignments within the controlled state-
ments must be conformable with the control array aand are
masked by it

3) the functions any and min are the array reduction functions
or and minimum respectively.

4) array indices may be elided for subarray selection. For exam-
ple, consider a matrix « dfi] specifies the i'th row, dj]
specifies the th column and al,] specifies the whole matrix.

5) basic parallel data manipulation operations, including
machine primitive manipulations, are available as built in
functions skift, rotate, expand and transpose.

2. SHIFT AND ROTATE OPERATIONS

The only permutation function which is directly implemented by
the MPP is the near neighbor rotate (or shift). The direction of the
rotation may be in any of the four cardinal directions. In Parallel
Pascal the main permutation functions are multi-element rotate
and shift functions; other permutations are built on these primi-
tives.

The rotate function takes as arguments the array to be shifted and
a displacement for each of the arrays dimensions. For exampls
consider a one dimensional array a specified by

« array [0.n] of integer;

ORIGINAL PAGE 1

OF POOR QUALITY

The rotats statement
a = rotate(a, 5%

is equivaleat to
for i ;= 0 to n do
di] = (i + 5) mod (n + 1)}

The rotation utilizes the toroidal end around edge connections of
the mesh. The shifr function is similar except that the mesh is
not toroidaily connected and zeroes are shifted into elements at the
edge of the array; therefore, the shift function is not a permuta-
tion function in the strict sense. The concept of the rotate and
shift functions extends to n dimensions; on the MPP the last two
dimensions of the array correspond to the parallel hardware
dimensions and are executed in parailel, higher dimension opera-
tions are implemented in serial. The cost of the rotate fuaction is
dependent on the distance rotated. It also depends on the gize of
the data elements to be permuted. '

The transfer ratics for the shift operation are given in Table 1.
Ratios are given for shift distances of 1 and 64 elements; 64 is the
largest shift which will sormally be required in a single dimen-
sion on a 128 x 128 matrix since a shift of 65 can be obtained with
a rotats of -63 and a mask operation. Ths worst case figures fora
two dimensional shift is 64 in each direction; ie., twice the figures
given in Table L.

For single element shifts the interconnection network is more than
adequate for all data types. For maximum distance shifts the ratio
of 33 for Boolean data could causé problems for some aigorithms
but the situation is much better for real data.

3. MATRIX MAPPING

Tabie 1: Cost for Shift and Rotate Operations

Shift QOperation cost in us. Transfer Ratio
distance
Boolean integer real | Boolean integer real|
1 02 1.6 64 1.0 032 Q16
64 6.5 51 210 33 10 52

In this section the arbitrary mapping of data from one matrix
another matrix with the same dimensions is considered. Since
there are no restrictions placed on the mapping it includes the
Worst case mapring which can occur. The mapping of a matrix a
is specified by two coordinate matrices ¢ and r which have similar
dimensions t0 a. The permuted matrix b also has the same dimen-
sions as a. For a matrix element 4{i,j} the corresponding elements

7 fi,]] and di.j] specify the row and column indices respectively of
where the related element of g is located. That is, the mapping is
specified by

i) o= of Aijl dijl]
More formally, the data arrays involved in the permutation are
specified by:

ab : array [l.orow,l.ncol] of data;
{where data is any base type}

r : array [l.arow,l.ncol] of l.arow;
¢ : array [1.arow,l.ncol] of 1.acol;

For the MPP the last two dimensions of the array (arow and ncol)
must both be 128.

For the following algorithms, and in general for the MPP, two PE
identifying matrices idr and idc are precomputed. They contain
the following:

for i = 1 to nrow do idr{i] =i

for j=1toncol do idd.j= i
These are used to select subsets of PE’s for an operation. For exam-
ple a mask matrix which is true only at element i,j can be specified
by the expression ((idr = i} and (idc = D).

3.1 A SIMPLE MAPPING ALGORITHM

A simple, but slow, algorithm to achieve an arbitrary permutatian
is to slide a over all the possible positions of 5, assigning the
specified elements of a to each element of 5 when they are in the
correct position.

The first step is to compute matrices 7 and rc¢ which specify the
distance data must be moved rather than the absolute location of
the data.

rr = (r-idr) mod nrow;

rec = (c-ide) mod ncol;
Data is then loaded into the result matrix when it has been moved
by the correct amount,

for im 1 to nrow do

begin
for j= 1 to ncol do

begin
whexe (rr = i) and (rc = j) do
bma
a = rotate(a, 0, 1%
end;
a = rotate(q, 1, 0%
end;

In this algorithm, data is only explicitly moved in the upward and
left directions; data which must be moved in the right or down-

XY e i
OE ;u‘i‘lpl:. Faindion e

OF POOR QUALITY

/

ward directions is taken care of by the torvidal end connections
specified by the rotate primitive operation.

This aigorithm involves O(n?) operations for an 2 X n mawrix
Each iteration requires each PE to compute two 7-bit comparisons
(which are shown in the where statement); these take 1.4 us. The
total cost for 16384 iterations is shown in Table 2. It is of no
surprise that the costs are so high for arbitrary mappings on the
very restricted interprocessor network of the MPP. However,
table 2 is useful in that it provides an upper bound for arbitrary
data mappings.

A final problem with this algorithm is that it has a complexity of
slightly worse than O{(n*). For example, a 256 x 256 matrix

requires 16 times the computation required for a 128 x 128 matrix.

4, DATA BROADCAST

Table 2 : Cost for the Simple Mapping Algorithm

Operation cost in ws. Transier Ratio

Total Cost

Boolean inteper real | Boolean integer real

Original | 29000
Optimized | 18000 64000 220000| 90000 13000 3500
With shift | 16000 S0000 170000 82000 10000 4200
register

75000 230000 { 150000 15000 35300

A frequently used data manipulation is to broadcast one elsment
of data to a large number of PE's. In this section two broadcast
operations are considered. The first is global data broadcast in
which 2 single element is broadcast to all elements of 2 matrix or
array. In Paralle] Pascal this is represented by:

b= dlijk

The second type is a row or column broadcast in which 2 singie
row (or column) is broadcast to all rows (or columns) in the result
matrix. More formally, thess transformations for the k’th row or
column may be represented in Paralle] Pascal by

fori:=1 to nrow do { row distribution }

Hi) = ik

for j:= 1toncol do { column distribution }

rlj} = ok}

In fact the function expand is included in the Paralie]l Pascal
language so that this important transformation may be specified
without a loop; &.g.

b= expand(a{k]1: { row distribution }

For global broadcast the first step is to transfer the value to be dis-
tributed from the matrix to the control unit. The MPP has a global
or hardware mechanism which can detect if any bit in & bitplane
is set. This mechanism can also be used to extract the maximum or
minimum valus in a matrix in a similar amount of time. To
extract a value from a matrix first set a mask which is true only
at the PE of interest (14 instructions). Then and this mask with
each bit plans of the data matrix and detect if any valus is set
with the global or mechanism (n instructions where n is the
number of bits in the data). This value is then distributed to all
PE's with the instruction stream (which may be considered as a
global broadcast mechanism); this requires n instructions.

A simple aigorithm to do row (or column) distribution is to take
the row (or column) and distribute it across the matrix in 128
steps. For example, the following aigorithm will distributs the
k’th row of a Boolean matrix a.

‘masks array [1.nrow, l.ncol] of boolean;

mask = idr = k;
b = a and mask;
for i = 1 to nrow do
b := b or rotate(b, 1, 0%

For integer and real data the above algorithm can be repeated for
each data bit plane. This algorithm has compiexity O(man) where
n is the number of bits in each data element and m is the leagth
of the row, On the MPP a faster solution is possible invoiving the
PE shift registers. All bits of the row to be distributed are first
shifted in adjacent rows of a single bitplane then, as the data
passes by a PE, the PE loads the data into its shift register. The
complexity of this algorithm is O(n +m). The coss of different
distribution algorithms are given in Table 3.

Table 3.: Cost for the Distribution Algorithms

Operation cost in us. Transier Ratio
Algorithm
Boolean integer real | Boolean integer real
Global 04 2 13 2 064 032
Row 14 100 410 68 21 10
Row with 14 16 21 68 2 052
|shift register

01234567 input vector
04152637 shuffied vector

ANIALINRY BAST I
R opano az

S . [2XV T -Rae]

OF POOR QUALITY

5. SHUFFLES AND PYRAMIDS

In this section shuifle permutations are considered. In addition to
their usual applications to algorithms such as the Fast Fourier
Transform (FFT) they are also the basic permutation used to mani-
pulate pyramid data structures, The shuffle permutation in one
dimension is illustrated below; the vector is split into two equal
haives and then interleaved as in shuffling 2 pack of cards.

The two-dimensional shuffie of a matrix may be considered as a
combination of two orthogonal one-dimensional shuffies first all
the rows are shuffied and then the columns. The algorithms we
have considered can also be divided into two half shuffie opera-
tions; for example, a half shufle may map only elemeats O, 1, 2
and 3 of the above input vector.

Detaiied aigorithms will only be given for a half shuffie operation;
a full shufie requires two haif shuffies and a two-dimensional
shuslle requires four balf shuffies. The inverss shuffle permutation
is also of interest. The shuffle algorithms can aiso perform inverse
shuifles for a similar cost.

Operations on pyramid data structures are of interest to some
image processing applications. A pyramid may be considered to be
a connected set of multiresolution matrices. At the apex is one ele-
ment, at the next level there a four elements in a2 2 x 2 matrix
each conmected to the apex. At the next level there is 2 4 x 4
marrix which may be considered as a disjoint set of four 2 x 2 sub-
matrices with each submatrix being connected to one of the ele-
meats in the matrix at the next higher level In general, the k’th
level is a 2* x 2* marrix with each element being associated with
one element in the level above and four in the level below. Or
the MPP, the top 6 levels of a pyramid may be stored in 1 single
matrix (the pyramid has a 64 x 64 bese). Masked shift operations
are used to perform shifts in all or a selected subset of levels
simultaneously. The other fundamental operstion is to move data
up or down the levels of the pyramid. The two-dimensional half
inverse shuffie and two-dimensional shuffle are the respective per-
mutations for these pyramid operations.

Two balf shuffie algorithms are considered; the first is the drop
algorithm.

d = -1; { drop algorithm }
md = 2;

mask = false;

mask [0,] = tue

blo]=al0l

forim=1tonrowdiv2-1do
begin
= shift (ad, 0%
mask = shift (mask, md, O%

C

where mask do
bma
end;

In this algorithm the input matrix g is slid over the PE’s and when
the correct elements are aligned with their destinations they are
dropped into them. The specific half shufie performed is deter-
mined by the setup parameters. For example, if d is set to 1 and
md is set 10 -1 then an inverse half shuffie will be implemented.

The second algorithm is calied the take algorithm.

mask = false; { take algorithm }
mask [nrow div 2 - 1] = true;
for i1 tonrow div2-1do
begin
where mask do
bma
b := shift (5, -1, 0%
mask = shift (b, 1, 0%
end;
blo]=alo}

For this algorithm the result matrix & is slid over the PE's. When
it is at the correct location to receive data it takes from the PE
before passing oa to its final destination.

The cost of these aigorithms is shown in table 4. These algorithms
have a similar performance when the PE architecture is simple but
the take algorithm is better when the shift register is used. This is
because the matrix being moved and modified is the same for this
algorithm (5) and it can be efficiently operated on when stored in
the shift register.

6. MATRIX WARPING

In many image processing applications a warping or rubber sheet
distortion of a matrix is needed. The warp exhibits a locality pro-
perty which is characteristic of many important data manipuls-
tions. That is, the adjacency between neighbaring matrix elements
is loosely maintained by the transform. Therefore, many elements
will be moved by similar amounts; ie, the distance to be moved
matrices (rr and rc as defined in section 3) will contain many of
the mme or similar valued elements.

We have developed a heuristic algorithm which attempts to oaly
make moves which are needed by the particular data manipula-
tion; this is in contrast to the simple mapping algorithm of section
3 which proceeds through all 22 possible data displacements.

The aigorithm first slides (rotates) ¢ as many locations up and left
as possible such that future backtracking will not be necessary. If
any element of a is correctly positioned over b (ie. (rr = 0) and

RS TN |

vt g, S o
miciial PAGE IS

GF PCOR QUALITY

———

Table 4. : Half Shuffie Cost

Operation cost in us. Transfer Ratio
Algorithm
Boolean integer real | Boolean integer real
Take or Drop 32 220 830 160 45 21
Drop with SR 32 170 630 160 3s 16
Take with SR 32 110 420 160 23 11
shift register

(rc = 0)) then 5 is updated. Otherwise, atr, Which is a copy of the
current version of a, is slid in the upwards direction until all out-
standing elements of b, for which the current r¢ = O, are satisfied.
The algorithm then shifts as far as possible up and left again and
repeats the above procedure until all elements of the result mask
are false, i.e. b is complete.

The following variabies are used in the algorithm :

Variable declaration
maskmasktr : array [1.nrow, 1.ncol] of boolean:
atr : arTay (1.trow, 1.ncol] of data;
rrt : array [1.nrow, 1oncol] of Onrow;
ri, rit, lastrit : Qnrow;
ci : Oncols

Variable functions

mask : the result mask, true values indicate elements of 5
which have not yet received the correct elemeat of a

ri, ¢i : row and column distances for the up-left move.

masktr : & version of mask to process one column.

ri¢ : & version of ri used to process ons column.

azr : a version of a used to process one column.

rrt : a version of 77 used to process one column.

lastrit : the last value of rit.

The Parallel Pascal version of the heuristic algorithm is as follows

lastrit w(;
bma
mask = (rr <>0) or (re <0);

whﬂemy(fm.:k.l.z)do |
begin { iterate until the permutation is complete
ri = min(rr, 1,2}
c = min(re, 1, 2);
a := rotate{a, ri, a); { move up and left as far as possible }
Ty -
rcmre-ch
masktr s (rr = 0) and (rc = 0}
if any(masktr, 1, 2) then { satisfy elements forthz
current position }

./ ar=q

else
begin {satisfy each element for the given column}
where rc = 0 do
rrt=rr
otherwise
rrt = nrow,
rit »= min(rre, 1, 2
maskir = rrt = rit;
{ the next seven statements implement }
{ the statement atr = rotate (g, rit, 0) }
{ but also take advantage of the previous shifts }
if ¢i <0 then
begin
atr = a
lastrit = O;
end;
atr = rowae(arr, riz - laserit, O);
lastrit = rit;
end;
where masktr do {update b for the curreat location of a}

b = atr;
T = nrow;
re = ncol;
mask = false;
end;
end;

This algorithm is bounded by n3 iterations. However, this must be
considered a looss bound since we currently do not know a per-
mutation which would require all n2 jterations.

The cost of this algorithm per iteration is approximately 10 times
the cost of the simpls mapping algorithm. However, for mappings
which have very good locality properties, or for which not many
elements need to be mapped, the mapping may be achieved in a
very small number of iterations. It is difficult to represent the cost
of this aigorithm by any single number since its performance is so
dependent on the specified data mapping. For a more detailed
analysis of this algorithm and its applications see [4].

7. LARGE ARRAYS

Frequently the data to be processed by a parallel processor will be
in the format of arrays which exceed the fixed range of perallei-
ism of the hardware. Therefore, it is necessary to have special
aigorithms that will deal with large arrays by breaking them
down into blocks manageable by the hardware, without loosing
track of the relationships between different blocks.

One scheme, which is frequently used on the MPP, is to partition
the large array into blocks which are conveniently stored in a
four dimensional array. The range of the first dimension of this
array specifies the number of blocks in each row of the large
matrix and the range of the second dimension specifies the number
of blocks in each column. Given a conceptual large matrix

mx : array [0-x,0.y] of btype;

which is to be stored in an array e of type

~r
ﬁ\(U ‘ﬁ ,

OF POOR QUALITY

;'» u’r’ '\!“l

array [1.a, 1.m, 1.p, 1.q] of brype

Element ij of the large matrix is mapped into the array a as
specified by

ma{i,j] = a {1+ div p, 1+; div q, 14 mod p, 1+j mod q]
For example, a 512 x 256 matrix could be stored in eight blocks as
la: array {1-4,1.2,1.128,1.128] of real

This data structure allows blocks to be manipulated indepen-
dently. However, it still preserves the positional relationships of
those blocks in the original large matrix.

To simplify the manipulation of large arrays on the MPP, two
Parallel Pascal library functions lrotate and Lshift have been
developed. These functions take an array argument and two dis-
placement arguments, like the primitive matrix rotats and shift
functions, however, in this case the array argument is a four
dimensional array which is treated liks a conceptually large
matrix.

Many programs can be converted to operate on blocked rather
than conventional matrices by simply replacing all instances of
rotate and shift with lrotate and ishift respectively. This is true
for the data manipulation algorithms presented; however, except
for near neighbor type algorithms, a different strategy is usually
more efficient. The transfer ratios for for different sized large
arrays are shown in Table 5. It should be noted that not much
processing can be done with 512 x 512 real matrices on the
current MPP since a single matrix requires balf of the local
memory.

Single element shifts have slightly worse values for large arnays
due to the small overhead involved in moving data at the edges of
blocks to other blocks, Broadcast operations have better transfer
ratios for large arrays since once a block has been set up it can be
stored in several result biocks The shuffie algorithm for each
block of a large matrix is essentially the same as for a small
matrix (simple masked swapping of matrix haives does occur), the
transfer ratio is not significantly changed for large arrays. On the
other hand, for pyramid data structures the data storage beyond
level seven becomes much simpler and more efficient. The
transfer ratio in this case is greatly improved for large arrays.

The cost of the simple mapping algorithm has a complexity of
O(n*) therefore the transfer ratios sre four times higher for the
256 x 256 matrix and 16 times higher for a 512 x 512 matrix. In
most practical cases the heuristic algorithm will be far superior @
the simple algorithm; however, for & truly random mapping there

/'is no known efficient solution.

For the heuristic mapping algorithm a good strategy for large
arrays is to scan through the result blocks and perform operations
on only the input blocks that contribute to the curreat result
block being processed. This algorithm is shown below.

var
la/b: array [1.n,1.m,1.arow,1.0c0l] of data;
irlc array [1.n,1.m.1.oarow,1.ac0l} of index;

begin
fori=1tondo
for j=1tomdo
begin {process each result block}
rb == 1 + Ir{i,j] div nrow;
cb 2= 1 + Idi,j] div neol;
ro =1 + Iri,j] mod nrow;
com= 1 + Idi,j] mod neol;
fork=1tondo
forl=1tomdo
begin {consider each input block}
maskb = (rb = k) and (cb = I);
if any(maskb, 1, 2) then
where maskb do
I8{i,j} = perm2 (la (k1] ,
ro, co, maskb};
end;
end;
end;

Perm2 is the heuristic algorithm presented previously with the
modification that the initial mask value is passed as an argument.
That is, only elements selected by the mask are permuted. An
additional speedup is achieved by this since the heuristic works
much better when only 2 subset of elements are to be permutad.

8. CONCLUSION

The transfer ratio has been introduced as a performance messure
for data manipulations on parallel processors. This techniqus may
be applied to almost any parallel architecture. It is expectad that
the results obtained for the MPP would be very similar to thoss
obtained for other like architectures such as the Distributed Array
Processor (DAP) [5] or NCR’s GAFPP processor chip which contains
72 PE's with local memory [6]. The results given in Tabls 5 could
be used by programmers to predict the performance of algorithms
oa the MPP.

For the MPP, the results indicate that, although arbitrary datma
mappings may be very costly, some important data manipulations
can be done very efficiently. The shift register, which has & 2 times
speedup factor for multi-bit arithmetic also has a significant effect
on the implementation of several of the multi-bit data manipula-
tions studied. Especially interesting is the improvement of over 10
times for real data distribution. The shuffie cannot be imple-
mented fast enough for efficient FFT implementation; however,
other data mapping strategies for the FFT are well known which

Table 5: Transfer Ratios for Differeat Data Manipulations and Array Sizes

Array Size
Data Manipulation
128 x 128 256 x 256 512 x 512

Boolean integer real | Boolean integer real ! Boolean integer real
Data Shift
a) 1 element 10 0.32 0.16 20 05 0.24 2.0 0S5 024
b) worst case 33 10.2 52 33 10 52 33 10 52
Broadcast
a) Global 2 064 13 0.88 0.28 0.14 0.59 0.20 0.09
¢) Row with 68 32 052 35 1.68 0.30 182 0.92 0.19
shift register
Shuffle 640 90 42 640 90 42 640 90 42
(2-dimensional)

320 45 21 58 4.3 S 16 12 0.98

(up or down)

have a much more efficient implementation on the MPP.

On the DAP row and column distribution is implemented directly
by special hardware buses. For the MPP we can see from Table 3
that no advantage would be gained from this hardware for real
data operations and possibly very little advantage for integer
operations. A second architecture modification that has been
recently proposed by several researchers is to directly implement
the pyramid layer structure in hardware. From Table 5 we can
see that the MPP already implements pyramid operations on large
pyramids very efficiently; therefore, there is very little advantage
to be gained from the addition of special hardware.

S

REFERENCES

K. E. Batcher, “Design of a Mamively Parallel Procemor,”
IEEE Transactions on Computers C-2%9) pp. 836-340 (Sep-
tember 1981)

A. P. Reeves, “Parallel Pascal: An extended Pascal for Parallel
computers,” Jowrnal of Parallsl and Distributed Computing
1 pp. 64-80 (1984).

A. P. Reeves, “The Anatomy of VLSI Binary Array Proces-
%rs,” in Languages and Architectures for Image Processing,
ed. M. L. B. Duff and S. Levialdi, Academic Press (1981).

A. P. Reeves and C H. Moura, “Permutation and Rotation
Functions for the Massively Parallel Processor,” in Compur-
ing Structures and Image Processing, ed. K. Preston,
Academic Press (in pres).

R. W. Gosick, “Software and Algorithms for the
Distributed-Array Processor,” ICL Technical Joanal, pp.
116-135 (May 1979

NCR Corporation, Geornatric Arithmaetic Paruallsl Processor,
NCR, Dayton, Ohio (1984).

Appendix D

THE MASSIVELY PARALLEL PROCESSOR:
A HIGHLY PARALLEL SCIENTIFIC COMPUTER

Anthony P. Reeves

School of Electrical Engineering
Cornell University
Ithaca, New York 14853

INTRODUCTION

The Massively Parallel Processor (MPP) [1, 2] is a highly parallel scientific computer
which was originally intended for image processing and analysis applications but it is also
suitable for a large range of other scientific applications. Currently the highest degree of
parallelism is achieved with the SIMD type of parallel computer architecture. With this
scheme a single program sequence unit broadcasts a sequence of instructions to a large
number of slave Processing Elements (PE's). All PE’s perform the same function at the
same time but on different data elements in this way a whole data structure such as a
matrix can be manipulated with a single instruction. The alternative highly parallel
organization, the MIMD type, is to have an instruction unit with every PE. This scheme is
much more flexible but also much more complex and expensive.

Computers based on the SIMD scheme are usually very effective for applications
which have a good match to the constraints of the architecture. Furthermore, they are
usually also extensible in that it is possible to increase the performance for larger data
structures by simply increasing the number of PE's.

In order to utilize the features of a SIMD system, as with all computer designs, it is
important for the programmer to have some knowledge of the underlying architecture;
for example, it is important to know that some matrix operations have the same cost as a
scalar operation. For these systems a special programming environment is usually used
and, in general, serial programs designed for conventional serial computers must be refor-
mulated for highly parallel architecturess The MPP is programmed in a high level
language called Parallel Pascal [3] Therefore, the main advantage of SIMD systems is a
much more cost effective method for doing scientific computing than conventional com-
puter or supercomputer systems. The major disadvantage is that the user must become
familiar with a new kind of programming environment.

A major consideration in the design of a highly parallel computer architecture is the
processor interconnection network. Processors must communicate with a speed which
does not impede data processing; however, a general processor interconnection network is
usually prohibitively expensive when a large number of processors are involved. A
major design task is to design a restricted network which is adequate for the anticipated
tasks for the system. The mesh interconnection scheme, used on the MPP, is simple to

implement and is well suited to a large number of image processing algorithms.

The first section of this chapter describes the architecture of the MPP. Then the con-
venient data structers which can be manipulated by the MPP are outlined and the high
level programming environment is discussed. The performance of the processor intercon-
nection network for important data manipulations is considered in detail since this indi-
cates which algorithms can be efficiently implemented on the MPP. Finally, some
current applications of the MPP are outlined.

The Impact of Technology

The implementation of highly parallel processors is made possible with VLSI tech-
nology. The MPP was designed with the technology available in 1977. The custom pro-
cessor chip has 8000 transistors on an area of 235 x 131 mils and contains 8 bit-serial
PE's. It is mounted in a 52 pin flat pack and requires 200 mW at 10 MHz 5§ micrometer
design rules were used. The SIMD mesh architecture can directly take advantage of the
ongoing major advances in VLSI technology. A number of more advanced chips have
been developed since the MPP design. For example, the GAPP chip [4] developed with
the technology of 1982, has 72 bit-serial PE’s, each having 128 bits of local memory. This
chip requires S00 mW at 10 MHz ITT [5] is predicting that by 1987 they will be able to
make 16 16-bit PE's (with four spare) on a single chip with each PE having 1k words of
local memory. This chip would use 1.25 micrometer design rules and would involve
600,000 transistors on an area of 450 x 600 mils. For the more distant future, advantage
can be taken of wafer scale integration as soon as it becomes economically available.
Techniques for dealing with the fault tolerance needed with such a technology have
already been considered [6].

THE MPP ARCHITECTURE

The Massively Parallel Procesor consists of 16384 bit-serial Processing Elements
(PE’s) connected in 128 x 128 mesh [1] That is each PE is connected to its 4 adjacent
neighbors in a planar matrix. The two dimensional grid is one of the simplest intercon-
nection topologies to implement, since the PE’'s themselves are set out in a planar grid
fashion and all interconnections are between adjacent components. Furthermore, this
topology is ideal for two dimensional filtering operations which are common to low level
image processing such as small window convolution.

The PE’s are bit-serial, iLe. the data paths are all one bit wide. This organization
offers the maximum flexibility, at the expense of the highest degree of parallelism, with
the minimum number of control lines. For example, as an alternative to the MPP con-
sider 2048 8-bit wide PE's (on the MPP one chip contains 8 1-bit PE's). The 8-bit version
would have a less rich set of instructions restricted to predefined byte operations while
the bit-serial processors can process any data format. The advantage gained with the 8-
bit system is that full processor utilization is achieved with arrays of 2048 elements
while arrays of 16384 elements are required for full utilization of the MPP. The MPP PE
is well matched to low level image processing tasks which often involve very large data
arrays of short integers which may be from 1 to 16 bits.

The effectiveness of the MPP architecture for various interprocessor data manipula-

_tions is considered. The MPP offers a simple basic model for analysis since it involves just

mesh interconnections and bit-serial PE's. The minimal architecture of the MPP is of par-
ticular interest to study, since any architecture modifications to improve performance
would result in a more complex PE or a more dense interconnection strategy.

The MPP Processing Element

The MPP processing element is shown in Fig. 1. All data paths are one bit wide and
there are 8 PE'’s on a single CMOS chip with the local memory on external memory chips.
Except for the shift register, the design is essentially a minimal architecture of this type.
The single bit full adder is used for arithmetic operations and the Boolean processor,
which implements all 16 possible two input logical functions, is used for all other

- 128 -
Program] | : |
— - - = L
| | |
Control] 128
Unit L.
é —————————
1
!
\
N —=
S —l NN To NN C
PEs
E-—=1 select
W —e —~p - c
Full s
Boolean B t={N-bit shift registerf-=4 A adder
processor
]] 1
\)
— S - G Local memory

Figure 1. The MPP Processing Element

operations. The NN select unit is the interface to the interprocessor network and is used
to select a value from one of the four adjacent PE’s in the mesh.

The S register is used for I/0. A bitplane is slid into the S registers independent of
the PE processing operation and it is then loaded into the local memory by cycle stealing
one cycle. The G register is used in masked operations. When masking is enabled only
PE’s in which the G register is set perform any operations; the remainder are idle. The
masked operation is a very common control feature in SIMD designs. Not shown in Fig.
1. is an OR bus output from the PE. All these outputs are connected (ORed) together so
that the control unit can determine if any bits are set in a bitplane in a single instruction.
On the MPP the local memory has 1024 words (bits) and is implemented with bipolar
chips which have a 35 ns access time.

The main novel feature of the MPP PE architecture is the reconfigurable shift regis-
ter. It may be configured under program control to have a length from 2 to 30 bits
Improved performance is achieved by keeping operands circulating in the shift register
which greatly reduces the number of local memory accesses and instructions. It speeds
up integer multiplication by a factor of two and also has an important effect on floating-
point performance.

Array Edge Connections

The interprocessor connections at the edge of the processor array may either be con-
nected to zero or to the opposite edge of the array. With the latter option rotation per-
mutations can be easily implemented. This is particularly useful for processing arrays
which are larger than the dimensions of the PE array. A third option is to connect the
opposite horizontal edges displaced by one bit position. With this option the array is con-
nected in a spiral by the horizontal connections and can be treated like a one-dimensional
vector of 16384 elements.

The MPP Control Unit

A number of processors are used to control the MPP processor Array; their organiza-
tion is shown in Fig. 2. The concept is to always provide the array with data and
instructions on every clock cycle. The host computer is a VAX 11/780; this is the most
convenient level for the user to interact since it provides a conventional environment
with direct connection to terminals and other standard peripherals. The user usually
controls the MPP by developing a complete subroutine which is down loaded from the
VAX to the main control unit (MCU) where it is executed. The MCU is a high speed
16-bit minicomputer which has direct access to the microprogrammed array control unit
(ACU). It communicates to the ACU by means of macro instructions of the form "add
array A to array B". The ACU contains runtime microcode to implement such operations
without missing any clock cycles. A first in-first out (FIFQ) buffer is used to connect the
MCU to the ACU so that the next macro operation generation in the MCU can be over-
lapped with the execution in the ACU. A separate I/O control unit (IOCU) is used to
control input and output operations to the processor array. It controls the swapping of
bitplanes between the processor array and the staging memory independent of the array
processing activity. Processing is only halted for one cycle in order to load or store a bit-
plane.

I/0 and the MPP Staging Memory

The staging memory is a large data store which is used as a data interface between
peripheral devices and the processor array; it provides two main functions. First, it per-
forms efficient data format conversion between the data element stream which is most
commonly used for storing array data to the bitplane format used by the MPP. Second,

Host Computer | Data Bus Staging Memory
(VAX 11/780) 32Mb
I il
Main Control (70 Control
Unit (MCU) % Unit (I0CU) e

Processor Array
128 x 128 PE's

?_I'"FIFO i
Lol $

Processor Array
Control Unit (PCU)

Figure 2. MPP System Organization

it provides space to store large (image) data structures which are too large for the proces-
sor array local memory:.

The I/O bandwidth of the processor array is 128 bits every 100 ns; ie., 160
Mbytes/second. When fully configured with 64Mb of memory the staging memory can
sustain the MPP I/0 rate. Currently the MPP is configured with 32 Mb and can sustain
half the optimal I/O rate. In addition to data reformating, hardware in the staging
memory permits the access of 128 x 128 blocks of data from arbitrary locations in a large
(image) data structure. This feature is particularly useful for the spooling scheme which
is outlined in the following section.

MPP DATA STRUCTURES

The 128 x 128 array is the equivalent to the natural word size on a conventional
computer since elementary MPP instructions manipulate 128 x 128 bitplanes. Stacks of
bitplanes representing integers and 32-bit real numbers are also basic instructions in the
MCU which are supported by runtime subroutines in the microprogrammed control unit.

The fundamental data structures for the MPP are shown in Fig. 3.a. The long vec-
tor format is supported by the hardware spiral edge connections. However, for long data
shifts the vertical interprocessor connections can also be used. The 128 x 128 matrix is
the most natural data structure for the MPP. Higher dimensional data structures may
also be implemented. If the last two dimensions of the data structure are 128 x 128 then
higher dimensions are simply processed serially. If the last two dimensions are less than
128 x 128 then it may be possible to pack more than two dimensions into a single bit-
plane. For example, a 16 x 8 x 8 x 4 x 4 data structure can be efficiently packed into a
128 x 128 array. Convenient data manipulation routines for this data structure can be
efficiently developed at the Parallel Pascal level.

Frequently, the data to be processed by a parallel processor will be in the format of
arrays which exceed the fixed range of parallelism of the hardware. Therefore, it is
necessary to have special algorithms that will deal with large arrays by breaking them
down into blocks manageable by the hard ware, without loosing track of the relationships
between different blocks.

There are two main schemes for storing large arrays on processor arrays: the blocked
scheme and the crinkled scheme; these are illustrated in Fig. 3.b. Consider thata M x M
array is distributed on an N x N processor array where K = M / N is an integer. In the
blocked scheme a large array is considered as a set of K x K blocks of size N x N each of
which is distributed on the processor. Therefore, elements which ar allocated to a single
PE are some multiple of N apart on the large array. In the crinkled scheme each PE con-
tains a K x K matrix of adjacent elements of the large array. Therefore, each parallel
processor array contains a sampled version of the large array. For conventional array
operations which involve large array shift and rotate operations both blocked and crin-
kled schemes can be implemented with only a very small amount of overhead. The crin-
kled scheme is slightly more efficient when shift distances are very small and the blocked
scheme has a slight advantage when the shift distance is of the order of N.

The third type of data structure which can be manipulated on the MPP is the huge

- array which is much too large to fit into the 2 Mb MPP local storage. This scheme, the

spooled organization, involves the staging memory and is illustrated in Fig 3.c. In the
spooled scheme the data is stored in the staging memory and is processed one block at a
time by the processor array. The I/O operations to the staging memory are overlapped
with data processing so that if the computation applied to each block is large enough then
the cost of spooling will be negligible. However, if only a few operations are applied to
each block the the I/0 time will dominate. For near neighbor operations one possibility is
to perform a sequence of operations on each block without regard to other blocks. The
boundary elements of the result array will not be valid. This is circumvented by read-
ing overlapping blocks and only writing the valid portions of the result blocks back to
memory.

(a) n-dimensional array

s

C] 1
-—|28—
(b) Large Matrix
l Block Crinkled

‘ m [T \EEDD

=8
256 256;’ :
| v O - O

-—256— 256 ——
(c) Spooled Matrix
Staging
1 It |
AT : — —----| Memory
A matrix is Lt ir Lol i same
processed as a -- f_
sequence of !
overiapped blocks | Processor
i = ___J' Array
| (- 128 x 128
(2 Mb)
Figure 3. Data Structures for the MPP
THE MPP PROGRAMMING ENVIRONMENT

There are three fundamental classes of operations on array data which are fre-
quently implemented as primitives on array computers but which are not available in
conventional programming languages, these are: data reduction, data permutation and
data broadcast. These operations have been included as primitives in the high level
language for the MPP called Parallel Pascal. Mechanisms for the selection of subarrays
and for selective operations on a subset of elements are also important language features.

High level programming languages for mesh connected SIMD computers usually
have operations similar to matrix algebra primitives since entire arrays are manipulated
! with each machine instruction. A description of Parallel Pascal features is given else-
-' where in this proceedings [7]1 A brief synopsis of important features of this language fol-

lows.

Parallel Pascal is an extended version of the Pascal programming language which is
designed for the convenient and efficient programming of parallel computers. It is the
first high level programming language to be implemented on the MPP. Parallel Pascal
was designed with the MPP as the initial target architecture; however, it is also suitable
for a large range of other parallel processors. A more detailed discussion of the language
design is given in [3}

In Parallel Pascal all conventional expressions are extended to array data types. In a
parallel expression all operations must have conformable array arguments. A scalar is
considered to be conformable to any type compatible array and is conceptually converted
to a conformable array with all elements having the scalar value.

In many highly parallel computers including the MPP there are at least two
different primary memory systems; one in the host and one in the processor array. Paral-
lel Pascal provides the reserved word parallel to allow programmers to specify the
memory in which an array should reside.

Reduction Functions

Array reduction operations are achieved with a set of standard functions in Parallel
Pascal. The first argument of a reduction function specifies the array to be reduced and
the following arguments specify which dimensions are to be reduced. The numeric
reduction functions maximum, minimum, sum and product and the Boolean reduction
functions any and all are implemented.

Permutation Functions

One of the most important features of a parallel programming language is the facil-
ity to specify parallel array data permutations. In Parallel Pascal three such operations
are available as primitive standard functions shift, rotate and transpose.

The shift and rotate primitives are found in many parallel hardware architectures
and also, in many algorithms. The shift function shifts data by the amount specified for
each dimension and shifts zeros (null elements) in at the edges of the array. Elements
shifted out of the array are discarded. The rotate function is similar to the shift function
except that data shifted out of the array is inserted at the opposite edge so that no data is
lost. The first argument to the shift and rotate functions is the array to be shifted; then
there is an ordered set of parameters, each one specifies the amount of shift in its
corresponding dimension.

While transpose is not a simple function to implement with many parallel architec-
tures, a significant number of matrix algorithms involve this function; therefore, it has
been made available as a primitive function in Parallel Pascal. The first parameter to
transpose is the array to be transposed and the following two parameters specify which
dimensions are to be interchanged. If only one dimension is specified then the array is
flipped about that dimension.

Distribution Functions

The distribution of scalars to arrays is done implicitly in parallel expressions. To
distribute an array to a larger number of dimensions the expand standard function is
available. This function increases the rank of an array by one by repeating the contents
of the array along a new dimension. The first parameter of expand specifies the array to
be expanded, the second parameter specifies the number of the new dimension and the
last parameter specifies the range of the new dimension.

This function is used to maintain a higher degree of parallelism in a parallel state-
ment which may result in a clearer expression of the operation and a more direct parallel
implementation. In a conventional serial environment such a function would simply
waste space. For example, to distribute a N-element vector A over all rows of a N x N
matrix, the expression is "expand(A,1,1.N)"; as an alternative, to distribute the vector
over the columns, the second argument to expand should be changed to 2.

Sub-Array Selection

Selection of a portion of an array by selecting either a single index value or all index
values for each dimension is frequently used in many parailel algorithms; e.g., to select
the ith row of a matrix which is a vector. In Parallel Pascal all index values can be
specified by eliding the index value for that dimension.

Conditional Execution

An important feature of any parallel programming language is the ability to have
an operation operate on a subset of the elements of an array. In Parallel Pascal a where -
do - otherwise programming construct is available which is similar to the conventional if
- then - else statement except that the control expression results in a Boolean array rather
than a Boolean scalar. All parallel statements enclosed by the where statement must
have results which are the same size as the controlling array. Only result elements

which correspond to true elements in the controlling array will be modified. Unlike the
if statement, both clauses of the where statement are aiways executed.

System Support

In addition to the MPP Parallel Pascal compiler there is a Parallel Pascal translator
and a library preprocessor to aide high level program development. The translator
translates a Parallel Pascal program into a standard Pascal form. In this way, conven-
tional serial computers can be used to develop and test Parallel Pascal programs if they
have a standard Pascal compiler.

Standard Pascal has no library facility; all subprograms ie., procedures and func-
tions, must be present in the source program. A library preprocessor was developed to
allow the use of libraries without violating the rules of standard Pascal

MPP Compiler Restrictions

The Parallel Pascal compiler for the MPP currently has several restrictions. The
most important of these is that the range of the last two dimensions of a parallel array
are constrained to be 128; ie., to exactly fit the parallel array size of the MPP. It is possi-
ble that language support could have been provided to mask the hardware details of the
MPP array size from the programmer; however, this would be very difficult to do and
efficient code generation for arbitrary sized arrays could not be guaranteed. Matrices
which are smaller than 128 x 128 can usually be fit into a 128 x 128 array by the pro-
grammer. Frequently, arrays which are larger than 128 x 128 are required and these are
usually fit into arrays which have a conceptual size which is a multiple of 128 x 128.
For example, a large matrix of dimensions (m * 128) x (n * 128) is specified by a four
dimensional array which has the dimensions m x n x 128 x 128. There are two funda-
mental methods for packing the large matrix data into this four dimensional array (see
Fig. 3.b), this packing may be directly achieved by the staging memory in both cases.

Host programs for the. MPP can be run either on the main control unit (MCU) or on
the VAX; in the latter case the MCU simply relays commands from the VAX to the PE
array. The advantages of running on the VAX is a good programming environment,
floating point arithmetic support and large memory (or virtual memory). The advantage
of running on the MCU is more direct control of the MPP array.

Compiler directives are used to specify if the generated code should run on the MCU
or the VAX. With the current implementation of the code generator, only complete pro-
cedures can be assigned to the MCU and only programs on the MCU can manipulate
parallel arrays. Therefore, the programmer must isolate sections of code which deal with
the PE array in procedures which are directed to the MCU.

MPP PERFORMANCE EVALUATION

The peak arithmetic performance of the MPP is in the order of 400 million floating
point operations per second (MFLOPS) for 32 bit data and 3000 million operations per
second (MOPS) for 8-bit integer data. In order to sustain this performance the data
matrices to be processed must be as large as the processor array or larger and the amount
of time transferring data between processors should be relatively small compared to the
time spent on arithmetic computations. For image processing the former constraint is
rarely a problem; however, the latter constraint requires careful study.

In order to analyze the effectiveness of the interconnection network for different
manipulations it is necessary to characterize the processing speed of the PE and the speed
of the interconnection network. On the MPP both of these are data dependent; we have
considered three representative cases: single-bit Boolean data, 8-bit integer data and 32-bit
floating-point (real) data. For each of these data types we have estimated a typical time
for an elemental operation. These estimates are of a reasonable order for this minimal PE
architecture but are not very precise. For example, the instruction cycle time for a
memory access and operation on the MPP is 100 ns. An elemental boolean operation may
be considered to take 100 ns; however, it may be argued that an operation should involve
two operands and have all variables in memory in which case three memory accesses
(instructions) would require 300ns. For our analysis a two instruction (200 ns) model
was used to represent Boolean instruction times. For the real and integer data a con-
venient number midway between the times for addition and multiplication was used;
this was § us. for an integer operation and 40 us. for a real operation. It should be
remembered that elemental operations also include many other functions such as tran-
scendental functions since these can be computed in times comparable to a multiplication
on a bit-serial architecture. By adding a large amount of additional hard ware to each PE
it is possible to increase the speed of multiplication by 10 times or more [8]

For each of the data manipulations considered, times for the three different data
types was computed. The performance of the MPP for each manipulation is indicated by
the ratio of the data transfer time to an elemental PE operation on the same data type;
this will be called the transfer ratio. One way to look at this ratio is the number of ele-
mental data operations which must be performed between data transfers for the data
transfers not to be the dominant cost for the algorithm. On the MPP data may be shifted
between adjacent PE’s in one instruction time (100 ns.) concurrently with a PE processing
instruction.

Shift and Rotate Operations

The only permutation function which is directly implemented by the MPP is the
near neighbor rotate (or shift). The direction of the rotation may be in any of the four
cardinal directions. The rotation utilizes the toroidal end around edge connections of the
mesh. The shift function is similar except that the mesh is not toroidally connected and
zeroes are shifted into elements at the edge of the array; therefore, the shift function is
not a permutation function in the strict sense. The concept of the rotate and shift func-
tions extends to n dimensions; on the MPP the last two dimensions of the array
correspond to the parallel hardware dimensions and are executed in parallel, higher
dimension operations are implemented in serial. The cost of the rotate function is depen-
dent on the distance rotated. It also depends on the size of the data elements to be per-
muted.

The transfer ratios for the shift operation are given in Table 1. Ratios are given for
shift distances of 1 and 64 elements; 64 is the largest shift which will normally be
required in a single dimension on a 128 x 128 matrix since a shift of 65 can be obtained
with a rotate of -63 and a mask operation. The worst case figures for a two dimensional
shift is 64 in each direction; ie., twice the figures given in Table 1.

For single element shifts the interconnection network is more than adequate for all
data types. For maximum distance shifts the ratio of 33 for Boolean data could cause
problems for some algorithms but the situation is much better for real data.

Table 1: The Cost for Shift and Rotate Operations

Shift Operation cost in us. Transfer Ratio
distance
Boolean integer real Boolean integer real
1 0.2 1.6 6.4 1.0 0.32 0.16
64 6.5 51 210 33 10 5.2

Important Data Manipulations

A simple algorithm to perform any arbitrary data mapping on the MPP is as fol-
lows. Start with the address of where the data is to come from in each PE. For each PE
compute the distance that the data must be moved to reach that PE. Using the spiral
interconnections, rotate the data 16384 times. After each rotation compare the distance
in each PE with the distance moved and if they match then store the data for that PE.
The transfer ratios for this algorithm are 82000, 10000 and 4200 for Boolean integer and
real data types respectively. Obviously, this is much too slow for most practical applica-
tions. Fortunately, for most applications only a small number of regular data mappings
are required; efficient algorithms can be developed for most of these mappings.

The transfer ratio for a number of important data manipulations is shown in Table
2. The figures for large arrays correspond to the blocked data scheme. For large arrays
the transfer ratio is normalized by the cost of an operation on the whole array.

This technique may be applied to almost any parallel architecture. It is expected
that the results obtained for the MPP would be very similar to those obtained for other
like architectures such as the Distributed Array Processor (DAP) [9] or NCR’s GAPP pro-
cessor chip which contains 72 PE's with local memory [4). The results given in Table 2
could be used by programmers to predict the performance of algorithms on the MPP. A
more detailed analysis of data mappings on the MPP is given in [10]

For the MPP, the results indicate that, although arbitrary data mappings may be
very costly, some important data manipulations can be done very efficiently. The shift
register, which has a 2 times speedup factor for multi-bit arithmetic also has a significant
effect on the implementation of several of the multi-bit data manipulations studied.
Especially interesting is the improvement of over 10 times for real data distribution. The
shuffie cannot be implemented fast enough for efficient FFT implementation; however,
other data mapping strategies for the FFT, such as butterfly permutations, are well
known which have a much more efficient implementation on the MPP.

On the DAP row and column distribution is implemented directly by special
hardware buses. For the MPP we can see from Table 2 that no advantage would be
gained from this hardware for real data operations and possibly very little advantage for
integer operations.

The MPP can effectively implement algorithms on pyramid data structures. Hor-
izontal operations are done with near neighbor operations; ie. single element shifts. Vert-
ical operations require data mappings similar to the shuffle permutation; the times for
these operations are given in Table 2. These times for numeric data are quite reasonable
for many pyramid algorithms. A detailed analysis of pyramid operations on the MPP is
given in [11]

Sorting has been proposed as one technique for doitig arbitrarjr data permutations on
the MPP; the cost of bitonic sorting on the MPP is given in Table 2. This cost is very
high although not as high as the arbitrary data mapping algorithm.

The last row in Table 2. shows the transfer ratio for swapping a matrix with the
staging memory. In this case the transfer ratio indicates the number of operations which

Table 2: Transfer Ratios for Different Data Manipulations and Array Sizes

Array Size
Data Manipulation
128 x 128 256 x 256 512 x 512

Boolean integer real |Boolean integer real |Boolean integer real
[Data Shift :
a) 1 element 1.0 032 016 20 05 024 20 05 024
b) worst case 33 102 5.2 33 10 5.2 33 10 5.2
Broadcast
a) Global 2 0.64 0.32 088 028 0.14 059 020 0.09
c) Row (or column)] 68 32 052 35 1.68 030, 182 092 0.19
Shuffle 640 0 42 640 20 42 640 20 42
(2-dimensional) :
Transpose 840 110 4 840 110 44 840 110 44
Flip 190 43 21 190 43 21 190 43 21
Pyramid Up 330 45 21 110 15 7.5 28 4 23
(sum reduce)
Pyramid down 330 4 19 110 15 6.4 28 39 17
Sort 19000 1100 280 12000 870 230 |14000 790 210
Swap 256 20 10 256 20 10 256 20 10

must be performed on each swapped matrix for there to be no significant overhead due to
swapping. Since the transfer ratio does not change with array size, this suggests that
spooling with large matrices for near neighbor operations would be more efficient than
spooling with 128 x 128 blocks.

APPLICATIONS

The MPP was originally designed for processing multispectral satellite imagery and
synthetic aperture radar imagery. Both of these applications have now been demon-
strated on the MPP. Other uses of the MPP are now being explored. There are now 36
active projects on the MPP; these can grouped as follows: physics (10), earth sciences (5)
signal and image processing (7), and computer science (14). A full list of these projects is
given in Appendix A.

CONCLUSION

The Massively Parallel Processor is a highly effective computer for a large range of
scientific applications. It is representative of the class of highly parallel SIMD mesh con-
nected computers. Novel features of the MPP design are the staging memory and the PE
shift register. The MPP has demonstrated its capability to implement the image process-
ing algorithms for which it was originally designed; however, the current system lacks
the very high speed peripheral devices needed to optimize its performance. It is also being
used for a much broader range of scientific applications. The main limitation with the
MPP when used for other applications is the limited amount of local memory (1024
bits/PE). This should not be a problem with future systems especially since the recent
advances in memory technology. This problem has been offset on the MPP by judicious
use of the staging memory.

The problem frequently cited for mesh connected SIMD architectures is the
inefficiency of the mesh interconnection scheme when used for other than near neighbor
tasks. However, this is not a problem for many practical applications on the MPP; for
example, FFT and pyramid operations can be effectively implemented especially for very
large data structures.

The MPP is more cost effective for suitable applications than supercomputers of a
similar age. Future SIMD mesh connected computers may be anticipated which will take
advantage of recent VLSI technology and will be much more powerful than the MPP.
These systems can be expected to be much more cost effective than more conventional
supercomputers for suitable applications such as low level image processing. These archi-
tectures can also be effectively implemented at smaller scales; for example, as attached
processors to microprocessor systems.

The cost of using a highly parallel computer is the change of programming style and
the need to reformulate existing programs. However, programming in an appropriate
high level language is often not conceptually more difficult than programming a conven-
tional computer. In fact, in some respects, it is simpler since arrays are manipulated
without the multiple do loops required in conventional serial programming languages.

REFERENCES

1. K E. Batcher, "Design of a Massively Parallel Processor,” IEEE Transactions on
Computers C-299) pp. 836-840 (September 1981).

J. L. Potter, The Massively Parallel Processor, MIT Press (1985).

A. P. Reeves, “Parallel Pascal: An Extended Pascal for Parallel Computers,” Journal
of Parallel and Distributed Computing 1 pp. 64-80 (1984).

?CR Corporation, Geometric Arithmetic Parallel Processor, NCR, Dayton, Ohio
1984).

S. G. Morton, E. Abreau, and F. Tse, "ITT CAP-Toward a Personal Supercomputer,”
IEEE Micro, pp. 37-49 (December 1985).

6. A. P. Reeves, “Fault Tolerance in Highly Parallel Mesh Connected Processors,” in
(Computing Structures for Image Processing, ed. M. J. B. Duff, Academic Press
1983).

7. A. P. Reeves, “Languages for Parallel Processors,” International Workshsop on Data
Analaysis in Astronomy, , Erice, Italy(April 1986).

8 A, P. Reeves, "The Anatomy of VLSI Binary Array Processors,” in Languages and
Architectures for Image Processing, ed. M. J. B. Duff and S. Levialdi, Academic
Press (1981).

9. R. W. Gostick, "Software and Algorithms for the Distributed-Array Processor,” JCL
Technical Journal, pp. 116-135 (May 1979).
10. A. P. Reeves and C. H. Moura, “Data Manipulations on the Massively Parallel Pro-

cessor,” Proceedings of the Nineteenth Hawaii International Con ference on System
Sciences, pp. 222-229 (January, 1986).

11. A. P. Reeves, *Pyramid Algorithms on Processor Arrays,” Proceedings of the NATO
Advanced Research Workshop on Pyramidal Systems for Image Processing and
Computer Vision,, Maratea, Italy(May 1986).

powp

A

APPENDIX A. Current Research Using the MPP

Dr. John A. Barnden Diagramtic Information-Processing in Neural
Indiana University Arrays

Dr. Richard S. Bucy Fixed Point Optimal Nonlinear Phase Demo-
Univ. of Southern California dulation

Dr. Gregory R. Carmichael Tropospheric Trace Gas Modeling on the MPP

University of Iowa

Dr. Tara Prasad Das

State University of New York at Al-

bany
Dr. Edward W. Davis

North Carolina State University

Dr. Howard B. Demuth
University of Idaho

Dr. James A. Earl
University of Maryland

Mr. Eugene W. Greenstadt
TRW

Dr. Chester E. Grosch

NASA-L angley Research Center

Dr. Robert J. Gurney
Goddard Space Flight Center

Dr. Martin Hagan
University of Tulsa

Dr. Harold M. Hastings
Hofstra University

Dr. Sara Ridgway Heap
Goddard Space Flight Center

Dr. Nathan Ida
The University of Akron

Dr. Robert V. Kenyon
MIT Man Vehicle Laboratory

Dr. Daniel A. Klinglesmith, III
Goddard Space Flight Center

Dr. Daniel A. Klinglesmith, III
Goddard Space Flight Center

Dr. Chin S. Lin
Southwest Research Institute

Dr. Stephen A. Mango
Naval Research Laboratory

Dr. Michael A. McAnulty
University of Alabama

Dr. AP. Mulhaupt
University of New Mexico

Investigations on Electronic Structures and As-
sociated Hyperfine Systems Using the MPP

Graphic Applications of the MPP
Sorting and Signal Processing Algorithms A

Comparison of Parallel Architectures

Numerical Calculations of Charges Particle
Transport

Space Plasma Graphics Animation

Adapting a Navier-Stokes Code to the MPP

A Physically-Based Numerical Hillslope Hy-
drological Model with Remote Sensing Cali-
bration

Sorting and Signal Processing Algorithms A
Comparison of Parallel Architectures

Applications of Stochastic and Reaction —
Diffusion Cellular Automata

Automatic Detection and Classification of
Galaxies on "Deep-Sky”" Pictures

Solution of Complex, Linear Systems of Equa-
tions

Application of Parallel Computers to Biomedi-
cal Image Analysis

Comet Haley Large-Scale Image Analysis
FORTH, an Interactive Language for Control-
ling the MPP

Simulation of Beam Plasma Interactions Util-
izing the MPP

Synthetic Aperture Radar Processor System
Improvements

Algorithmic Commonalities in The Parallel
Environment

Kalman Filtering and Boolean Delay Equa-
tions on an MPP

Dr. John T. O’'Donnell
Indiana University

Mr. Martin Ozga :
USDA-Statistical Reporting Service
(SRS)

Dr. HK. Ramapriyan
Goddard Space Flight Center

Dr. John Reif
Harvard University
Computer Science

Dr. LR. Owen Storey
Stanford University

Dr. James P. Strong
Goddard Space Flight Center

Dr. Francis Sullivan
Nati_onal Bureau of Standards

Dr. Peter Suranyi
University of Cincinnati

Dr. James C. Tilton
Goddard Space Flight Center

Dr. William Tobocman
Case Western Reserve University

Mr. Lloyd A. Treinish
Goddard Space Flight Center

Dr. Scott Von Laven
KMS Fusion, Inc.

Dr. Elden C. Whipple, Jr.
UCSD/CASS/C-001

Dr. Richard L. White
Space Telescope Science Institute

"Dr.LoL Yin

Goddard Space Flight Center

Simulating an Applicative Programming
Storage Architecture Using the NASA MPP

A Comparison of the MPP with Other Super-
computers for Landsat Data Processing
Development of Automatic Techniques for
Detection of Geological Fracture Patterns
Parallel Solution of Very Large Sparse Linear
Systems

Particle Simulation of Plasmas on the MPP

Development of Improved Techniques for
Generating Topographic Maps from Spacecraft
Imagery

Phase Separation by Ising Spin Simulations

A Study of Phase Transitions in Lattice Field
Theories on the MPP

Use of Spatial Information for Accurate Infor-
mation Extraction

Wave Scattering by Arbitrarily Shaped Tar-
gets Direct and Inverse

Animated Computer Graphics Models of Space
and Earth Sciences Data Generated via the
MPP

Free-Electron Laser Simulations on the MPP

A Magnetospheric Interactive Model Incor-
porating Current Sheets (MIMICS)

The Dynamics of Collisionless Stellar Systems

Reconstruction of Coded-Aperature X-ray Im-
ages

Appendix E

Proceedings of the Nato Advanced Research Workshop on Pyramidal Systems for Image

Processing and Computer Vision Maratea, [taly, May 1986

PYRAMID ALGORITHMS ON PROCESSOR ARRAYS

Anthony P. Reeves
School of Electrical Engineering
Cornell University
Ithaca, New York 14853

Abstract

A class of adaptive grid size algorithms, called pyramid algorithms, have received much
attention in recent years for computer vision applications. Special hardware architectures
which are optimal for grid resolution transformations have been proposed to implement these
algorithms, In this chapter analysis techniques are described which measure the effectiveness
of different architectures. A compan‘sdn is made between the more conventional planar or
flat architecture and the optimal pyramid architecture. It is shown that in many cases the
additional hardware of the pyramid scheme offers little improvement in performance.

INTRODUCTION

The general concept of pyramid algorithms is to decompose a large matrix intc a
number of lower resolution matrices for more convenient processing. The most typical
pyramid structure consists of a square base matrix with dimensions N x N (where N is a
power of 2) and logy N reduced matrices (layers) each layer having dimensions half that of
the layer below until a single element apex (layer O) is reached. A number of algorithms for
image processing have been based on this data structure. Cther applications such as multigrid
techniques for PDE'’s can also be considered in the pyramid framework.

In order to achieve the very high data processing rates needed for image processing
applications a aumber of highly parallel computer architectures have been designed and
implemented; several of such systems are now commercially available. A very effective
paralilel computer architecture for conventional image processing applications is the mesh
connected processor array. For processing pyramid data structures a number of researchers
have proposed hardware modifications to the two dimensicnal processor array. These
modifications directly match the pyramid data structure by having interconnected layers of
processor arrays attached to the base processor array. In this paper techniques are developed
to investigate the efficiency with which pyramid algorithms can be implemented on processor
arrays and the effectiveness of enhanced hardware schemes is considered.

A major consideration in the design of a highly parallel computer architecture is the
processor interconnection network. Processors must communicate with a speed which does
not impede data processing; however, a general processor interconnection network is usually
prohibitively expensive when a large number of processors are involved. A major design
task is to design a restricted network which is adequate for the anticipated tasks for the sys-
tem. The mesh interconnection scheme is simple to implement and is well suited to a large
number of image processing algorithms. The first section of this paper describes the Mas-
sively Parallel Processor (MPP) [1] and the performance of the processor interconnection net-
work is considered in detail.

The second section of this paper deals with the implementation of pyramid algorithms
on the MPP and also considers the effect of adding a pyramid hardware structure to the
MPP. A two dimensional processor array will be called a flaz processor and a processor array
with additional hardware for pyramid data structures will be called a pyramid processor.
The general techniques used to analyze these architectures may be used to determine the
effectiveness of other highly parallel processor systems for pyramid applications.

The hard ware enhancement of a pyramid of processing arrays approaches %. times the

number of processing elements (PE's) required for the base array, as the number of layers

increases. Therefore, the maximum possible increase in arithmetic capability is _g_ However,

the major advantage claimed for the pyramid processor is the speedup in interprocessor data
routing. In order to compute a global function over an N x N processor array N processing
steps are required. However, on a pyramid processor global information may be extracted at
the apex of the pyramid after log2 N steps. The potential gain for the pyramid system is
therefore N/log,N; this value is shown in Table 1. for different values of N. The MPP has a
128 x128 base array therefore the potential speedup is in the order of 18.

The pyramid computer has an improved performance for two types of operations: (a)
multiresolution algorithms which involve frequent changes between matrix resolutions and
(b) global feature extraction operations. However, the additional pyramid hardware must be
justified by the multiresolution operations alone since there are more cost effective hardware
enhancements for global feature extraction [2).

Table 1: Data routing advantage of the Pyramid Architecture

N 4 | 8 16 | 32 | 64 128 256 | 512 1024
N/ log,N 64 | 1066 | 1829 | 32 | 568 102.4

b

The cost of the additional hardware for the pyramid processor has been considered by

some to be simply %- times the cost of the flat processor since this is the increase in the

number of PE’s. The cost will, in general, be much higher than this since each PE now
requires more interconnections (an increase from 4 to 9 in our example) and interprocessor
connections are no longer local which could be particularly expensive for multiprocessor chip
designs.

FLAT PROCESSOR ARRAYS

The Massively Parallel Processor consists of 16384 bit-serial Processing Elements (PE’s)
connected in 128 x 128 mesh [1} That is each PE is connected to its 4 adjacent neighbors in a
planar matrix. The two dimensional grid is one of the simplest interconnection topologies to
implement, since the PE’s themselves are set out in a planar grid fashion and all interconnec-
tions are between adjacent components. Furthermore, this topology is ideal for two dimen-

sional filtering operations which are common to low level image processing such as small
window convolution.

The PE’s are bit-serial, ie. the data paths are all one bit wide. This organization offers
the maximum flexibility, at the expense of the highest degree of parallelism, with the
minimum number of control lines. For example, as an alternative to the MPP consider 2048
8-bit wide PE’s (on the MPP one chip contains 8 1-bit PE's). The 8-bit version would have a
less rich set of instructions restricted to predefined byte operations while the bit-serial proces-
sors can process any data format. The advantage gained with the 8-bit system is that full
processor utilization is achieved with arrays of 2048 elements while arrays of 16384 ele-
ments are required for full utilization of the MPP. The MPP PE is well matched to low level

image processing tasks which often involve very large data arrays of short integers which
may be from 1 to 16 bits.

The effectiveness of the MPP architecture for various interprocessor data manipulations
is considered. The MPP offers a simple basic model for analysis since it involves just mesh
interconnections and bit-serial PE's. The minimal architecture of the MPP is of particular
interest to study, since any architecture modifications to improve performance would result
in a more complex PE or a more dense interconnection strategy. The MPP is programmed in
a high level language called Parallel Pascal [3]

The MPP Processing Element

The MPP processing element is shown in Fig. 1. All data paths are one bit wide and
there are 8 PE’s on a single CMOS chip with the local memory on external memory chips.

Except for the shift register, the design is essentially a minimal architecture of this type.
The single bit full adder is used for arithmetic operations and the Boolean processor, which
implements all 16 possible two input logical functions, is used for all other operations. The
NN select unit is the interface to the interprocessor network and is used to select a value
from one of the four adjacent PE’s in the mesh.

The S register is used for I/O. A bit plane is slid into the S registers independent of the
PE processing operation and it is then loaded into the local memory by cycle stealing one
cycle. The G register is used in masked operations. When masking is enabled only PE’s in
which the G register is set perform any operations; the remainder are idle. The masked opera-
tion is a very common control feature in SIMD designs. Not shown in Fig. 1. is an OR bus

i28
Program 1 L |
_— I B
[|

Control T T 128

| Sudt]
Unit e— / !
T A- T 1

/

;‘: NN To NN c
PEs
E —= select
W ey . P .EJ
—— Full s
Boolean B e=4N-bit shift register = A adder —
| processor b]
l:\ | 1
\)
1
S G Local memory

Figure 1. The MPP Processing Element

output from the PE. All these outputs are connected (ORed) together so that the control unit
can determine if any bits are set in a bitplane in a single instruction. On the MPP the local
memory has 1024 words (bits) and is implemented with bipolar chips which have a 35 ns
access time.

The main novel feature of the MPP PE architecture is the reconfigurable shift register.
It may be configured under program control to have a length from 2 to 30 bits. Improved
performance is achieved by keeping operands circulating in the shift register which greatly
reduces the number of local memory accesses and instructions. It speeds up integer multipli-
cation by a factor of two and also has an important effect on floating-point performance.

Flat Array Performance Evaluation

In order to analyze the effectiveness of the interconnection network for different mani-
pulations it is necessary to characterize the processing speed of the PE and the speed of the
interconnection network. On the MPP both of these are data dependent; we have considered
three representative cases: single-bit Boolean data, 8-bit integer data and 32-bit floating-point
(real) data. For each of these data types we have estimated a typical time for an elemental
operation. These estimates are of a reasonable order for this minimal PE architecture but are
not very precise. For example, the instruction cycle time for a memory access and operation
on the MPP is 100 ns. An elemental boolean operation may be considered to take 100 nss
however, it may be argued that an operation should involve two operands and ‘have all vari-
ables in memory in which case three memory accesses (instructions) would require 300ns.
For our analysis a two instruction (200 ns) model was used to represent Boolean instruction
times. For the real and integer data a convenient number midway between the times for
addition and multiplication was used; this was § us. for an integer operation and 40 us. for a
real operation. It should be remembered that elemental operations also include many other
functions such as transcendental functions since these can be computed in times comparable
to a multiplication on a bit-serial architecture. By adding a large amount of additional

hardware to each PE it is possible to increase the speed of multiplication by 10 times or more
[4].

For each of the data manipulations considered, times for the three different data types
was computed. The performance of the MPP for each manipulation is indicated by the ratio
of the data transfer time to an elemental PE operation on the same data type; this will be
called the transfer ratio. One way to look at this ratio is the number of elemental data
operations which must be performed between data transfers for the data transfers not to be
the dominant cost for the algorithm. On the MPP data may be shifted between adjacent PE’s
in one instruction time (100 ns.) concurrently with a PE processing instruction.

For many applications the physical dimensions of the parallel hardware are smaller
than the dimensions of the array to be processed. In this case the data array is processed as a
set of blocks. An extension of the data manipulation algorithms to deal with this situation is
discussed.

Shift and Rotate Operations

The only permutation function which is directly implemented by the MPP is the near
neighbor rotate (or shift). The direction of the rotation may be in any of the four cardinal
directions. The rotation utilizes the toroidal end around edge connections of the mesh. The
shift function is similar except that the mesh is not toroidally connected and zeroes are
shifted into elements at the edge of the array; thefefore, the shift function is not a permuta-
tion function in the strict sense. The concept of the rotate and shift functions extends to n
dimensions; on the MPP the last two dimensions of the array correspond to the parallel
hardware dimensions and are executed in parallel, higher dimension operations are imple-
mented in serial. The cost of the rotate function is dependent on the distance rotated. It also
depends on the size of the data elements to be permuted.

The transfer ratios for the shift operation are given in Table 2. Ratios are given for
shift distances of 1 and 64 elements; 64 is the largest shift which will normally be required
in a single dimension on a 128 x 128 matrix since a shift of 65 can be obtained with a rotate
of -63 and a mask operation. The worst case figures for a two dimensional shift is 64 in each
direction; i.e., twice the figures given in Table 2.

For single element shifts the interconnection network is more than adequate for all data |
types. For maximum distance shifts the ratio of 33 for Boolean data could cause problems for
some algorithms but the situation is much better for real data.

Large Array Processing

Frequently the data to be processed by a parallel processor will be in the format of
arrays which exceed the fixed range of parallelism of the hardware. Therefore, it is

Table 2 The Cost for Shift and Rotate Operations

Shift Operation cost in ws. Transfer Ratio
distance
Boolean integer real Boolean integer real
1 0.2 ‘1.6 6.4 1.0 0.32 0.16
64 6.5 51 210 33 10 5.2

necessary to have special algorithms that will deal with large arrays by breaking them down
into blocks manageable by the hardware, without loosing track of the relationships between
different blocks.

There are two main schemes for storing large arrays on processor arrays: the blocked
scheme and the crinkled scheme. Consider that a M x M array is distributed on an N x N
processor array where K = M / N is an integer. In the blocked scheme a large array is con-
sidered as a set of K x K blocks of size N x N each of which is distributed on the processor.
Therefore, elements which ar allocated to a single PE are some multiple of N apart on the
large array. In the crinkled scheme each PE contains a K x K matrix of adjacent elements of
the large array. Therefore, each parallel processor array contains a sampled version of the
large array. For conventional array operations which involve large array shift and rotate
operations both blocked and crinkled schemes can be implemented with only a very small
amount of overhead. The crinkled scheme is slightly more efficient when shift distances are
very small and the blocked scheme has a slight advantage when the shift distance is of the
order of N.

The Performance of the MPP

The transfer ratio for a number of important data manipulations is shown in Table 3.
The figures for large arrays correspond to the blocked data scheme. For large arrays the
transfer ratio is normalized by the cost of an operation on the whole array; ie., K x K array
operations.

This technique may be applied to almost any parallel architecture. It is expected that
the results obtained for the MPP would be very similar to those obtained for other like
architectures such as the Distributed Array Processor (DAP) [5] or NCR’s GAPP processor
chip which contains 72 PE’s with local memory [6]l The results given in Table 3 could be
used by programmers to predict the performance of algorithms on the MPP.

For the MPP, the results indicate that, although arbitrary data mappings may be very
costly, some important data manipulations can be done very efficiently. The shift register,
which has a 2 times speedup factor for multi-bit arithmetic also has a significant effect on
the implementation of several of the multi-bit data manipulations studied. Especially
interesting is the improvement of over 10 times for real data distribution. The shuffle cannot
be implemented fast enough for efficient FFT implementation; however, other data mapping
strategies for the FFT, such as butterfly permutations, are well known which have a much
more efficient implementation on the MPP. A more detailed analysis of data mappings on the
MPP is given in [7}

On the DAP row and column distribution is implemented directly by special hardware
buses. For the MPP we can see from Table 3 that no advantage would be gained from this

hardware for real data operations and possibly very little advantage for integer operations.

PYRAMID PROCESSING

A Pyramid Architecture

A hypothetical architecture of a pyramid machine based on the MPP is illustrated in
Fig. 2. The PE is similar to the MPP PE with the addition of five additional interprocessor
connections. Four of these are connected to the four children at the next lower level and the
fifth is connected to the parent PE in the layer above.

Pyramid Primitive Operations

We consider processing operations on pyramid data structures to be one of three types:
elemental, in which no communication between PE’s is involved, horizonzal, in which adja-
cent elements in the same pyramid level are combined, and vertical, in which elements at
different adjacent levels are combined. Furthermore, we consider that these operations may
be applied to the total pyramid or to a subset of levels. Other relevant pyramid operations
include feature extraction and data broadcast.

Pyramid Operations on a Flat Array
An efficient scheme for mapping a pyramid data structure to a N x N processor array is
as follows. All levels of the pyramid which have dimensions less than N x N are mapped

into a single plane. The level with size N x N is mapped into a second plane and levels
lower than this are mapped in such a way that each PE is allocated to a sub-pyramid with

Table 3: Transfer Ratios for Different Data Manipulations and Array Sizes

Array Size
Data Manipulation
128 x 128 256 x 256 512 x 512

Boolean integer real |Boolean integer real |Boolean integer real
Data Shift
a) 1 element 1.0 032 016 20 0.5 024 20 05 024
b) worst case 33 102 52 | 33 10 52 | 33 10 5.2
Broadcast
a) Global 2 064 032 088 028 Q14| 059 020 Q.09
¢) Row (or column) | 68 32 052 35 1.68 0.30| 18.2 092 0.19
Shuffle 640 20 42 640 90 42 640 20 42
(2-dimensional)
Transpose 840 105 44 840 105 44 840 105 44

|
1

mh

I
|

|

|
b

\\

!

Ct C2 C3 C4
\ / PR :
N—= / To NN
C
S—— NN PEs
E —=1 select
W —= P c
- - - Full s
Boolean B N-bit shift register = A |-={ gdder
| processor
— § = G Local memory

Figure 2. The Pyramid Processing Element

adjacent elements. This is achieved by storing each level with the crinkled storage format.

Therefore, for a k-level pyramid the top n - 1 levels (n = log2 N) are stored in one plane,
k=-a—1
and the remaining k - n levels are stored in Y 2% = %-(220‘_")—1) planes. Data transitions
j=0
between the top n - 1 levels is achieved with perfect shuffle permutations. The perfect
shuffle for an 8 x 8 matrix is shown in Fig. 3. Each quadrant of the matrix is distributed

- over the whole matrix. A 4 x 4 pyramid structure embedded in an 8 x 8 matrix is shown in

Fig. 4. With this organization, a transition to a lower level can be achieved by a shuffle and
a transition to a higher level can be achieved with an inverse shuffle for all levels simultane-
ously. This scheme makes good use of memory and is optimal for horizontal operations but is

(a)

49 150 |51 {52 |53 (54 |55 |56

3337 .;,4 38 (35(39 .3640
w9 13 Ero] 4 fid s Fi2d e
41 | 454246 |43 | 47 |44 |48
1173 21 [igd 22 19 23 £30] 24
49 |53 (50|54 | 51|55 |52|56
50 [oe 0 [l > e
57 |61 (58 {62 | 59|63 |60 (64

(b)

Figure 3. The Two Dimensional Perfect Shuffle.
The shuffled version of matrix (a) is shown in (b).

relatively slow for vertical operations.

A Comparative Analysis

To evaluate the cost of macro operations a normalized cost is used which is similar in
concept to the transfer ratio. It is obtained by dividing the actual cost by the cost of an ele-
mental operation on the data structure being processed by the macro operation.

Elemental Operations

The actual time cost in terms of the number of processor array arithmetic operations is
shown in Fig. S for an elemental operation applied to the whole pyramid data structure and
for an architecture with a 128 x 128 base size. The cost for a flat array is shown by the solid

Figure 4. A 4 x 4 base pyramid embedded in an 8 x 8 mesh

30 — Flat architecture
==~ Pyramid architecture

25F

o
O
1
1
]
1
1
1
1
]
]
1
]
]
]
'
!

Actual Cost

]
{

|
|
|
!
|
!
|
|
|
|
|
20 !
|
|
!
|
|
|
|
|
I
|
[
|

/I
—0—0—0=-0] 1 1
8

6 32 64 128 256 5i2 1024
Pyramid Base Width

*—e
I 2 4

Figure 5. The Actual Cost for Elemental Pyramid Operations

line. While the base of the pyramid to be processed is less than 128 x 128 then the whole
pyramid is embedded in a single array and only one operation is required. For a 128 x 128
base pyramid 2 operations are required and a blocked processing strategy is used for larger

pyramids. The cost for the pyramid architecture is shown by the broken line. In this case
the 128 x 128 pyramid is exactly matched to the hardware and only requires one operation.
Larger pyramids must be blocked using the pyramid base level

The normalized cost of a elemental operation on the whole pyramid data structure is
shown in Fig. 6. Since we normalize by the cost of an operation on the whole pyramid, in
this case the result is a constant 1 for all pyramid sizes. For comparison purposes all normali-
zations are done with respect to an operation on a flat array. The broken line in Fig. 6 shows
the normalized cost for an elemental operation for a true pyramid architecture with a 128 x
128 base. When the base of the pyramid to be processed is less than 128 then the cost is the
same for both arch1tectures. When the base is 128 x 128 then a 50% reduction in normalized

cost for the pyramxd arcmtecture is observed. For pyramids with bases larger than 128 x
128 both architectures must process the data in blocks and the advantage of the pyramid
architecture rapidly diminishes. It is important to note that the normalized cost for this
graph and for all following graphs is plotted on a logarithmic scale.

Large Pyramid Processing

When the pyramid structure ro be processed has a base which is larger than the proces-
sor array then a blocking scheme must be used for the lower large levels of the pyramid.
An effective scheme is to use the crinkled storage strategy for each large level. In this way
each PE contains a complete sub pyramid; therefore, level changes for the large levels are
done locally within PE’s and no interprocessor communications are necessary. The crinkled

|
|
|0} — Flat architecture }
--- Pyramid architecture |
s |
Q [
© |
o |
@ 1
= | *—0—0—0—0—0—90 =
S lo \\\ : O——a_ e
= -
o |
2 |
:
|
1 A i A] 1 1 1

0.l e
I 2 4 8 16 32 64 128256 512 1024

Pyramid Base Width

Figure 6. The Normalized Cost for Elemental Pyramid Operations

storage scheme is also very efficient for horizontal operations.

Horizontal Operations

Adjacent element information is readily available for both the architectures considered.
Therefore, the normalized cost for macro operations involving horizontal near neighbor infor-
mation will be similar to Fig. 6 except that the graph will be translated upwards by the
time for the macro operation to be implemented in terms of elemental operations. The cost
of some important horizontal operations is shown in Fig. 7. For reference, the cost of an add
operation is first shown; it is less than one since an add requires less time than a multiply for
integer and real data types. A 3 x 3 mean operation is achieved with four near neighbor
additions, while a 3 x 3 convolution requires 9 multiplications and 8 near neighbor additions.
A symmetric 5 x 5 convolution, such as that used by Burt for Pyramid building [8] requires
6 multiplications and 8 near neighbor additions. An example of an expensive macro opera-
tion is the 10 by 10 convolution which requires 100 multiplications and 99 near neighbor

_ additions.
1000 Add Mean Convolve | Convolve | Convolve
3x3 3x3 5x5 I0x10
Symmetric | o
Separable (O a
ooFr—————— — 4+——— — — — — A A
®
3
8=———4|g——3
? OF— — —- —— — —tA At—— — —— — —]
N
=) A
E o o
(=]
-
A A A Boolean
b 34— — —{— — —+—— 0 |Integer — —
© oo c O Real
(] o]
0.1

Figure 7. The Normalized Cost of some Horizontal Operations

Vertical Pyramid Operations

It is in the vertical operations that the pyramid architecture is expected to excel in com-
parison to a flat architecture. An important operation in many pyramid algorithms is to

build a pyramid from an image located at the lowest level of the pyramid.- We consider a
very simple building operation in which each higher level is constructed from the mean of

the four sons of the adjacent lower level.

Pyramid Building ‘

The cost of pyramid building is shown for a flat processor in Fig. 8 and for a pyramid
processor in Fig. 9. The building cost is normalized by an elemental operation applied to the
whole pyramid data structure. We see that for the worst case base width of 128 the flat
processor is several times slower that the pyramid however this advantage rapidly diminishes
if large pyramids are processed. The Boolean case is particularly bad for the flat array

1000 l
A Boolean |
O Integer A—4
O Readal A/ :
00— — — — . T
—0
@ 8/8\0 A
8 4//8/ l&l
AR AY- S . N
E e { 4\3
E A
5 | o N
| %
e—— —]
a |
|
I
0.1]] 1 !]] !] 1]

I 2 4 8 16 32 64 128 256 512 1024
Pyramid Base Width

Figure 8. The Normalized Cost for Simple Pyramid Building on a Flat Processor Array

1000
A Boolean |
O Integer |
O Real |
I
loop———————— ——————-
_ l
3 |
S - N
- /A/A g
D & 0,
L —_ o= —_— e]
% 10 /A/L.o = -\CI)
: A/o/ o—97N A\
a "o
2 o - | N\
| R — | Ny %0
| \ A
I O
l o
|
0.l 1 1 1 1] 1 1]] !

I 2 4 8 16 32 64 128 256 512 1024
Pyramid Base Width

Figure 9. The Normalized Cost for Simple Pyramid Building on a Pyramid Processor Array

because the overhead to do the pyramid data manipulations cannot be amortized over the
number of bits in the data as it can for the numeric data formats. The flat array although
slower than the pyramid may not be significantly slower in a pyramid building algorithm.
For example consider the overiapped algorithm of Burt [8]. At each level a 5 x 5 convolution
must be computed before proceeding to the next. The cost of computing these convolutions is
comparable to the data building cost. '

Another way to look at the vertical operation cost is to consider a single level reduction;
this is shown for both flat and pyramid processors in Fig. 10. In this case the cost is normal-
ized by an elemental operation on the level at which the reduced data is generated. The
architectures have the same performance when the base is smaller than the level being pro-
cessed. The worst case for the flat processor occurs for the level which is half the base size
since this requires the most interprocessor data transfers. If many operations fall on this
level transition then one technique is to consider the processor array to have a size of 64 x 64.

- The arithmetic processing speed is reduced by four (since only a quarter of the processors are

1000 l
A Boolean |
O Integer 4
O Real A/ :
|

v
100} — — —— A—/; _________
(]

A Bmme s Bmm B o= Bmm=B,
0---0—-0---0-=-0-=--0%

Normalized Cost
o
{
I
|
|
|
|
|

— Flat architecture |
—-—~ Pyramid architecture |

0.1 I RN N E N I S B
Il 2 4 8 16 32 64 (28 256 5I2 1024

Width of Level

Figure 10. The Normalized Cost for Single Layer Reduction
used) but the data transition is managed at least ten times faster.

Data Reduction

In Fig. 11 and Fig. 12 the cost for computing the global sum of the elements in the base
of the pyramid is given. In this case the cost is normalized by an elemental operation over
the whole pyramid data structure. The advantage of the pyramid architecture is not as great
as in the pyramid building example because the flat array is no longer forced to emulate the
pyramid in the highest levels since only the final sum is required.

CONCLUSIONS

A general technique for determining the cost of pyramid algorithms has been presented.
This technique may be used on any flat array architecture to evaluate its performance for
pyramid algorithms and to evaluate the benefit of a pyramid processor hardware enhance-
ment. Once the graphs similar to those given in Figs. 6-12 have been obtained then the mix

{000 ,
A Boolean l
O Integer |
O Readl |
00 — — — —— :_ _____
- |
3 |
? 10 |
e c— c— — — — — — —/ —————
'-‘-3 o—° o\—or
£ g——0 I\A
S o g o\
= | AN
I o e — s — s — —— ——— —— —l— —D— g\—o —
N\
| g
0.' i] 1 | 1 1 |1 i]]

I 2 4 8 16 32 64 128 256 512 1024
Pyramid Base Width

Figure 11. The Normalized Cost for Sum Reduction on a Flat Processor Array

of vertical to other pyramid operations for the desired application must also be determined
for an accurate evaluation.

From the results given in this paper the following observations can be made.

Pyramid algorithms can be effectively implemented on a flat array in many cases; each
application should be examined individually in detail.

If most of the operations are performed in the base of the pyramid then the pyramid
hardware will offer little advantage.

The flat array is substantially worse for Boolean data types than for numeric data types.
Therefore, a preponderance of Boolean data structures favors the pyramid approach.
However, if numeric data types dominate then the case for pyramid hardware is much
weaker., '

The pyraxﬁid hardware can only be justified by the need for a large number of pyramid
level changes in a algorithm. It cannot be justified by the global data reduction func-
tion alone since other techniques can be used on the flat array.

1000 '
A Boolean |
O Integer
O Redl :
ioopP——r—————— - —— -
—d
» Fa\ I\
8 A/ D/D— A
0—0
© / |
o IOFp———— —0 __—l 3\ _——
= a
o o A
E | \ \
S | O,
< U‘
| S\
| =
|
I
Ol 1 1 1 1 1 1 II L 1 1

I 2 4 8 16 32 64 128 256 512 1024
Pyramid Base Width

Figure 12. The Normalized Cost for Sum Reduction on a Pyramid Processor Array

S. The ratio of the hardware base size and the pyramid base size will have a major effect
on the performance. For numeric data processing one way to increase the effectiveness
of the flat array is to use a smaller number of multi-bit processors; therefore the
hardware base size is reduced without loss of processing power.

6. When the pyramid to be processed is much larger than the hardware processor array
then there is very little advantage in having the pyramid hardware. This is the case
when the MPP is used to process pyramids with a base size of 512 x 512.

In summary while the analysis is complex and very application dependent there are a
number of situations which may be identified for which justification for the pyramid archi-
tecture can be determined. The pyramid hardware is hard to justify if either (a) large
pyramid processing techniques are used, (b) the operations to be performed are numeric, or
(¢) vertical operations do not constitute a large part of the pyramid algorithms to be imple-
mented. The strongest case for the pyramid hardware exists when Boolean data dominates

N N G R BN N S B e

the processing and the number of PE's exactly matches the number of elements in the
pyramid data structure.

REFERENCES

1.

K. E. Batcher, "Design of a Massively Parallel Processor,” IEEE Transactions on Com-
puters C-29(9) pp. 836-840 (September 1981).

A. P. Reeves, "On Efficient Global Information Extraction Methods For Parallel Proces-
sors,” Computer Graphics and Image Processing 14 pp. 159-169 (1980).

A. P. Reeves, “Parallel Pascal: An Extended Pascal for Parallel Computers,” Journal of
Parallel and Distributed Computing 1 pp. 64-80 (1984).

A. P. Reeves, "The Anatomy of VLSI Binary Array Processors,” in Languages and
Architectures for Image Processing, ed. M. J. B. Duff and S. Levialdi, Academic Press
(1981).

R. W. Gostick, “Software and Algorithms for the Distributed-Array Processor,” JCL
Technical Journal, pp. 116-135 (May 1979).
NCR Corporation, Geometric Arithmetic Parallel Processor, NCR, Dayton, Ohio (1984).

A. P. Reeves and C. H. Moura, “Data Manipulations on the Massively Parallel Proces-
sor,” Proceedings of the Nineteenth Hawaii International Con ference on System Sci-
ences, pp. 222-229 (January, 1986).

P. J. Burt, “Fast Filter Transforms for Image Processing,” Computer Graphics and
Image Processing 16 pp. 20-51 (1981).

