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ABSTRACT 

In conventional coding for error control, all the information symbols 

of a message are regarcred equally significant, and hence codes are devised 

to provide equal protection for each information symbol against channel 

errors. 

are more significant than the other symbols. 

However, in some occasions, some information symbols in a message 

As a result, it is desired to 

devise codes with multi-level error-correcting capabilities. Another 

situation where codes with multi-level error-correcting capabilities are 

desired is in broadcast communication systems. An m-user broadcast channel 

has one input and m outputs. The single input and each output form a 

I component channel. The component channels may have different noise levels, 
I 

and hence the messages transmitted over the component channels require 

I different levels of protection against errors. In this research, we 
r 

investigate block codes with multi-level error-correcting capabilities, 

I 

which are also are known as unequal error protection (UEP) codes. 

structural properties of these codes are derived. Based on these structural 

properties, two classes of UEP codes are constructed. A subclass of codes 



I. INTRODUCTION 

In conventional channel coding, all the information symbols 

of a message are regarded equally significant, and hence 

redundant (or parity-check) symbols are added to provide equal 

protection for each information symbol against channel errors. 

However, on some occasions, some information symbols in a message 

are more siqnificant than other information symbols in the same 

message. Therefore, it is desirable to devise coding schemes 

which provide higher protection for the more significant 

information symbols and lower protection for the less significant 

information symbols. Suppose a message from an information 

source consists of m parts, each has a different level of 

significance and requires a different level of protection against 

channel errors. An obvious way to accomplish this is to use a 

separate code for each message part and then time share the 

codes. The redundant symbols of each code are designed to 

provide an appropriate level of error-correcting capability for 

the corresponding message part. This coding scheme requires a 

separate encoder and decoder pair for each code. A more 

efficient way is to devise a single code for all the message 

parts. The redundant symbols are designed to provide m levels of 

error protection for the m parts of a message. It has been 

proved that a single code with m levels of error-correcting 

capability usually requires less redundant symbols than that 

required by time-sharing m separate codes with the same m levels 

of error-correcting capability [l-91. Moreover, a single code 

requires only one encoder and one decoder. This may be desirable 
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in many situations. A code with multi-level error-correcting 

capabilities is known as an uneuual error Drotection (UEP) code. 

UEP codes were first studied by Masnick and Wolf [l], then by 

other coding theorists [6,7,10-183. Another situation where 

codes with multi-level error-correcting capabilities are desired 

is in a broadcast channel communication system as shown in Figure 

1, in which m independent information sources attempt to transmit 

information to m separate users through a single transmitter. 

Only message xi emanating from the i-th source is intended to be 

recovered by the i-th decoder (or user). The m messages 

emanating from the m sources are encoded by a single encoder 

into a single codeword v(x1,x2, ...,+). This codeword is 

then transmitted to the m users over a broadcast channel which 

has a single input and m outputs. Each output of the channel is 

connected to a decoder for the corresponding user. Each decoder 

- -  - - 

receives a vector which is a corrupted version of the transmitted - 
- -  - - codeword v(x1,x2, ..., xm). For lsism let Fi be the vector 

received by the i-th decoder. 

into %! which is an estimate of the message xi produced by the 

i-th source. The decoders do not collaborate with each other. 

The broadcast channel actually consists of m comDonent channels, 

where the i-th component channel consists of the input terminal 

and the i-th output terminal of the broadcast channel. These m 

component channels may have different noise levels, and hence the 

m messages transmitted over the component channels require 

different levels of protection against errors. Consequently, 

Then, the i-th decoder decodes Ti 
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codes with multi-level error-correcting capabilities are 

desired. Coding for broadcast channels has recently been studied 

by Heegard, dePedro and Wolf [9], Dowey and Karlof [19], 

Bassalygo, et. al., [ 7 ] ,  and Kasami, et. al. [ 8 ] .  

In this paper we investigate codes with multi-level error- 

correction capabilities. We intend to unify the concepts that 

have been separately developed for the single user communications 

and the multi-user broadcast communications. Two classes of 

multi-level UEP codes are presented. In this paper we use the 

terms, multi-level error-correction codes and multi-level UEP 

codes, interchangeably. 

11. BASIC CONCEPTS 

A. Cloud Structures of Block Codes and the Associated Separation 

Vectors 

Let A1, A2, ... , be m message spaces. A message from Ai - 

is denoted by xi. Consider the following set of m-tuples: 

(1) 
- - 

A = { (Xl,x2, ... ,xm) : xi E Ai for lsilm } 

The set A is called the product of A1, A2, ...,%, and Ai is 

called the i-th component message space of the message space A. 

Accordingly, xi is called the i-th component message of the 

message (xl,x2,...,xm) from A. Let IS1 denote the cardinality 

of a set S. Then 

- 

- 

IAI = lAll x lA2l x * * *  x IJ+nl. 
A special case is that, for Isism, the i-th component message 

space Ai consists of all the 2ki ki-tuples over GF(2). In this 
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case, each message in A is a k-tuple over GF(2), where 

k = kl+k2+. . + h e  

In a single-user communication system, A is the message 

space for the single information source with every message in A 

being partitioned into m parts. For a multi-user communication 

system, information 

source of the system. Without l o s s  of generality, we assume that 

messages from A1 have the highest level of significance, messages 

from A2 have the second highest level of significance, ... , and 
the messages from have the lowest level of significance. 

Ai is simply the message space for the i-th 

Let n be a positive integer such that 

n L rlogziAii 8 

where [ql denotes the smallest integer greater than or equal to 

the number q. Let C be a binary block code of length n for the 

message space A. Then C is a subset of (0,1)”, the vector space 

of all n-tuples over GF(2). If C is a subspace of (0,1)”, then C 

is a linear block code for A. The codeword which corresponds to 

the message (g1,Z2, ... ,%) is denoted by v(x1,x2, ... ,xm). 
Let and w be two n-tuples in (0,l)”. The Hamming 

distance between v and w, denoted by d(G,w) is defined as the 
number of places where v and w differ. 
C is defined as 

- 

- -  - - 

The minimum distance of 

%in = min (d(V,w) : V, w E C ,  5 z w). (2) 

In conventional coding for a single user, a code is designed to 

provide uniform (or equal) error protection for every component 

message of a message. The error correction capability is 

determined by the minumum distance %in of the code. Every 
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component message can be correctly decoded if there are 

t = l(dmin-1)/2J 

or fewer errors in the received word, where Ld denotes the 

largest integer less than or equal to the number q. 

However, for designing codes with multi-level error- 

correction capabilities, a different distance measure is needed. 

Let V and W be two subsets of vectors in (0,l)”. We define the 

separation between V and W, denoted by d(V,W), as follows: 

( 3 )  
- d(V,W) = rnin(d(7,w) : v E V and w E W). 

Let C be a block code for the product message space A = 

A1xAZx ...%. Let a be a specific message in Ai. Consider the 

following subset of codewords in C, 
- - -  

Qi(B) = (V(X1, ,Xi-l,a,Xi+lr * = -  ,%) : 
- 
xj E Aj for lljrm and j + i). 

Clearly, there are 

( 4 )  

m 

jzi 

codewords in Qi(a). We call the set Qi(a) an i-cloud of C 

corresponding to the message a in Ai. 
in C corresponding to lAil messages in Ai. 

disjoint partition of C, i.e., 

There are lAil i-clouds 

These i-clouds form a 

for %6. The codewords in an i-cloud are called satellites. 

Consider two distinct i-clouds, Qi (a) and Qi (6) . The 

separation(or distance) between Qi (a) and Qi (b) is 

6 



d(Qi(a),Qi(E)). Then, the minimum separation of the i-clouds 

is. defined as 
- 

si = min(d(Qi(a), Qi()3)) : a, b E Ai and a + 5). ( 5 )  

Geometrically, we may view the code C as partitioned into lAil 

i-clouds, any two i-clouds are separated by a distance of where 

at least si. From ( 4 )  and ( 5 ) ,  it is clear that 
- 

si = min(d(v(El, ... ,xi, ... I 

- - q z j ,  . . e  ,Xi', 0 . .  fX&)) : 
- - - xl, XI E A1 for  lLlsm and xi z xi'}. 

The m-tuple 
- 
s = (SI, ~ 2 ,  ... Ism) 

is called the separation vector of code C .  It follows from ( 2 )  

and ( 6 )  that the minimum distance dmin of the code is equal to 

the minimum component of the separation vector s, i.e., 

dmin = min(si : l<i<m}. ( 7 )  
- 

In the following we will show that the minimum separation si 

the of 

i-th component message xi. 

the i-clouds indicates the level of error protection for 

Lemma 1: Let V and W be two subsets of (0,l)". For any 

arbitrary vector r in (O,l}n, the following inequality holds, 

Proof: See Appendix A. 
M 

Now we devise a decoding algorithm for C for which each 
- component message xi E Ai is decoded independently. Suppose 
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some codeword v is transmitted. Let r be the received vector. 
To decode the i-th component message, we need to compute the 

distance d({f),Qi(xi)) between and each i-cloud Qi(Xi). 

Let Qi(a) be the i-cloud such that d({r),Qi(a)) is the 

smallest, i.e. 

d({r) ,Qi(a) 1 d({r) ,Qi(Xi) 

for xi + a. Then the i-th component message is decoded into 

a. The i-th component message will be decoded correctly 

provided that there are 

- 

L (Si-1) /2J 

or fewer transmission errors in the received vector F. To see 

this, let v = v(xl, ..., xi,...,%) be the transmitted codeword. 

Let Xi'+%i. 

- -  - - 

It follows from Lemma 1 that 

d( ,Qi(xi) +a( {r) ,Qi (Xi' ) 1 d(Qi (Xi) , Qi (Xi' ) ) 
Since 

d(Qi(Xi) ,Q(Xi') 1 L Si, 

d( {r) ,Qi(xi') 1 si-d((r} ,Qi(Xi) ) (10) 

d(r,v) L d({F),Qi(Gi)) (11) 

(9) - 
we have 

However, 

From (10) and (ll), we obtain the following inequality, 

(12) 
- -  

d({rl,Q(gi')) L si-d(r,V) e 

If there are ti=L(si-l)/zJ or fewer transmission errors in r, then 
(13) 

- -  
d(r,v) 5 ti. 

It follows from (11) to (13) that 

d({r)tQi(gi)) L ti, 

and 

a 



d({F),Qi(zi')) ' ti* 
Hence, 

d({r) ,Qi(Xi) < d({r) ,Qi(zi') (14) 

for 'jEi'+%i. Based on the decoding algorithm described above, the 

i-th component message is decoded into xi. This results in a 

correct decoding. 
J 

We have shown that the minimum separation si of the i-clouds 

of a code determines the level of protection for the i-th 

component message xi. 

Theorem 1. 

Theorem 1: Let C be a block code for the product of m message 

spaces, A1, A2, ... , h. Let = (s1,s2,...,sm) be the 

separation vector of C. Then, for lsism, the i-th component 

message Xi contained in a received word can be correctly decoded 
provided that the number of transmission errors in the recieved 

word is L(si-l)/2J or less. 

Summarizing the above results, we have 

M 

Suppose Si>Sj. We see readily that if there are L(si-1)/2J 

or fewer transmission errors in a received word, the i-th 

component message Xi can always be decoded correctly but the j-th 

component message x may not be decoded correctly. However, if 

there are (sj -1) /2J or fewer transmission errors, both component 

messages, xi and 2 can be decoded correctly. The parameter 

j 

ji 
- 

ti = L(~i-1)/2J 

is referred to as the level of error protection for the i-th 
- component message. A code C with a separation vector s = 

(s1,s2, ..., sm) is called a (tl,t2, ...,%)- error-correcting code 
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with ti=L(si-l)/2] for lciim. If not all the ti's are equal, 

code C provides unequal error protection for the component 

messages in the product message space A = A1xA2x ...+. If all 

the ti's are different, then C provides m distinct levels of 

error protection, one for each component message. We call C an 

m-level UEP code or m-level error-correction code. For the case 

where tl=t2= ...=%, the code provides equal error protection for 

all the component messages. Then C becomes a conventional error- 

correcting code. 

Without l o s s  of generality, we assume that sl+z ...l sm. In 

a single-user communication system, we simply regard that the 

first component message x1 is most significant, and hence it 

requires the highest level of error protection. The m-th 

component message % is least significant, and hence it requires 
the least protection. In a broadcast communication system with m 

information sources as shown in Figure 1, the first component 

channel is regarded as the noisiest channel. Hence, a word 

received by user-1 contains the most errors. Therefore, the 

first component message El needs more error protection than 

other component messages. 

In this paper we only consider multi-level UEP codes for 

either the single-user binary symmetric channel(BSC) or the 

multi-user binary symmetric broadcast channel(BSBC). For an m- 

user BSBC, each component channel is a BSC with certain 

transition probability. 

Linear unequal error protection codes were first studied by 

i 
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Masnick and WolfCl]. The concept of separation vector for 

unequal error protection codes was first introduced by Dunning 

and Robbins [13]. The separation vector defined in this paper is 

a generalized version of Dunning and Robbins', which applies for 

linear or nonlinear codes, single user or multi-user coding. 

Note that the minimum separation si for the i-th clouds 

depends on how a code is partitioned into the i-th clouds. 

Different encodings (or mappings) of A onto C yields different 

partitions of C. As a result, the separation vector of C 

depends on the encoding mapping. This is best illustrated by an 

example. 

FxamDle 1: Consider the product A of two component message 

spaces, A1=A2=(0,1). Hence, A={0,1}2 and each message 6 in A is 

of the form (ul,u2) with u1 E A1 and u2 E A2. Let C=((OOOO), 

(llll), (1110), (0001)) be a linear block code for A. Consider 

the two encoding mappings shown in Tables 1-(a) and 1-(b). 

Table 1 

Encoding (a) Encoding (b) 

message codewords 
(up u2 1 w, 

0 0  0 0 0 0  

1 0  1 1 1 1  1 0  1 1 1 1  

0 1  0 0 0 1  0 1  1 1 1 0  

1 1  1 1 1 0  1 1  0 0 0 1  

For the encoding mapping (a), the 1-clouds are: 
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Ql(l)={ (1111), (1110) 1. 

The 2-clouds are: 

Q2 ( O ) = {  (0000) 4 

Q2(3-)={ (OOOl), (1110) 1. 

(1111) 1 

We see that 

s1=d(Q1(O) ,Ql(l) 1 4 ,  

s2=d(Q2(0),Q2(1))=1* 

Hence, the separation vector of C based on decoding (a) is 

s=(3,1). In this case, the message bit u1 will be decoded 

correctly provided there is no more than one error in the 

received word. 

The code is a (1,O)-error-correcting code. 

- 

The second message bit u2 has no error protection. 

For the encoding mapping (b), the 1-clouds and 2-clouds are 

Q,(O)=C (0000) r (1110) 1 

Ql(l)={ (1111) , (0001) 1 ,  

Q2 ( O ) = {  ( O O O O ) ,  (1111) 1 

Q2(1)={ (1110) (0001) 1 

Note that 

sl=d(Q1(0) ,Q1(1) )=I, 

s2=d(Q1(0) rQ2(1))=1* 

Hence, for the encoding mapping (b), the code has a separation 

vector 
- 
s = (1,l). 

In this case, the code provides no error protection for  either u1 

or u2. 
M 
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B.  Direct-Sum Codes for Unequal Error Protection 

For liilm, let 
- 

Ci = {V(Xi): Xi E Ai) 

be a block code of length n for the i-th component message space 

Ai. We assume that codes, C1, C2, ..., C,, satisfies the following 

conditions: 

(1) For i + j , Ci n Cj = {G}, where 5 is the all zero 

vector in {0,1)”. 
- -  - -  - -  - -  - -  - -  

(2) v(x~)+v(x~)+. e .+v(x,) = v(x~)+v(x~)+. e .+v(x&) 

if and only if Xi=xit for i=1,2,...,m. 

The first condition implies that every code contains the all-zero 

vector. Now we consider the following set of vectors: 
- -  - -  c = {V(Xl)+V(X2)+ ...+ v(xm): ~(xi) E ci for Isism) 

The set C is called the direct sum of Cl,C2, ..., Cm, denoted 
c = c1 0 (2.2 0 ... 0 cm. 

Now we use C as a code for the product message space A. 

message (%l,~2,...,~m) in A, the corresponding codeword 

v(x1,z2, ...,%) is simply the following direct sum: 

For any 
- - 

- -  - 

- -  - 
V(Sl,X2,. . . ,xm) = V(X,)+V(X,)+.. .+V(%). 

Let {j1,j2, ...,jl} be a subset of {1,2,3, ..., m}. Let 

jl c(jl,j2,...,jl) = Cj, o c o ... o c 
j2 

Then C(jl,j2,...,jl) is a subcode of C. 

component message Xi is simply the following set: 

Qi(?i) = v(xi) o C(1, ..., i-l,i+l, ..., m) 

The i-cloud of C for the 

- -  
(15) 

Since 5 is a vector in ~(l,...,i-l,i+l,...,m), the vector - -  ~(xi) 

is in the i-cloud Qi(Xi). The vector v(Xi) is called the center 
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of Qi(xi). A satellite in Qi(?i) is of the form, 
- -  v ( xi ) +w , 

where E C(1, ..., i-l,i+l, ..., m). 
Let S=(s1,s2, ..., sm) be the separation vector of C. Suppose 

the codeword 
- v = iT(X1)+iT(”2)+. . .+V(%) 

is transmitted. It follows from Theorem 1 that, if there are 

L(si-l)/2] or fewer errors in the received vector, the i-cloud 

Qi(%i) which contains 7 can be identified, and hence the center 

~ ( x i )  and the message xi can be recovered. - -  

Theorem 2: 

an error pattern with L(si-1)/2] or fewer errors, i.e. the 

Hamming weight of e ,  w(e), is L(si-1)/2] or less. Then, the 

subcode C(1,2, ..., i) is capable of correcting any error pattern 

of the following form, 

Let C be the direct sum of C1, C2, ..., Cm. Let e be 

- -  
e+z, 

with Z E C(i+l,i+2,. .. ,m). 
Proof: Let y be a codeword in the subcode C(1,2, ..., i). Then 

- - -  y = v(x1)tv(JT2)+. . .+V(Xi) 
- - - for some x1 E A1, x2 E A2, ..., xi E Ai. Suppose y is 

transmitted and corrupted by the error pattern e+:. Then, the 

recieved vector is 
- - - -  
r = y+e+z. 

- - -  Note that y+z=V is a codeword in C. Thus, r=e+v. Let 
- -  - - - -  

2 = v(xi+l)+v(xi+2)+. . .+V(%). 
Since w(e) 5 L(si-1)/2J and s12s22 ...> si, it follows Theorem 1 
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- -  
that V(Til) ,  v(x2), .. . , v(%i) can be decoded correctly, 

i.e. y = ~(%~)+V(%~)+...+v(%i) can be decoded correctly. 

Therefore, e+z is a correctable error pattern for the subcode 

- - 

- 

c(1,2, ..., i). 
Q.E.D. 

Encoding of a direct-sum code can be done easily. Each 

component message xi is encoded into a codeword v(%i) based on 

its corresponding code Ci. Then the m component codewords are 

added to form the codeword for the entire message (%1,%2,...,%). 

Decoding of a direct-sum code can be carried out in m steps. 

- 

Suppose the codeword 
- - -  - -  - -  v = V(X1)+V(X2)+. . .+v(x,) 

is transmitted and 

rl = v+Z 
- - 

is recieved where e is the error pattern. 
decode k1 based on the m-level error-protection code C = 

C10C2@ ... ~3%. 

recovered. Then, we subtract V(xl) from r. This results in the 

following vector 

At the first step, we 

If w(e) 5 [(s1-1)/2], El and v(zl) can be correctly 

- - - -  r2 = v(E2)+. . .+v(%)+Z. 
At the second step, we decode x2 based on the (m-1)-level error 

protection code C(2,3 ,..., m). If w(e) 5 L(s2-1)/2], x2, and 

v(%,) can be recovered correctly. Subtracting v(%,) from 

r2, we obtain 

- 

- 

- 

- 
r3 = V(X3)+. .+V(G)+e. 

Repeating the above process, we decode the rest of component 

messages. Each subsequent component message is decoded based on a 

15 



- - - 
smaller code. If w(e) L L(si-l)/ZJ, xl, x2, ..., xi will be 

decoded correctly. 

At each step of the above m-step decoding procedure for a 

direct-sum code, two approaches can be applied to decode the 

component message, Suppose that v(xl), v(x2), ..., ~ ( x i - ~ )  have 

been correctly decoded. Then, we have 

- -  - -  

- -  - ri = v(xi)+:(xi+l)+. . .+V(%)+Z. 
- -  

At the i-th step, we need to decode xi and ~ ( x i )  from 'i. For the 

first approach, we view Ti as an error corrupted version of a 

codeword v(xi)+v(xi+l)+...+v(xm) in C(i,i+l, ..,, m). Then, we can 

apply the basic nearest-neighbor decoding method, i.e., searching 

for the i-cloud nearest to ri and using the center of the i- 

cloud as an estimate of ~(xi). Clearly, the estimate of 

v(xi) is correct if w(5) 1. L(si-1)/2]. Then, we can find the 

component message xi corresponding to ~(xi). For the second 

approach, we view ri as an error corrupted version of a codeword 

V(Xi) in the component code Ci. 

on the decoding algorithm of Ci. Suppose that w(e) [(si- 

1)/2]. 

- -  - -  - -  

- -  

- -  

- -  Then, we decode :(xi) based 

It follows from Theorem 2 that 
- -  - ri+l = v(xi+l) +5(T;ii+2)+. . .+V(%)+Z 

- -  
is a correctable error pattern for Ci. 

correctly decoded. 

Thus, ~ ( x i )  and xi can be 

There is an example for which the second approach can be 

For some i=1,2, ..., m, suppose that the i-th component 

Note that 

At the i-th step 

applied. 

code Ci is a linear code with parity check matrix Hi. 

other component codes may or may not be linear. 
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of decoding, we can apply the second approach for which the 

decoding algorithm of Ci is the syndrome decoding. We compute 

the syndrome for ri based on Hi, i.e. 
T - - 

Si = ri - Hi . 
- From Si, we identify the correctable error pattern (a coset 

leader with respect to Ci) which corresponds to Bi. 
L(si-l)/,J, then the corresponding error pattern is 

If w(e) 5 

- - -  - 
ri+l = V(Xi+l) +V(Xi+,)+. . .+v(xm)+e. 

- -  
Subtracting ri+l from ri, 

component message %i corresponding to ~(xi). 

we obtain ~(xi). Then, we can find the 
- -  

C. Hammina Bound for Svstematic UEP Codes 

An m-level unequal error protection code C is said to be 
- 

systematic if the codeword for the message (Xl,X2,...,xm) has 

the following form: 
- -  - - -  
~ ( X I  I?, , I%) = (21 ,?, I rxmr~) 

where represents the n-k redundant digits. Now we are going 

to derive a lower bound on the number of parity-check digits of 

an m-level linear systematic unequal error protection code with a 

separation vector 

a bifiary n-tuple in (0,l)”. For lhjhn, define 

= (dl,d2,. . .,%). Let y=(yl,y2, . . ,yn) be 

Y*(j) = (YjiYj+li***tYn)* 

Note that y*(j) is simply a suffix of y. Define the following 

set of n-tuples: 
- 

Y = < y  : y.€(O,l)” 
-* Y (Xi-l+l) is 

where Xo=O, ti=L(di-1)/21 

and the number of nonzero components in 

and Xi=kl+k2+. . +ki. 
17 



- 
M m m a  2: Let and y 1  be two n-tuples in Y. Let v = 

V ( X ~ , ~ ~ , . . . , ~ )  and GI = V(Xi,XJ, ...,%) be two codewords in 

C. Then 

- - -  - - -  

- - y + v = y' + GI 
if, and only if, = y 1  and V = VI. - 

proof: The if part of the lemma is obvious. Consider the only 

if part. Suppose + V = y 1  + 7'. Then - 

(17) 
- - 
y + $ 1  = v + GI. 

From the definition of the set Y, we see that the number of 

nonzero components in the last 

2ti for  liism. Assume that zl+:i. Since the separation vector 

of C is (dl,d2, ...,%), we have 

- -  positions of y+yl is at most 

d(G,G1) = w(G+vl) 2 dl 2 2tl+l. (18) 

W(V+V') = w(y+y') 5 2tl. 

However, from (16), we have 

(19) 
- -  

The condition given by (18) contradicts the condition given by 

(19). Hence the hypothesis that X1+%i is invalid. As a 

result, we must have Xl'Xi. Since C is systematic, it follows 

from (17) that the first x1 components of y+yl are zero. 

- 

- -  

Now we assume that x2+23. Then 

d(v,G1) = w(G+vI) 2 d2 2 2t2+1. 
- 

However, it follows from (17) and the fact Xl=Xi that 

(21) 
- -  - -  

w(v+vI)=w(y+y*) L 2t2. 

Equation (20) contradicts Equation (21). Hence our hypothesis 

that z2+?J is invalid. 
Since Xl=sTi and xz=xj, the first x2 components of $+$I are 
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zero. Repeat the above argument, we can prove that 

x3=xj, ...,-%=%. Consequently we must have V=VI and y = y @ .  - -  
Q.E.D. 

Based on the conditions on Y, we can readily find that the 

number of elements in Y is 

m-1 
IYI = C'l (1) - c 

s=o e=l I=te+l+l 

Next we will prove that the elements in Y are correctable error 

patterns for the code C. 

Theorem 3 : Let C be an m-level (n,k) systematic unequal error 

protection code with a separation vector (dl,d2, ..., d,). Then 

the n-tuples in Y defined by (16) are correctable error patterns 

for C. 

proof: For every E C, we form the set 
- <v+y : y E Y). 

It follows from Lemma 2 that, for v, E C and VGl, 
- - (V+y : y E Y) n {V'+y : y E Y) = 4. 

- 
We can use (V+y : y E Y) as the decoding region for V. If the 

received vector r is in (v+y : y E Y), we decode r into V. 
Hence, 

- 

if the error pattern during the transmission of a codeword 

v is a member in Y, then the received word r will be in <V+y : 
y E Y} and the decoding would be correct. Hence the elements in 
- 

Y are correctable error patterns for C. 
Q.E.D. 

We must Note that the total number of codewords in C is 2k. 

have 

2" 2 2k - IYI. 
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From (22) and (23), we have the following lower bound on n-k, 

The bound given by (24) is equivalent to the well known Hamming 

bound [203 for the single-level error correcting code. For m=l, 

(24) recudes to 

n-k 2 logz { 2 0  (:)I, 
which is the Hamming bound for the single-level error correcting 

code. Different versions of Hamming bound for multi-level linear 

unequal error protection code were proved by Masnick and WolfCl], 

and Van Gils[23]. Note that our version of Hamming bound applies 

to either linear or nonlinear systematic UEP code. 

D. Linear Uneaual Error Protection Codes 

Suppose the component code Ci is linear for i = 1,2,...,m. 

Then, C = C1@Czo ... 0% is a linear code of length n for the 

product message space A = AlxA2x ...%, where the i-th component 

message space Ai consists of all the ki-tuples over i.e. 

Ai={O,l)ki for lii<m. 

GF(2), 

Hence C is an (n,k) code with 

k = kl+k2t. . .+&. 
k-ki Every i-cloud Qi(Xi) of C consists of 2 

cloud Qi(xi=B) is a (k-ki)-dimemsional subcode of C, and any i- 

cloud for which xi& is simply a coset of Qi(xi=D). 

d(u,v) = w(utV), it follows from (3) to (6) that, for a 

linear code C, the minimum separation of i-clouds is 

codewords. The i- 

Since 



- -  - - - -  
= min {w[v(xl ,..., xi ,..., xk)] : xi+O) 

Theorem 4 :  Let Ci be an (n,ki) linear code of length n, where i 

=1,2. Consider the (n,kl+k2) code C which is the direct sum of 

C1 and C2. C is a two-level error-correcting code with 

separation vector 5 = (dl,d2). if the following condition are 

satisfied: 

(i) The minimum distance of C2 is d2. 

(ii) The minimum distance of C-C2 is dl and d, 2 d2. 

Then, for any message, the first kl message symbols are protected 

against message 

symbols are protected against t2 = L(d2-1)/2] or fewer errors. 

Proof: Note that the message space A is the product of A1 and 

A2, where Al={O,l}kl and A2={0,1}k2. 

consists of two parts, 

message and x2 is a k2-bit component message. 

the message is 

tl = L(d1-l)/2] or fewer errors and the next k2 

Each message x=(xl,x2) 
- x1 and x2, where 5, is a kl-bit component 

The codeword for 

- -  v(x1,S2) = V(X,)+V(Z,) , 
- -  - _  where v(xl) E C1 and v(x2) E C,. The 1-cloud of the code for 

xl=O, Q1(X1=G), is simply the subcode C2. It follows from 

(25) and the given condition that 

- -  

s1 = -min { min {w(V) : E Ql(xl))} 
X, E A, 
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The 2-cloud of C for x2=5 is simply the subcode C1. 

follows from (25) that 

Then, it 

- 
s2 = min {V : v E c-c,). (26) 

Note that C-C1 contains all the nonzero codewords of C2. The 

minimum weight of nonzero vectors in C2 is d2. A codeword in C- 

C1 but not in C2-{5} has weight at least dl. Since d12d2, it 

follows from (26) that 

~2 = d2. 
Q.E.D. 

A direct generalization of Theorem 4 is Theorem 5. 

Theorem 5: Consider an (n,k) linear code C which is the direct 

sum of codes C1, C2, ..., and Cm, where Ci is an (n,ki) linear 

code. Let C(i, i+l, . . . ,m)=CioCi+lo.. .oC,. Let dm be a lower 

bound on the minimum distance of Cm. If the minimum weight of 

codewords in C-C(i,i+l, ..., m) is at least di-l and dl 2 d2 2 ... 
- > dm, 

message 

then C is an m-level error correcting code for the product 

space A = A1xA2x ...XA, with separation vector 
- 
S = (SI, S2r***rsm) 

where Ai is the component message space for Ci and si 2 di for 

= 1,2, ... ,m. 
i 

Proof: Similar to the proof of Theorem 4 .  
Q.E.D. 

Theorem 5 actually describes a method for constructing a 

multi-level error-correcting code by taking the direct sum of 

component codes. With this method, we are able to construct 

codes which are presented in the rest of this paper. 
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111. CONSTRUCTION OF LINEAR MULTI-LEVEL UEP CODES 

BY COMBINING SHORTER CODES 

A. Construction of Linear Multi-Level UEP codes bv Combininq 

Generator Matrices of Shorter Codes 

We first present a construction method based on generator 

matrices. Let Gaa and 

be the generator matrices of an (na, ka) linear code Caa and an 

(na, ka+x) linear code Ca respectively. Clearly Caa is a subcode 

of Ca and Gab is a Axn, binary matrix. Let daa and da be the 

minimum distances of Caa and Ca respectively. Then daa - > da. 

Let Gbb and 

be the generator matrices of an (nb, kb) linear code Cbb and an 

(nb, kb+X) linear code cb respectively. Note that Cbb is a 

subcode of cb and Gba is a Xxnb binary matrix. The submatrices 

Gab and Gba have the same dimension (number of rows) A .  Let dbb 

and db be the minimum distances of Cbb and cb respectively. Then 

dbb 2 db* 

We assume that the following condition holds: 

Gba 
'ab ] 
Gbb 
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where Oab and Oba are a kaxnb and a kbxna zero matrices. The 

matrix G generates an (na+nb, ka+kb+A) linear code C. Let C1, 

C2 and C3 be three subcodes of C generated by matrices, [Gab 

Gba], [Gaa Oab], and [Oba Gbb] respectively. We readily see that 

the minimum distance of C1 is at least da+db, the minimum 

distance of C2 is daa, and the minimum distance of C3 is dbb. 

Code C is actually the direct-sum of C1, C2 and C3, i.e., 

c = c1 0 c2 0 c3. 
Note that C1, C2 and C3 are codes for message spaces A1 = (0, l}’, 

A2 = (0,1} ka and A3 = (0,l) kb respectively. Hence C is a code 

for the product message space A=AlxA2xA3. 

Now we examine the distance structure of C=C1@C2@C3. L e t  

C(2,3) = C2eC3. First we note that a codeword in C-C(2,3) is the 

concatenation of a nonzero codeword in Ca and a nonzero codeword 

in cb. Hence a codeword in C-C(2,3) has weight at least da+db. 

Next we note that a codeword in C-C3 is either the concatenation 

of a nonzero codeword in Ca and a nonzero codeword in cb, or a 

codeword in C2. Thus a codeword in C-C3 has weight at least 

min(da+db,daa) = daa. In fact the minimum weight of C-C3 is daa. 

It is easy t o  check that the minimum distance of C is dbb. 

summary, C has the following distance (or weight) structure: 

In 

(1) the minimum weight of codewords in C-C(2,3) is at least 

da+db i 

(2) 

( 3 )  

the minimum weight of codewords in C-C3 is daao 

the minimum weight of c is dbb. 
It follows from Theorem 5 that the separation vector of C is 
- 
S=(SlrS2,S3) where SlZd,+db, S2zdaa and S3’dbb. 
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FxamDle 2: Let a be a primitive element in ~ ~ ( 2 5 ) .  Let Cbb be 

the (31,21) BCH code over GF(2) whose generator polynomial has a 

and a3 as roots. Let cb be the (31,26) Hamming code over GF(2). 

The minimum weights of Cbb and cb are 5 and 3 and respectively, 

Cbb is a subcode Of cb. Let Gbb and 

be the generator matrices of Cbb and cb respectively. Then Gba is 

a 5x31 matrix. Let Caa be the (32,21) code obtained by adding an 

overall parity-check bit to each codeword in Cbb. Then the 

minimum weight of Caa is 6. Let Ca be the (32,26) code obtained 

by adding an overall parity-check bit to every codeword in cb. 

Then the minimum weight of Ca is 4, 

Let Gaa and 

and Caa is a subcode of Ca. 

be the generator matrices of Caa and Ca respectively where Gab 

a 5x32 matrix. Then the code C generated by the generator matrix 

G of (27) is a (63,47) code with a separation vector 

is 

the first 5 

x. Then all 
- 

fewer random 

where s127, S2'6 and s3=5. We may divide a message 

into two parts, 

bits of 'j7 and x2 consists of the next 42 bits of 

five message bits in 2, are protected against 3 or 

errors, and the 42 bits in x2 are protected against 

- x1 and x2, where 2, consists of 

two or fewer random errors. Hence C is a two-level UEP code. 

Note that there is a single-level double-error-correcting (63,51) 
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BCH code and a single-level triple-error-correcting ( 6 3 , 4 5 )  BCH 

code[20,21]. 

Consider the special case for which kb=O and Gb'Gba. Then 

the matrix G of (27) reduces to the following form: 

1 Gab Gba 1 
G =  

If d,+dgdaa, 

ka+A) code with a separation vector s=(sl,s2) where Slrda+db and 

s2=daa. 

the code generated by G of (28) is then an (na+nb, 

This special case was first presented by Boyarinov [17]. 

B. Construction of Linear Multi-Level UEP Codes bv Combining 

Parity-Check Matrices of Shorter Codes 

Let Ha, and 

be the parity-check matrices of an (na,ka) linear code Caa and an 

(na,ka-r) linear code C, respectively, where Ha, is an (na-ka)xna 

matrix, Hab is a rxna matrix and Ha is an (na-ka+r)xna matrix. It 

is clear that Ca is a subcode of Caa. Let d, and daa be the 

minimum distances of Ca and Ca, respectively. Then 

da L daa* 

Let Hbb and 

be 

(nbrkb'r) linear code cb, 

is a rxnb matrix, and Hb is an (nb'kb+r)xnb matrix. 

the parity-check matrices of an (nb,kb) linear code Cbb and an 

Hba 
Note that cb 

where Hbb is an (nb'kb)xnb matrix, 
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is a subcode of Cbb. Let db and dbb be the minimum distances of 

cb and Cbb. Then 

db 2 dbb* 

Consider the (na+nb, ka+kb-r) linear code C with the 

following parity-check matrix 

H =  

where oab is an (na-ka)xnb zero matrix and Oba is an (nb'kb)xna 

zero matrix, Let C2 be the (n,+nb,ka-r) subcode of C such that 

each codeword in C2 is a concatenation of a codeword in Ca and the 

all-zero nb-tuple. Clearly the minimum weight of C2 is da. Let 

C3 be the (na+nb,kb-r) subcode of C such that every codeword in C3 

is a concatenation of the all-zero nb-tuple and a codeword in cb. 

The minimum weight of C3 is db. The direct-sum of C2 and C3, 

denoted C(2,3)=C20C3, is an (na+nb,ka+kb-2r) subcode of C. Hence 

there must exist r linearly independent codewords in C-C(2,3). 

These r linearly independent codewords span an (na+nb,r) linear 

subcode C1 of 

and C3, i.e., 

Suppose 

structure of 

C. We readily see that C is the direct-sum of Cl,C2 

c=c~oc20c3 , 

daa+db$d&db* Now we examine the distance 

C. Any codeword 7 in C can be expressed as 
- 
v = (Va,Vb) 

where Va is an na-tuple and vb is an nb-tuple. Then 
- (V,,Vb) - HT = 0. 

- This implies that Va-Haa = and Vb'Hbb = 0. Consider a 

codeword (Va,Vb) in C-C(2,3). Then, Va+B and vb+B. For Va+B, 
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the weight of Va is at least daa. This follows from the fact 

that any daa-1 or fewer columns of Ha, are linearly independent. 

Similarly, for VbzTi, the weight of ;iib is at least dbb. Hence, 

for any codeword (Va,Gb) in ~-~(2,3), the weight of (iia,vb) is 

at least daa+dbb. 

C-C(2,3) is at least daa+dbb. For any codeword (Va, vb) in C- 

C3, For the 

former case, For the 

latter case, the weight of the codeword is at least daa+dbb. 

Since daa+db$da, the minimum weight of codewords in C-C3 is d,. 

Since daa+dbgda,db, In summary, 

the code C genereated by the parity-check matrix H of (29) 

the following distance structure: 

Therefore, the minimum weight of codewords in 
- 

either it is in C2, or both Va and vb are not zero. 

the weight of the codeword is at least d,. 

the minimum weight of C is db. 

has 

(1) the minimum weight of codewords in C-C(2,3) is at least 

daa+dbb; 
the minimum weight of codewords in C-C3 is d,; and 

the minimum weight of C is db. 

(2) 

(3) 

It follows from Theorem 5 that, for daa+dbgda2db, the code C 

generated by the parity-check matrix H of (29) is a linear 

block code for the product message space A=AlxAZXA3 where 

Al=(O,l}r, A2={0,1} and A3=(0,1} . The separation vector ka-r kb-r 

Of c is = (SlrS2,S3) where S12daa+dbb, ~2ld,’and S3’db. 

Now we shall present several classes of linear UEP codes 

with parity-check matrices of the form given by (29). 

a be a primitive element from the Galois field Let GF(2m). 

a 

(in column 

Every nonzero element in GF(2m) can be expressed as a power of 

and can be represented by a nonzero m-tuple over GF(2) 
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form). For any nonnegative integer 1,  let 

represent all the (m+l)-tuples over GF(2) ( in column form ) for 

which the last 1 components are not all zero. Consider the 

binary code C generated by the following parity-check matrix: 

(30) 

where each power of a is represented by an m-tuple, O1 is a column 

of The matrix H consists 

of 2m+1 rows and 2m+d-l columns, and hence the code C generated by 

H is a (2,+'-1, 2m+1-2m-1-1) linear code with 2m+1 parity-check 

bits. 

1 zeros and Om is a column of m zeros. 

Note that the H matrix has the form given by (29) where 

2,-2 ] ... a 2 [l a a 

3 (2,-2) 2m-2 1 3 1 a a ... a [ Hab] = [ 1 a3 a6 ... a 
Haa 

some 1 x (2m+1-2m) matrix for which any column 

not a zero column. 

is 
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The codes, Caa and Ca, generated by the parity-check matrices Ha, 

and Ha are simply primitive single-error-correcting and double- 

error-correcting BCH codes of length 2m-1 respectively [20]. Code 

C,, has minimum distance 3, and Ca has minimum distance 5. It is 

also known that the dimensions of Ha, and Ha are m and 2m 

respectively. The code cb generated by parity-check matrix Hb is 

a shortened Hamming code with minimum weight 3. The code Cbb 

generated by parity-check matrix Hbb has minimum distance 2. As a 

result, C is a code for the product message space AzAlxA2xA3 where 

I level UEP code with the following parameters: 

2m+l -2m-m-~ Al={O,l)m, A2={0,1}2m-2m-1 and A3={0,1) 

The separation vector of C is 
- 

= S28 s3) 

where Slldaa+dbb=3+2=5, S22da'5, and S3=db=3. 

For this code, the first 2m-m-1 message bits of a message are 

protected against up to 2 random errors while the next 2m+a-2m-m 

-I message bits against any single error. Hence it is a (2,l)- 

error-correcting code. 

For m=O, C becomes a conventional single-error-correcting 

Hamming code [ Z O ]  of length 2l-1. For l = O ,  C reduces to a 

primitive double-error-correcting BCH code of length 2m-1. For 

m=R, C is equivalent to a Boyarinov-Katsman UEP code [16]. The 

code C can be transformed into systematic form with identical 

two-level error correcting capability. The proof is given in 

Appendix B. 

Consider the number of parity-check bits required of a two- 
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x1 = 2m-m-1, 

tl = 2, 

t2 = 1. 

It follows from the Hamming bound given by (24) that 

From (31) and (32), we have 

2n’k - > 22m+1-1 + A/2. (33) 

For either m=3 and 1=3 or m14 and 121, the number A is strictly 

greater than zero, i.e., 

A > 0 .  

Hence, it follows from (33) and (34) that 

n-k > 2m+1-1. 

(34) 

(35) 

This is to say that the number of parity-check symbols required 

for a two-level linear systematic UEP code with parameters, 

n=2m+’-l, X1=2m-m-1, t2=2 and t2=1 is at least 2m+R. 

UEP code given by the parity-check matrix H of (30) has exactly 

The two-level 

2m+1 parity-check symbols. Hence, under the condition that m=3 

=1=3, or m14 and 121 , the code meets the Hamming bound of (24) 

and is optimal. A list of codes of length 31 , 63, 127 and 255 

is given in Table 2 for various m and I, where kl=2m-m-1 and 

k 2- -2m+1-2m-m-1 and k=kl+k2 if 1zO . From the table, we see that 
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there is a (63,52) code which protects 26 message bits against 

two or fewer errors and 26 other message bits against any single 

error. Later we shall present a decoding scheme for any code 

with parity check matrix of form (29). By that time, we can make 

a more thorough comparison between the (63,52) code and the time 

sharing of conventional single-level codes based on their 

information rates and decoding complexities. 

Table 2 

Codes of lenqth 31 Codes of lenath 63 

m R k kl k2 m R k kl k2 

0 5 26 0 26 0 6 57 0 57 

2 3 24 1 23 2 4 55 1 54 

3 2 23 4 19 3 3 54 4 50 

4 1 22 11 11 4 2 53 11 42 

5 0 21 21 0 5 1 52 26 26 

6 0 51 51 0 

Codes of lenath 127 Codes of lenath 255 

m a k kl k2 m a k kl k2 

0 7 120 0 120 0 8 247 0 247 

2 5 118 1 117 2 6 245 1 244 

3 4 117 4 113 3 5 244 4 240 

4 3 116 11 105 4 4 243 11 232 

5 2 115 26 89 5 3 242 26 216 

6 1 114 57 57 6 2 241 57 184 

7 0 113 113 0 7 1 240 120 120 

8 0 239 239 0 
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The class of two-level UEP codes given above can be 

generalized in a straight forward manner. Consider the binary 

- Has - 

code C with the following parity-check matrix: 

- 
- 1  1 1  ... 1 

0, 1 a ... a 2m-2 

(a3) 2m-2 ... 3 0, 1 a 

. . .  . . .  . . . .  
2t-3) 2m-2 ... (a -0,l a 2t-3 - 

H =  

l a  
3 l a  

am-2 ... a 

3 2m-2 
e.. (a ) 

Om I 0, ... 

The code C generated by the parity-check matrix H of (36) 

has length n=2,+'-1 and at most mt+l parity-check bits. It can 

be easily proved that the code is a two-level UEP code with a 

separation vector s=(2t+1,3). The code provides protection of 

at least A1=2,-m(t-l)-1 message bits against t or fewer errors 

and protection of other message bits against any single error. 

There is another class of linear UEP codes with parity-check 

matrices of the form given by (29). The submatrices are given 

below: 

(37) 
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2t-1) 2m-2 3 ... ( a  2t-1 Hab = [Om 1 
2s-1) 2m-2 3 ... ( a  Hba = [1 2s-1 

2s-3) 2m-2 1 ,2s-3 ... ( a  I . .  ... . 
. .  ... . Hbb = 

. .  ... 0 

3 2m-2 

2m-2 

... ( a  ) 3 l a  I l a  ... a 

(38) 

(39) 

where s 5 t. 
T Note that Ha, and Ha = [Ha, HabTJT generate an extended (t-1)- 

error-correcting and an extended t-error-correcting primitive BCH 

codes of length 2m respectively. The dimensions of Ha, and Ha are 

at most m(t-1) and mt respectively. The parity-check matrices 

Hbb and Hb = [Hbb ~~~'1' generate an (s-1)-error-correcting and 

an s-error-correcting primitive BCH codes of length 2m-1 

respectively. We require that Hab and Hba have the same 

dimension, i.e. a 2t-1 and a2s-2 from the same subfield of GF(2m). 

T 

It follows from the argument given for codes with parity 

matrix of form (29) that the code generated by H with submatrices 

given by (37) to (40) is a linear block code with a separation 

vector g= ( sl, s2, s3) where 

s1 - > 2(t+s)-1, s2 2 2t+2, s3 = 2s+l. 

The code has at most m(t+s-l)+l parity-check symbols. It protects 

the first kl=m message bits against s+t-1 or fewer errors, the 

next k2=2m-mt-1 message bits against t or fewer errors, and the 

34 



other message bits against s or fewer errors. 

E;xamx>le 3 : Let m=5 and t=s=2. Let a be a primitive element in 

GF(25). 

matrix: 

Consider the code generated by the following parity-check 

[ l  1 1 1 ... 1 01 01 01 0 . .  01 1 
30 2 O5 1 a a ... a 
90 1 a a ... a 3 6  O5 1 Q a ... a 

o5 o5 o5 ... o5 
3 6  90 

H =  

Note that a3 is also a primitive element in GF(25). The code C 

generated by H has 3x5+1=16 parity-check bits. It is a (63,47) 

UEP code with separation vector at least (7,6,5). This code 

is the same code given in Example 2. 

C. Decodinq 

Now we consider the decoding of linear UEP codes generated 

by matrices of the form given by (29). Since the error- 

correcting capability of a UEP code depends on the encoding 

scheme, we need to know the corresponding generator matrix. 

Theorem 6 gives the generator matrix which correspond to the 

parity-check matrix of (29). 

Theorem 6 : A linear code C with a parity-check matrix 

'ab 1 
= [ Hab Hba 1 

Oba Hbb 
has a generator matrix of the following form: 
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where 

(1) 

G =  G 

oab is an (na-ka)xna zero matrix, 

zero matrix, 

an (kb-r)xna zero matrix. 

Gaa is a generator matrix of the (na,ka-r) code Ca 

generated by the parity-check matrix [Ha, Hab 3 . 
Gbb is a generator matrix of the (nb,kb-r) code cb 

generated by the parity-check matrix [Hbb Hba 3 . 
[G,, 

Caa generated by the parity-check matrix Has* 
[GbbT is a generator matrix of the (nb,kb) code 

Cbb generated by the parity-check matrix Hbb. 

Oba is an (nb'kb)xnb 

o&, is an (ka-r)xnb zero matrix, oLa is 

T T T  

T T T  

T G ~ ~ ~ ~ T  is a generator matrix of the (na,ka) code 

Proof: See Appendix C. 

M 

From the above theorem, we note that both Gab and Gba have r rows 

(Or dimension r). The matrix G of (41) is of the same form of 

( 2 7 )  

Now we present a decoding procedure for UEP codes with 

parity-check matrices of the form given by (29). 

consists of three parts xl, x2 and Z3, i.e., 
Each message x 

- 

- - - 
x = (XI, 3, x 3 )  

- where 2, is a binary r-tuple, x2 is a binary (k,-r)-tuple, and Si3 

is a binary (kb-r)-tuple. The codeword for message is 

(42) 
- - - -  

v(x1, X2, x3) = XG 
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where G is given by ( 4 1 ) .  For s implici ty ,  w e  use v t o  represent  

v(xl,E2,E3). 

p a r t s ,  ua and iib, such t h a t  

- -  Every (na+nb)-tuple u can be divided i n t o  t w o  
- 

- - 
u = (Ga t  ub) 
- 

where ua is an na-tuple and Gb is an nb-tuple. Then v = 

(??a,vb). 
- 

It follows from ( 4 1 )  and ( 4 2 )  t ha t  

and 

- - Gba 
Vb = (‘1tX3) [ G b b ]  

Suppose a codeword fT = V(%,,%,,%,) 

r is received. L e t  e be t h e  error pa t te rn .  Then 

t ransmit ted and a word 
- 

- r = V + Z .  
- 

E x p r e s s  r=(Fa,Fb) and i&(ea,eb). Then Fa=Va+Za and 

rb+b+eb. L e t  w ( Z )  denote the weight of e.  The decoding of 

r c o n s i s t s  of t h e  following steps:  

- 
- 

(1) Based on code Caa ( w i t h  parity-check matr ix  Ha, and 

generator  

codeword V: i n  Caa, which is a temporary estimate 

of va. Based on code Cbb ( w i t h  parity-check matr ix  
Hbb and generator  matrix [%aT %b T T  J 1, w e  decode rb 

i n t o  a codeword vb i n  Cbb,  which is a temporary 

estimate of fTb. Later w e  w i l l  show t h a t  either C: 

o r  V b  is a cor rec t  estimate i f  w(Z)Sl(daa+dbb- 

matrix [Gab T Gaa T T  3 ) ,  w e  decode Fa i n t o  a 

- 

-* * 

-** 
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1 ) / 2 J .  The decodings of Fa and rb are based on 

the best available decoding schemes for 

Find %: and %; such that 

caa and Cbb. 

(2) 

Then %: and are estimates of message components x1 
-* * -** 

and X2. Also, find x1 and x3 such that 

-* * -** Then x1 and x3 are estimates of 2, and x3. Note that 

x1 and x1 are two estimates of X,. If w(Z) 5 

L(daa+dbb-1)/2J, at least one of these two estimates is 

identical to X,. 
Form =* = (xl,x2,03)G and u 

O3 and B2 are a zero (kb-r) -tuple and a zero (ka-r) - 
tuple respectively. Note that w* and u are codewords 

-* -** 

-* -* - -** -** - -** 
(3) = (xl ,O2?x3 )G where 

- 

-* * 

in C. 
-** -** - - 

(4) Compute r* = r + w* and r = r + u . 
Note that 

-* r 

r 

= - v + + W* = z + (X~+X~,Z~+X~,X~).G, 
- -** - - -** -** - - v + z + U* = e + (x,+x, ,x2,x3+x3 - G ,  

T 
( 5 )  Based on code cb (with parity-check matrix [Hba HbbTIT 
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and generator matrix Gbb), decode i$ into a codeword 

Zb in cb. Based on code Ca (with parity-check -* 

matrix [H,, T HabTIT and generator matrix G,,), decode 
-** -** ra into a code word za in Ca. The decoding 

algorithms for Ca and cb at this step must be 

neighbor decodings. 

nearest 

-* -* * -* -* (6) Find X3 and X2 such that X3'Gbb'Zb and 
-** -** -** x2 -Gaa=za . 
x3 and x2 respectively. 

Note that 2; and x2 are estimates of 
- 

-*--* -**--** -** - ( 7 )  F O ~  v -w +(G~,z~) and v -u +(za ,ob) where 
- - 
0, and ob are a zero na-tuple and a zero nb-tuple 

respectively. Note that 

v* = (xl,x2,x3)-G, 
-** - -** -** v - (xz*,x2 ,x3 ).G. 

(45) 

(46) 

-* -* -* 

-** From (45) and (46), we see that v* and v are 

estimates of the transmitted codeword v. 
-* * (8) Compute the distances d(r,fT*) and d(r,v ) .  If 

- -* - -** 
d(r,v 1 I d(r,v 1 ,  

we decode r into v*. Then 

is the decoded message. On the other hand, if 
-* * d(F,v*) > d(r,v ) ,  

-* * we decode r into v , and 
-** -** -** 
(XI 1x2 rX3 1 

is chosen as the decoded message. 

Now we need to show that, using the above decoding procedure, 
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the following are true: 

(1) If w(Z)sl(daa+dbb-1)/2J, the message component X1 will 
be correctly decoded; 

If w(Z)sl(da-1)/2J, both the message components, x1 and 

x2, will be decoded correctly: and 

- 
(2) 

- 

(3) If w(Z)sL(db-1)/2J, all the three message components 

will be decoded correctly. 

Consider the first case for which w(Z)sl(aa,+dbb-1)/2J. Then 

Thus at least one either w(sa)5[(daa-1)/2J or w(~b)~L(dbb'l)/2] . 
of the estimates, va and Vb , at step 1 of the decoding 

procedure is correct, i.e., either va=va or Vb -vb. 

Suppose ~ ( ~ ~ ) ~ ~ ( d ~ ~ - 1 ) / 2 ~ .  

correct estimate of Va and va-va. Also xl-x1 and x2-x2. Hence, 

w*=(57~,x2,O,) -G=(%1,%2,B3) -G. Note that 

-* -* * 
-* - -**-- 

Then 7; is the 
-*-- -*-- -*-- 

-* - 

d(Fa,Vi) = d(ra,va) = w(Za). ( 4 7 )  

Let Zb'E3'Gbb. 

5, 

decoding, we have that 

Then ?b is a codeword in cb. Recall that, at step 
-* -* -* rb is decoded into Zb'X3'Gbb. Based on the nearest neighbor 

( 4 8 )  -* -* -* - 
d(rbrzb) d(rbrzb) 

Now consider 

d(Fb,vg) = d(Fb,ig+?g) 
-* -* -* -* 

= d(rb+Wb,wb+Zb) 

= d(rbrzb)* 
-* -* 

From (48) and ( 4 9 ) ,  we have 
-* - 

d(rbrvg) d(rbrzb) 
-* -* - -* 

= d (rb+wb, zb+wb) 

( 4 9 )  
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Similarly, we can show that, if w(eb) 5 L(dbb-l)/zJ, then 

(53) 
-** 

d(r,v L w(e) L L(daa+dbb-1)/2J. 

Hence we conclude that, for w(e)Ll(daa+dbb-l)/2J, the distance 

between the received word r and the estimate of V (either v or 

v**) is no greater then ~(d,,+d~~-1)/2~ if and only if the 

corresponding estimate of x1 is correct. Consequently, the 

smaller ) is no greater than L(daa+dbb- 

-* 

- 

-* * one of d(F,V*) and d(i,v 

1)/2]. Hence, the decoding rule at step 8 ensures the correct 

decoding of message component xl. 
Next we consider the case for  which the error pattern e 

contains L(da-l)/2] or fewer errors, (i.e., w(Z)s[(da-l)/2]) where 

da is the minimum distance of code Ca. Since L(da- 

1)/2]L[(daa+dbb-1)/2j, it follows from the above argument that si, 

is decoded correctly. In fact, at least one of the two estimates, 

(%;,xi) and (xl ,x3 ) ,  at the step 2 is correct. 

(%,,Z2), it follows from the same argument as above from (47) 

-** -** -* -* 
If (xl,x2) = 
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to (51) that 

d(r,V*) 5 w(S) 5 1(da-1)/2J. 
-** -** If (xl ,x3 )=(%1,33), it follows from (44) that 
-** - ra = ea + 272.Gaa. 

Since w(Za)sw(e)lL(da-1)/2J, steps 5 and 6 will give the correct 

message component x2. Again we can show that 
-* * 

d(F,v 1 I L(da-1)/2J* 
- 

Hence, for w(5)sL(da-1)/2Jf the distance between r and the 

estimate of V is no greater than \(da-l)/2J if and only if the 

corresponding estimate of x2 is correct. Thus the decoding rule 

at step 8 ensures the correct decoding of x2. 
The last case is that w(5)sL(db-l)/2J. By an argument 

similar to the one above, we can show that all three message 

components, xl,x2, and x3, will be decoded correctly. Either 

step 2 or 6 gives the correct estimate of E,. 

- -  - 

Now, we can compare the (63,52) code listed in Table 2 to 

the time sharing of a (31,26) Hamming code and a (31,21) double- 

error-correcting BCH code. We see that the (63,52) code is 

superior considering information rate but inferior considering 

decoding complexity. We can also compare this (63,52) code to 

the time sharing of a (63,57) Hamming code and a (63,51) double- 

error-correcting BCH code. We see that the (63,52) code is 

inferior considering information rate but is superior considering 

decoding complexity. In general, the UEP code with parity check 

matrix of form (29) provides a tradeoff for coding designs 

considering information rate and decoding complexity. 
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IV. DIRECT SUMS OF PRODUCTS CODES 

Let V be an (N,K) linear code with minimum distance D and W 

be an (n,k) linear code with minimum distance d. Let V@W denote 

the product of V and W [21). Then V@W is an (Nn,Kk) linear code 

with minimum distance Dd. A codeword in V@W can be arranged as an 

nxN array in which every row is a codeword in V and every column 

is a codeword in W. For a nonzero code array in V@W, there are at 

least D nonzero columns and each nonzero column has at least d 

nonzero components. Hence, the weight of any nonzero code array 

in V@W is at least Dd. Product codes are capable of correcting 

both random and burst errors[21]. Now we consider direct sums of 

certain product codes which provide burst error protection in 

addition to the two-level random error protection. 

Let V1 and V2 be (N,K1) and (N,K2) linear codes with 

The intersection of V1 

Let 

minimum distances D1 and D2 respectively. 

and V2, denote V1nV2, is a linear subcode of both V1 and V2. 

6 be the minimum distance of V1nV2. 

62D2. 

It is clear that &D1 and 

Let V1+V2 denote the set, 
- (v : v=V1+V2 with V1tzV1 and V2€V2}. 

V1+V2 

If VlnV2={5}, 

be minimum distance of V1+V2. Then D 5 D1,D2. Therefore, we 

is also a linear code and is a supercode of both V1 and V2. 

then V1+V2 is equal to the direct sum V10V2. Let D 

have 

8 2 Dl,D2 2 D. 

Let W1 and W2 be an (n,kl)*and an (n,k2) linear codes with 

minimum distances dl and d2 respectively. We assume that 
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w 1nw2= { b) 
Then the direct sum W of W1 and W2 is an (n,kl+k2) linear code. 

Let d be the minimum distance of W. Then d dl,d2. 

For i-1 and 2, the product Vi@Wi is an (Nn,Kiki) linear code 

with minimum distance Didi. Since WlnW2=(b), V1@W1 and V2@W2 have 

only the zero code array in common. Let C be the direct sum of 

V1@W1 and V2@W2. Then C is an (Nn,Klkl+K2k2) linear code. A code 

array c in C is the sum of a code array El in V1@W1 and a code 

array C2 in v2t3w2, i.e., 

- 

- - 
c = c1 + E,. 

Each row in array is a code word in V1+V2, and each column in 

c is a codeword in W1@W2. 
- 

- Now we consider the weight of a nonzero code array c in 

c=v1QPw10v,QPw,. If 

is at least Dldl. If E V2@W2, then w(E)zD2d2. If is neither 

in V1@W1 nor in V2@W2, then is the sum of a nonzero code array 

c1 in V1@W2 and a nonzero code array E, in VpW,. 

the weight of E=El+c2, there are four cases to be considered. 

Case I: Suppose that all the nonzero rows in El and E, are alike 

and identical to a certain vector v. Then 5 must be a codeword in 

V1nV2 . 
nonzero columns in array -dl and at least 6 nonzero columns in 

array E,. 

a nonzero column in C2 is a nonzero codeword in W10W2. Thus, 

there are at least 8 nonzero columns in array 'C=E1+-d2, and each of 

these columns has weight at least d. Therefore, w(c)lDd. 

E Vl@Wl, then the weight of E ,  denoted w(E), 

- 
To determine 

Thus, w(v)&. This implies that there are at least 8 

Since WlnW2=(G), the sum of a nonzero column in El and 

A 
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Case 11: suppose that all the nonzero rows in El are identical to 
some codeword v1 in V1 and all the nonzero rows in c2 are 

identical to some codeword v2 in V2, where V1G2. Then v1+v2 is a 
nonzero codeword in V1+Vz and has weight at least D. Note that 

w(vl)zD1 and w(v2)zD2. There are two types of nonzero columns in 

c. The first type is that each column is either the sum of a 

- - 

- 
- zero column in c1 and a nonzero column in c2 or the sum of a 

nonzero column in El and a zero column in e,. Such a column is 

either a nonzero codeword in W2 or a nonzero codeword in W1. 

Therefore, a nonzero column of the first type in e has weight at 

least min(dl,d2). The second type of nonzero columns in E is that 

each column is the sum of a nonzero column in El and a nonzero 

column in E,. Such a column is a nonzero codeword in Wl@W2 and 

has weight at least d. The fact that w(vl+v2)LD implies that 

there are at least D type-1 nonzero columns in E. Let f be the 

number of type-1 nonzero columns in E where fzD. Then there are 

at least r(D1+D2-f)/21 type-2 nonzero columns in c. Hence a 

lower bound on the weight of E is 

- 

min (f.min(dl,d2) + r(Dl+D2-f)/21-d) 
fiD 

Case 111: 

c1 such that V I G i .  

columns in El. 
nonzero columns in E .  Each of these nonzero columns is a nonzero 

Suppose that there are two nonzero rows v1 and v i  in 
- 

Then there are at least Dl+fDl/21 nonzero 

This implies that there are at least Dl+rD1/21 

codeword in W l Q W 2  and has weight at least d. Thus the weight of 
- c is at least (Dl+[Dl/21).d. 

Case IV: 
- 

Suppose that there are two nonzero rows, v2 and vi, in 
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- c2. It follows from the same argument as that in Case I11 that 

w ( a ~ { ~ ~ + r ~ ~ / 2 1 ) . d .  

Denote D.min(d,,d2)+[(D1+D2-D)/21 .d by A ,  (Dl+rD1/21 } .d by x1 and 

{D2+rD2/21)-d by A 2 .  Summarizing the above results we have the 

following weight structure of a nonzero code array C in C = 

Vl@W1@V2@W2 : 

(1) For E V1@Wl, w(c)lDldl; 

(2) For E V2@W2, w(c)2D2d2; and 

(3) For B V1@W1 and e V2@W2, 

w(c) 2 min (Dd,X,Al,A2). 
A 

From the above weight distribution, we see ,,iat the weight of a 

nonzero code array in V1@W1@V2@W2 is at least min (Dldl,D2d2, 

h A , A 1 , A 2 ) '  

Suppose min ( Dldl I bd, A ,  A1, A 2  ) 2 D2d2. 

Then we have the following weight structure of a nonzero code 

array C in v1@w1~v2@w2 : 
(1) For E V2@W2, w(c) 2 D2d2. 

(2) For E V1@W1@V2@W2 - V2@W21 
w(c) 2 min (Dldl,fjd,X,A1,A2}.. 

It follows from Theorem 5 that C=V1@W1@V2@W2 is linear block code 

with a separation vector S = (sl,s2) where 

Si L min {Dld1,bd,A,Al,A,), 

5 2  L D2d2- 
The message space A for C is the product of A1=(O,l) K1kl and 

A 2 = { 0 , 1 )  K2k2 

ExamDle 4: Let VI and V2 be two equivalent ( 7 , 4 )  Hamming codes. 
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Let W1 and W2 be the (7,l) and (7,3) BCH codes over GF(2) 

respectively. Then W1@W2 is a (7,4) Hamming code. The minimum 

distances of V1 and V2 are D1=3 and D2'3 respectively. The 

minimum distances of W1, W2, and W1@W2 are d1=7, d2=4, and d=3 

respectively. Note that V1nV2 is the (7,l) binary code with 

minimum distance 6=7 while V1+V2 is the (7,7) binary code with 

minimum distance D=l. Thus, X = D.min(dl,d2}+r(Dl+D2-D)/21 .d - - 

13, = {Dl+rDl/21}.d = 15, X 2  = {D2+rD2/21).d = 15, 6d=21, 

Dldl=21, and D2d2=12. Note that N=7, K1=K2=4, n=7, kl=l, k2'3. 

Since min (Dldl,6d,X,X1,X2} = 13 1 D2d2 = 12, we see that 

V1@W1@V2@W2 is a two-level UEP (49,16) binary linear code for the 
- 

message space A=AlxA2 with separation vector s=(s1,s2), where 

A1=(0,1)4, A2=(0,1)12, s1113, ~ ~ 1 1 2 .  Thus, 4 message bits of a 

message are protected against up to 6 random errors, while 12 

other message bits of the same message are protected against up 

to 5 random errors. We may compare this code to the product code 

of two (7,4) BCH codes with minimum distance 3, which is a 

(49,16) binary linear code with minimum distance 9. 
M 

A special case for the above direct sums of product codes is 

that 
V1nv2 = (51. 

For this case, if min(Dldl,X,Xl,X2) 1 D2d2, then a nonzero code 

array in V1@W1@V2@W2 has the following weight structure: 

(1) For E V2@W2, w(c)?D2d2; 

( 2 )  For C E V ~ ~ W ~ W . - ~ W ~ - V ~ W ~ ,  

w(c) 2 min(Dldl,X,Xl,X2). 

Then the code V1@W1@V2@W2 is a linear block code with separation 
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A. A class of D irect Sums of Product Codes 

Now we present a specific class of direct sums of product 

codes, Let a and p be two different primitive N-th roots of 

unity. Let V1 be an (N,K1) binary cyclic code which has a, 

a 2 f...la 2t and their conjugates as zeros. Let V2 be an (N,K2) 

binary cyclic code which has p,p21...,p2t and their conjugates as 

zeros. Clearly, V1 and V2 are equivalent codes. Hence, K1=K2=K 

and Dl=D2'2t+l, 

the minimum distance of V2. 

is an integer) contains {a 

2t+2s as zeros. Thus, either the then V1nV2 includes a l a  ,...,a 

minimum distance 6 of V1nV2 is at least 2t+2s+l or VlnV2=(a} which 
is the case that V1nV2 contains all the ai's as zeros. If the set 

( (ai)2m : i=1,2, ...,2t and m is an integer) contains (pip ,..., 
p2u) as a subset , then V1+V2 contains p , p 2  I.o , p  2u as zeros. 

Thus, D, the minimum distance of V1+Vz is at least 2u+l. 

where D1 is the minimum distance of V1 and D2 is 

If the set { (pi) 2m : i=1,2,. , . ,2t, m 
I ,...,a 2t+2s) as a subset, 2t+l ,2t+2 

2 

2 

With the above V1 and V2, if min{ (2t+l)dl, (2t+2s+l)d,x,xl, 

X 2 )  2 (2t+l)d2, the direct sum V1@W1@V2@W2 is an (Nn,K(kl+k2)) 

code with separation vector s = (slts2) where 

s1 - > min( (2t+l)dl, (2t+2s+l)d,x,A1,X2), 

s2 - > (2ttl)d2, 

x = (2u+l) .min(dl,d2)+(2t-u+l)d, 

x1 = X 2  = (3t+2)d. 

48  



E)tamle 5: Let V1 be a 
3 (31,21) BCH code with minimum distance D1'5, which contains a, a 

and their conjugates as zeros. Let V2 be a (31,21) BCH code with 

minimum distance D2'5, which contains a3, (a3) , and their 

conjugates as zeros. Since a9 is a conjugate of a , v1nv2 
includes a,a3,05, and their conjugates as zeros. Since 

VlnV2+(B}, the minimum distance 8 of V1nV2 is at least 7. 

Furthermore, the minimum distance D of V1+V2 is at least 3 since 

a3 is a zero for both V1 and V2. Let W1 and W2 be (7,l) and 

(7,3) BCH codes over GF(2). Thus, the minimum distance of W1 is 

Let a be a primitive element in GF(25). 

5 

d1=7 and the minimum distance of W2 is d2'4. Furthermore, W1@W2 

is a (7,4) BCH code over GF(2) with minimum distance d=3. Thus, 
3. 

t=2, s=l, u=l, X = (2u+l)-min(dl,d2}+(2t-u+l).d = 24, X1 = X 2  - - 

(3t+2) .d = 24, 

(2t+l).d2=20. Note that N=31, n=7, kl=l, k2=3, K1=K2=21. Since 

min(Dldl,8d,X,Xl,X2) 2 21 2 D2d2 = 2 0 ,  V16#W1@V26#W2 is a (217,84) 

binary two-level UEP linear code for the message space A=AlxAZ 

with separation vector z=(sl,s2) where A1=(0,1}21, A2=(0,1}63, 

s1121, and s2220. Note that the product code of a (7,4) Hamming 

code with minimum distance 3 and a (31,21) BCH code with minimum 

%2(2t+2s+l) .d=21, Dldl=(2t+l) -dl=35, and D2d2 = 

distance 5 has minimum distance 15. 

B. Burst Error Correction 

So far, we have studied the multi-level error-correcting 

capabilities of block codes through their separation vectors. 

However, the separation vector of a block code only specified its 

49 



multi-level random-error-correcting capability. Now we want to 

show that the direct sum of product codes inherits the burst- 

error-correcting capability from their component product codes. 

If an nxN code array 

any error burst of length N-L(d-l)/2] can affect at most L(d- 

1 ) / 2 J  components in each column of E .  Hence, every column of E 

can be correctly recovered. That means that any error burst of 

length up to N.L(d-l)/2] can be corrected. Thus, in addition to 

the random-error-correcting capability, V1@W10V2@W2 has burst- 

error-correcting capability. Suppose that V1@W10V2@W2 is a code 

for the message space A=AlxA2 with separation vector 

where s12s2. Let tl=L(sl-1)/2], t2=L(s2-1)/2]. We shall show 

that 

in V1@W10V2@W2 is transmitted row by row, 

- 
s=(s1,s2), 

(1) Any component message from A1 is protected against up to 

tl random errors and any error burst of length up to 

N.l(d-1)/2] 

and error burst). 

Any component message from A2 is protected against up to 

t2 random errors and any error burst of length up 

(not the combination of both random errors 

(2) 

to 

N -  L(d-l)/2J. 

For i=1,2, let Sii) be an nxN array with at most ti nonzero 

components. Let eb be an nxN array with a burst of length at 

most N-L(d-1)/2]. To justify property (l), we need to show that 

both $l)+c, and eb+cj are correctable error patterns for 

V1@Wl, where c2 and 
Equivalently, we need to show that ei1)+c2 and eb+cj can 

not be in the same coset of the standard array for V1@W1 if 
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-(l)+~, er z eb+ci. 

that both er and eb are correctable patkerns for 

V1@Wl@V2@W2. Equivalently, we need to show that e!2) and eb 

can not be in the same coset of the standard array for 

v1ew1~v2@w2 if ~ 4 2 )  z eb. 

TO justify property (21,  we need to show 
- 

Suppose that Z$.l)+Z2 and eb+”i are in the same coset 

of the standard array for V1@Wl, where c2 and are two 

arbitrary codewords of V2@W2. 

must be equal to some codeword -dl in V1@W1. Then, we have 

~ $ 1 )  +zb=cl+C2+E3. If c ~ = o ,  then ~$1) +c2=Zb+Ci. We only have 

to consider the case for which e$l)++Sb+cJ. Hence, 

cl+B. 

a nonzero column of i$”+Zb, which is a nonzero codeword of W. 

Thus, 

The sum of Z$. ’ )+E~ and eb+cj 

- 
Thus, the weight of G$”’eb is at least sl. Consider 

this column has at least d nonzero components. Note that 

there are at most t=L(d-l)/2] nonzero components in each column 

of ebo 

most t nonzero components from Zb and at least d-t components 

from e$’). 
least d-t nonzero components. Since there are at most tl 

nonzero components in e:’), there are at most Ltl/(d-t)J 

nonzero columns in e$.’). This implies that there are at most 

Ltl/(d-t)J nonzero columns in zb. Therefore, eb has at most 

Ltl/(d-t)] .t nonzero components. Then, we see that s$.l)+zb 

contains at most Ltl/(d-t)J.t+t, nonzero components. However, 

Thus, a nonzero column of e$l)+zb is composed of at 

This implies that a nonzero column of e!’) has at 

- 

[ti/ (d-t) J .t+tl L ti{ [t/ (dot) 1+1) 

< 2tl 
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- This contradicts the previous result which requires w (e!’) +eb) 
to be no less than sl. Thus, we have proved property (1). 

Suppose that ~$2) and zb are in the same coset of 

V ~ Q ~ W ~ ~ V ~ ~ W ~ .  

v1t3w10v2ew2. Thus, W(Z!~)+Z~)Z~~. BY an argument similar to 

that for property (1) , 
nonzero columns in eb. Then, -(2)+~b e, contains at most 

Then, Z{~)+Z,=C for some nonzero codeword c in 

we find that there are at most It2/ (d-t)] 

Lt2/(d-t)J.t+t2 I t2{ [t/(d-t) 1+1) 

< 2t2 

< 52 

nonzero components, which leads to a contradiction. Thus, we have 

proved property (2) . 
Consider the (49,16) binary code illustrated in Example 4. 

For this code, 4 message bits of a message are protected against 

up to 6 random errors and any error burst of length up to 7, 

while the other 12 message bits of the same message are protected 

against up to 5 random errors and any error burst of length up to 

7. 

Consider the (217,84) binary linear code illustrated in 

Example 5. For this code, 21 message bits of a message are 

protected of 

length up to 31, while the other 63 message bits of the same 

message are protected against up to 9 random errors and any error 

burst of length up to 31. 

against up to 10 random errors and any error burst 

If an nxN code array C in v1eW10V2eW2 is transmitted column 
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by column, any error burst of length n.L(D-l)/2J can affect at 

most L(D-1)/2] components in each row of E. Hence, every row of 

c can be recovered. Therefore, any error burst of length up to 

n-L(D-1)/2] can be recovered. With an argument similar to the 

case for which a codeword is transmitted row by row, 

- 

we can show 

that 

(1) Any component message from A1 is protected against up to 

tl random errors and any error burst of length up to 

n. L(D-l)/2J . 
Any component message from A2 is protected against up to 

t2 tandom errors and any error burst of length up to 

n. L(D-1)/21. 

(2) 

V. CONCLUSION 

This research is concerned with coding for unequal error 

protection. The basic idea is that it is possible to achieve 

multi-level error-correcting capability of a block code by 

partitioning the code into disjoint groups (clouds). For a 
'rC 

linear direct-sum code, if a partition yields a proper weight 

structure, then the code has multi-level error-correcting 

capability and hence is a UEP code. By studying the weight 

. structures of various linear codes, we presented the following 

UEP codes: 

(1) A class of UEP codes for which the generator matrices 

(or parity check matrices) are certain combinations of 

generator matrices (or parity check matrices) of 

shorter codes. Especially, there is a class of system- 
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atic codes which meet the Hamming bound for 

systematic UEP codes. 

A class of direct sums of product codes which are UEP 

codes and have greater minimum distance than the 

simple product codes of comparable dimensions. 

Besides, the direct sums of product codes still retain 

the burst-error-correcting capabilities of simple 

product codes. 

( 2 )  

We have also constructed two classes of UEP cyclic codes 

which space[22). 

From the results of our research, we believe that, by our 

approach, i.e., studying the weight structure of block codes, 

more classes of powerful UEP codes can be constructed in the 

future. 

are not presented in this paper due to limited 
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APPENDIX A 

proof of Temma 1 

Let Vo and Go be two vectors in V and W respectively 

such that 

d ( m , v )  = d(r,vO)r 

and d((F),W) = d(F,wo). 

Since Hamming distance satisfies triangluar inequality, we have 

d({F),V)+d({F),W) = d(r,vo)+d(F,wo) 2 d(vO,wo). 

However, it follows from the definition of d(V,W) given by (3) 

that 

d(v,,w,) L d(V,W). 

d(m,v)+dUF),w) 2 d(V,W) 

Combining the above results, we obtain the inequality, 
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APPENDIX B 

Svstemati c Eau ivalent Code of Th e Code with Par itv Check Matrix 

Given bv 301 

Now, we will show that the code C with parity check matrix H 

given by (30) can be transformed into a systematic code with 

identical two-level error correcting capability. 

Let H(2m-l) be the submatrix of H which consists of the 

first 2m-l columns of H. Note that a linear combination of less 

than 5 columns from H with at least one column from H(2m-1) can 

not be zero. This implies that a codeword of C with at least one 

nonzero component at the first 2m-1 positions has weight at least 

5. By row operations, H can be transformed into the following 

form: 

where I1 is an mxm identity matrix, I2 is an (m+l)x(m+l) identity 

matrix, 021 is the zero (m+l)x m matrix, 012 is the zero 

mx(m+l) matrix, P is some (2m+I) x (2m-1-m) matrix, and PI is 

m+l- some (2m+l) x (2m+a-2m-m-1) matrix. Let k1=2m-m-1 and k2=2 

2m-m-l. Let x1 be a component message from A1=( 0, l}kl and x2 
be a component message from A2=( 0, l)k2. Thus, x1 and x2 are 

kl-tuple and k2-tuple respectively. From HI, we see that any 

codeword v(xl,x2) of C can be written as 

- 

- -  - 

- 
where p and are some m-tuple and some (m+l)-tuple 

respectively which represent the (2m+l) redundant digits [20]. 
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Regardless of the order of redundant digits and message digits, 

the expression of v(xl,X2)=[p x1 6' %,I is in fact in 

systematic form. 

within the first 2m-l positions of V(xl,x2). 

at the beginning of this paragraph and (25), we have 

- -  - -  

Note that the message digits in x1 are located 
- 

From the result 

- 
s1 = min {w(V(%,,x2) : xldl  and %,zO) 2 5. 

- Clearly, s2 = min {w(V(z1,%,) : x2EA2 and %,zO) = 3. 

Thus, C is in systematic form with 2m-m-1 message bits protected 

against any 2 or fewer random errors, while the other 2 m + L p L , - J  

message bits protected against any single error. 
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APPENDIX C 

proof of Theorem 6 

Pick an arbitrary generator matrix Gaa of the (na,ka-r) code 
T T T  C, generated by the parity check matrix [Ha, Hab 3 . It is easy 

to check that [G,, OAb] .HT=O. 

by the generator matrix [G,, o&,] is a ka-r dimensional 

of C. Pick an arbitrary generator matrix Gbb of the (nb, kb-r) 

code cb generated by the parity check matrix [Hbb H ~ ~ T I T .  We 

see that [oha G~~]*HT=B. Hence, the subcode c3 generated by 
the generator matrix [OLa Gbb] is a kb-r dimensional subcode of 

C. Since C2 n C3 = ( B ) ,  the direct sum of C2 and C3 forms a 

ka+kb-2r dimensional subcode of C. There must exist an r 

dimensional subcode C1 such that C is the direct sum of C2, 

and C3. Pick an arbitrary generator matrix of C1 which is 

expressed as [Gab Gba] where Gab is an rxna matrix and Gba is an 

rxnb matrix. Thus, the matrix G of (41) is the generator matrix 

Hence, the subcode C2 generated 

subcode 

T 

C1, 

Of c. Note that G,b.HaaT=B and Gba.HbbT=B. TO prove that 
T [G,, G ~ ~ ~ J  is a generator matrix of the (na, ka) code c,, 

generated by the parity check matrix Haa, we need to show that 

Gab generates an r dimensional subcode cab of C,,, for which the 

only common codeword with C, is the zero na-tuple. The fact that 

G,~.H,,T=B implies that Gab generates a subcode of cas. Assume 

that the rank of Gab is less than r. Since the rank of [Gab Gba] 

is r, there exists a nonzero codeword in C1 for which the 

first This implies that v is in C3 
which contradicts the fact that C is the direct sum of C1, C2, 

and c3. Thus, the rank of Gab is r and Gab generates an r 

na positions are all zero. 
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dimensional subcode cab of Caao 

have a nonzero common codeword 7,. Let V1=[Va Sb] be a 

codeword of C1 where vb is some nonzero nb-tuple. Note that 

v2=[Va ob] is a codeword of C2, where 8b is the zero nb- 

tuple. Then, vl+v2=[8, v3,3, where 8, is the zero n,-tuple. 

Thus, [aa vb] is in C3 which again leads to a contradiction. 

Hence, cab and C, have only zero na-tuple as common codeword. 

Thus, we have shown that [G,, T GabTIT is a generator matrix of 

the (na, ka) code caa generated by the parity check matrix Haa. 

Assume that the code cab and C, 

- - 

- 

We can similarly prove that [Gbb T G ~ ~ T I T  is a generator matrix of 

the (nbrkb) code Cbb generated by the parity check matrix Hbb. 
I 
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