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ABSTRACT

In conventionél coding for error control, all the information symbols
of a message are regarded equally significant, and hence codes are devised
to provide equal protection for each information symbol against channel
errors. However, in some occasions, some information symbols in a message
are more significant than the other symbols. As a result, it is desired to
devise codes with multi-level error-correcting capabilities. Another
situation where codes with multi-level error-correcting capabilities are
desired is in broadcast communication systems. An m-user broadcast channel
has one input and m outputs. The single input and each output form a
component channel. The component channels may have different noise levels,
and hence the messages transmitted over the component channels require
different levels of protection against errors. In this research, we
investigate block codes with multi-level error-correcting capabilities,
which are also are known as unequal error protection (UEP) codes.
Structural properties of these codes are derived. Based on these structural

properties, two classes of UEP codes are constructed. A subclass of codes



I. INTRODUCTION
In conventional channel coding, all the inforﬁation symbols
of a message are regarded equally significant, and hence
redundant (or parity-check) symbols are added to provide equal
protection for each information symbol against channel errors.
However, on some occasions, some information symbols in a message

are more significant than other information symbols in the same

message. Therefore, it is desirable to devise coding schemes
which provide higher protection for the more significant
information symbols and lower protection for the less significant
information symbols. Suppose a message from an information
source consists of m parts, each has a different 1level of
significance and requires a different level of protection against
channel errors. An obvious way to accomplish this is to use a
separate code for each message part and then time share the
codes. The redundant symbols of each code are designed to
provide an appropriate level of error-correcting capability for
the corresponding message part. This coding scheme requires a
separate encoder and decoder pair for each code. A more
efficient way is to devise a single code for all the message
parts. The redundant symbols are designed to provide m levels of
error protection for the m parts of a message. It has been
proved that a single code with m levels of error-correcting
capability usually requires less redundant symbols than that
required by time-sharing m separate codes with the same m 1levels
of error-correcting capability [1-9]. Moreover, a single code
requires only one encoder and one decoder. This may be desirable
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in many situations. A code with multi-level error-correcting
capabilities is known as an unequal error protection (UEP) code.
UEP codes were first studied by Masnick and Wolf (1], then by
other coding theorists [6,7,10-18]. Another situation where
codes with multi-level error-correcting capabilities are desired
is in a broadcast channel communication system as shown in Figure
1, in which m independent information sources attempt to transmit
information to m separate users through a single transmitter.
Only message ii emanating from the i-th source is intended to be
recovered by the i-th decoder (or user). The m messages
emanating from the m sources are encoded by a single encoder
into a single codeword V(X;,¥X5,...,Xp). This codeword is
then transmitted to the m users over a broadcast channel which
has a single input and m outputs. Each output of the channel is
connected to a decoder for the corresponding user. Each decoder
receives a vector which is a corrupted version of the transmitted

codeword V(Xj,Xp,...,X

) ¢ For 1<i<m let r; be the vector

received by the i-th decoder. Then, the i-th decoder decodes rj
into §; which is an estimate of the message X; produced by the
i-th source. The decoders do not collaborate with each other.
The broadcast channel actually consists of m component channels,
where the i-th component channel consists of the input terminal
and the i-th output terminal of the broadcast channel. These m
component channels may have different noise levels, and hence the
m messages transmitted over the component channels require

different 1levels of protection against errors. Consequently,



codes with multi-level error-correcting capabilities are
desired. Coding for broadcast channels has recently been studied
by Heegard, dePedro and Wolf (9], Dowey and Karlof [19],
Bassalygo, et. al., [7], and Kasami, et. al. [8].

In this paper we investigate codes with multi-level error-
correction capabilities. We intend to unify the concepts that
have been separately developed for the single user communications
and the multi-user broadcast communications. Two classes of
multi~-level UEP codes are presented. In this paper we use the
terms, multi-level error-correction codes and multi-level UEP

codes, interchangeably.

II. BASIC CONCEPTS

A. Cloud Structures of Block Codes and the Associated Separation
Vectors

Let A4, Ay, ... , A be m message spaces. A message from A;
is denoted by xj. Consider the following set of m-tuples:

A= { (X9,X5, «++ ,Xp) : X; € A; for 1<i<m ) (1)
The set A is called the product of A, A,,...,A,, and A; is
called the i-th component message space of the message space A.
Accordingly, ii is called the i-th component message of the
message (Xj,X,,...,Xp) from A. Let |s] denote the cardinality
of a set S. Then

Al = |Aq] x [A5] x ... x |Ag].
A special case is that, for 1<i<m, the i-th component message

ki .
space Aj consists of all the 271 ki-tuples over GF(2). In this




case, each message in A is a k-tuple over GF(2), where
k = ky+ky+...+kp.

In a single-user communication system, A is the message
space for the single information source with every message in A
being partitioned into m parts. For a multi-user communication
system, A; is simply the message space for the i-th information
source of the system. Without loss of generality, we assume that
messages from A, have the highest level of significance, messages
from A, have the second highest level of significance, ... , and
the messages from A; have the lowest level of significance.

Let n be a positive integer such that

n > [log,|Al],
where [q] denotes the smallest integer greater than or equal to
the number q. Let C be a binary block code of length n for the
message space A. Then C is a subset of {0,1}“, the vector space
of all n-tuples over GF(2). If C is a subspace of {0,1)}", then C
is a linear block code for A. The codeword which corresponds to
the message (X;,X;, ... ,Xp) is denoted by V(X;,%X;, ... ,Xp).

Let Vv and W be two n-tuples in {0,1}". The Hamming
distance between v and w, denoted by d(v,w) is defined as the
number of places where Vv and W differ. The minimum distance of
C is defined as

dpin = min (d(V,W) : V, weC, V » W}. (2)

In conventional coding for a single user, a code is designed to

provide uniform (or equal) error protection for every component
message of a message. The errof correction capability is
determined by the minumum distance dp;, of the code. Every
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component message can be correctly decoded if there are

t = |(dpin~1)/2]
or fewer errors in the received word, where |g] denotes the
largest integer less than or equal to the number gq.

However, for designing codes with multi-level error-
correction capabilities, a different distance measure is needed.
Let V and W be two subsets of vectors in {0,1}". We define the
separation between V and W, denoted by d(V,W), as follows:

d(V,W) = min{d(V,wW) : VeV and W € W). (3)

Let C be a block code for the product message space A =
A XA X. .. XA, Let a be a specific message in A;. Consider the
following subset of codewords in C,

Qi(a) = (V(Xq, «ov 1Xjo1+8,Xj477s soo 1Xp) ¢

Ej € Ay for 1<j<m and j = i}. (4)

Clearly, there are

=]

log @ | =T Iag)

j=1
i

codewords in Qi (a). We call the set Q;(a) an i-cloud of C
corresponding to the message a in Aj. There are |Ai| i-clouds
in C corresponding to |A;| messages in A;. These i-clouds form a
disjoint partition of C, i.e.,

C = L%. Qj(a) and Qj(a) n Qj(b) = ¢
a e 3

i
for a»b. The codewords in an i-cloud are called satellites.
Consider two distinct i-clouds, Q;(a) and Q;(b). The

separation(or distance) between Qi (a) and Qi(B) is




d(Qi(E),Qi(B)). Then, the minimum separation of the i-clouds
is defined as

s; = min(d(Qj(a), Qj(b)) : a, b e Ay and a » b). (5)
Geometrically, we may view the code C as partitioned into |A,|
i-clouds, where any two i-clouds are separated by a distance of
at least s;. From (4) and (5), it is clear that

s; = min{A(V(Xy, «ve ,X§s oco 1 Xp),
V(X], o0 X'y eee ,X0)) s
Xy, X} € A, for 1<f<m and X * X3').
(6)
The m-tuple
s = (S1, Sy, -« ' Sq)
is called the separation vector of code C. It follows from (2)
and (6) that the minimum distance dpin ©f the code is equal to
the mrinimum component of the separation vector s, i.e.,
dpin = min{si : 1<i<m}. (7)
In the following we will show that the minimum separation sy
of the i-clouds indicates the level of error protection for the

i-th component message Xj.

Lemma 1: Let V and W be two subsets of (0,1})®. For any
arbitrary vector ¥ in {0,1)}", the following inequality holds,
d({r},vV) + 4({r},wW) > 4(V,¥W). (8)

Proof: See Appendix A.

Now we devise a decoding algorithm for C for which each

component message ii € Aj is decoded independently. Suppose



some codeword v is transmitted. Let r be the received vector.
To decode the i-th component message, we need to compute the
distance d({f},Qi(ﬁi)) between r and each i-cloud Qi(ii).

Let Q5 (a) be the i-cloud such that d({r},Qj(a)) is the

smallest, i.e.

d({T),Qi (@) < d({T},Q;(X;))
for Xx; = a. Then the i-th component message is decoded into
a. The i-th component message will be decoded correctly
provided that there are

L(sj-1)/2]

or fewer transmission errors in the received vector r. To see
this, 1let v = V(il,...,ii,...,im) be the transmitted codeword.
Let X;'»X;. It follows from Lemma 1 that

d((T),Q;(X;))+d({T),Q; (X3')) = d(Qj(¥4),Q;(X;"))

Since
d(Q;(%4),Q2(%X;")) 2 si, (°)
we have
a({r},Qi(x3")) = s;-d({Tr},Q;(x4)). (10)
However,
d(r,v) 2 d((T},Q;(x4)). (11)

From (10) and (11), we obtain the following inequality,
d({r),Q(x;')) 2> sj-d(r,v). (12)

I1f there are t;=|(sj-1)/2] or fewer transmission errors in ¥, then
a(r,v) < tj. (13)

It follows from (11) to (13) that
d({T},Qi(%;)) < tj,

and




d({T),Qj (X;")) > tj.
Hence,

d({T},Q; (¥3)) < d({¥},Q;(X;")) (14)
for x;'sX;. Based on the decoding algorithm described above, the
i-th component message is decoded into Xj. This results in a
correct decoding. ’

We have shown that the minimum separation s; of the i-clouds
of a code determines the level of protection for the i-th
component message §i° Summarizing the above results, we have
Theorem 1.

Theorenm 1: Let C be a block code for the product of m message

spaces, A;, Ay, ... , Ay Let s = (s9,85,...,Sy) be the
separation vector of C. Then, for 1<i<m, the i-th component
message ii contained in a received word can be correctly decoded

provided that the number of transmission errors in the recieved

word is [(s;j-1)/2] or less.
AA

Suppose s;i>s4. We see readily that if there are |(s;-1)/2]
or fewer transmission errors in a received word, the i-th
component message ﬁi can always be decoded correctly but the j-th
component message ij may not be decoded correctly. However, if
there are [(sj-l)/zj or fewer transmission errors, both component
messages, Xxj and §j,

t; = l(s3-1)/2]

is referred to as the level of error protection for the i-th

can be decoded correctly. The parameter

component message. A code C with a separation vector s =
(51'52'°"'sm) is called a_(tl,tz,...,tm)—error-correcting code
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with ti=|(s;j-1)/2] for 1<icm. If not all the t;'s are equal,
code C provides unequal error protection for the component
messages in the product message space A = A;XAjX...XAq. If all
the t;'s are different, then C provides m distinct 1levels of
error protection, one for each component message. We call C an
m-level UEP code or m-level error-correction code. For the case
where t,=t,=...=t,, the code provides equal error protection for
all the component messages. Then C becomes a conventional error-
correcting code.

Without loss of generality, we assume that s >s,>...2sp,. In
a single-user communication system, we simply regard that the
first component message il is most significant, and hence it
requires the highest level of error protection. The m-th
component message im_is least significant, and hence it requires
the least protection. In a broadcast communication system with m
information sources as shown in Figure 1, the first component
channel is regarded as the noisiest channel. Hence, a word
received by user-1 contains the most errors. Therefore, the
first component message il needs more error protection than
other component messages.

In this paper we only consider multi-level UEP codes for
either the single-user binary symmetric channel(BSC) or the
multi-user binary symmetric broadcast channel (BSBC). For an m-
user BSBC, each component channel is a BSC with certain
transition probability.

Linear unequal error protection codes were first studied by
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Masnick and Wolf[1]. The concept of separation vector for
unequal error protection codes was first introduced by Dunning
and Robbins [13]. The separation vector defined in this paper is
a generalized version of Dunning and Robbins', which applies for
linear or nonlinear codes, single user or multi-user coding.

Note that the minimum separation s; for the i-th clouds
depends on how a code is partitioned into the i-th clouds.
Different encodings (or mappings) of A onto C yields different
partitions of C. As a result, the separation vector of C
depends on the encoding mapping. This is best illustrated by an
example.

Example 1:

spaces, A,=A,={0,1). Hence, A=(0,1)2 and each message u in A is

Consider the product A of two component message
of the form (u;,u,) with u; € A, and u, € A,. Let C={(0000),
(1111), (1110), (0001)) be a linear block code for A. Consider

the two encoding mappings shown in Tables 1-(a) and 1-(b).

Table 1
Encoding (a) Encoding (b)

message codewords message codewords
(up,uy) v(uq,uy) (uy,uy) v(ug,uy)

00 0000O0 00 00O00O

10 1111 10 1111

01 0001 01 1110

11 111310 11 0001

For the encoding mapping (a), the 1l-clouds are:

Q, (0)={ (0000), (0001)},
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Qq(1)={(1111), (1110)}.
The 2-clouds are:

Q,(0)={(0000), (1111)},

Q,(1)={(0001), (1110)}.
We see that

s1=d(Q, (0),Q4(1))=3,

55=d(Q,(0),Q;(1))=1.
Hence, the separation vector of C based on decoding (a) is
s=(3,1). In this case, the message bit u; will be decoded
correctly provided there is no more than one error in the
received word. The second message bit u, has no error protection.
The code is a (1,0)-error-correcting code.

For the encoding mapping (b), the 1-clouds and 2-clouds are

Q; (0)={(0000), (1110)},

Q,(1)={(1111), (0001)},

Q5 (0)={(0000), (1111)},

Q2(1)={(1110), (0001) }.
Note that

$1=d(Q; (0),Q; (1))=1,

55=d(Q1 (0),Q,(1))=1.
Hence, for the encoding mapping (b), the code has a separation
vector

s = (1,1).
In this case, the code provides no error protection for either u,

or uz.
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B. Direct-Sum Codes for Unequal Error Protection

For 1<i<m, let
c; = (V(xi): X; € Ay)
be a block code of length n for the i-th component message space
A;. We assume that codes, Cq, Cy,...,Cp, satisfies the following
conditions:
(1) For i = j, Cin cy = {0}, where 0 is the all zero
vector in {0,1}".
(2) V(X)) +V(Xp)+...4V(Xp) = V(§1)+V(§§)+...+V(§ﬁ)
if and only if x;=%;' for i=1,2,...,m.
The first condition implies that every code contains the all-zero
vector. Now we consider the following set of vectors:
C = {V(§1)+V(§2)+...+V(§m): v(xj) € €4 for 1<i<m}
The set C is called the direct sum of C4,C,,...,Cp, denoted
C=CLeCo ... @ Ch.
Now we use C as a code for the product message space A. For any
message (Xj,Xy,-..,%y) in A, the corresponding codeword
V(Xy,X5,..+,%y) is simply the following direct sum:
V(il,iz,...,im) = V(§1)+V(§2)+...+V(§m).
Let {j1'j2'°°"j£} be a subset of (1,2,3,...,m}. Let

C(jl,jz,..-,jz) = le ® Cjz ® e @ Cj£

Then C(Jjy,J5,--.,J) is a subcode of C. The i-cloud of C for the
component message ii is simply the following set:

Qi (x3) = V(%) © C(1,...,i-1,i+1,...,m) (15)
Since 0 is a vector in c(1,...,i-1,i+1,...,m), the vector v(X;)

is in the i-cloud Q;(Xj). The vector V(X;) is called the center
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where w € C(1,...,1i-1,i+1,...,m).

Let §=(sl,sz,...,sm) be the separation vector of C. Suppose
the codeword

Vo= V(X)) V(X)) +e o+ (X))
is transmitted. It follows from Theorem 1 that, if there are
l(s;-1)/2] or fewer errors in the received vector, the i-cloud
Qj (x3) which contains V can be identified, and hence the center

V(X;) and the message X; can be recovered.

Theorem 2: Let C be the direct sum of ¢, C,,...,C Let e be

me
an error pattern with [(si—l)/zj or fewer errors, i.e. the
Hamming weight of e, w(e), is l(s4-1)/2] or less. Then, the
subcode C€(1,2,...,1i) is capable of correcting any error pattern
of the following form,

e+t+z,
with z € C(i+1,i+2,...,m).
Proof: Let y be a codeword in the subcode C(1,2,...,1). Then

Y = V(X])+V(X5)+. . .V (X5)
for some X, € Ay, Xy € Ay, ..., Xj € Aj. Suppose y is
transmitted and corrupted by the error pattern e+z. Then, the
recieved vector is
r = y+e+z.
Note that y+z=v is a codeword in C. Thus, r=e+v. Let

z = V(§i+1)+V(§i+2)+...+V(§m).

Since w(e) < [(sj-1)/2] and s;>s,>...2s;, it follows Theorem 1
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that v(x,), V(X3), ..., V(Xj) can be decoded correctly,
i.e. ¥y = V(§1)+V(§2)+...+V(§i) can be decoded correctly.
Therefore, e+z is a correctable error pattern for the subcode
c(1,2,...,1).
Q.E.D.

Encoding of a direct-sum code can be done easily. Each
component message X; is encoded into a codeword V(X;) based on
its corresponding code C;- Then the m component codewords are
added to form the codeword for the entire message (X;,X5,...,Xp).

Decoding of a direct-sum code can be carried out in m steps.
Suppose the codeword

Vo= V(%)+V (X)) +. . . +V(Xp)
is transmitted and

r, = vte
is recieved where e is the error pattern. At the first step, we
decode il based on the m-level error-protection code C =
C,0C,0...0C . If w(e) < |(s;-1)/2], X, and V(X;) can be correctly
recovered. Then, we subtract V(X;) from r. This results in the
following vector

Ty = V(X,)+. . .4V (Xy) +e.
At the second step, we decode §2 based on the (m-1)-level error
protection code C(2,3,...,m). If w(e) < [(sz-l)/zj, X,, and
V(X,) can be recovered correctly. Subtracting V(x,) from
r,, we obtain

T3 = V(X3)+...+V (%) +e.
Repeating the above process, we décode the rest of component
messages. Each subsequent qomponent message is decoded based on a
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smaller code. 1f w(e) < l(sy-1)/2), %Xy, %3, ..., Xxj will be
decoded correctly.

At each step of the above m-step decoding procedure for a
direct-sum code, two approaches can be applied to decode the
component message. Suppose that V(X;), V(X3),...,V(¥j_;) have
been correctly decoded. Then, we have

ry = V(X)) 4V (Xj4q)+e - - HV (Xp) +e.

At the i-th step, we need to decode X; and V(X;) from r;. For the
first approach, we view ?i as an error corrupted version of a
codeword V(§1)+V(§i+1)+...+3(§m) in ¢(i,i+1,...,m). Then, we can
apply the basic nearest-neighbor decoding method, i.e., searching
for the i-cloud nearest to Ei and using the center of the i-
cloud as an estimate of V(X;j). Clearly, the estimate of
V(Xj) is correct if w(e) < L(sj-1)/2]. Then, we can find the
component message X; corresponding to v(xy). For the second
approach, we view Ei as an error corrupted version of a Codeword
V(Xj) in the component code Cj. Then, we decode V(X;) based

on the decoding algorithm of Cj. Suppose that w(e) < [(si—

1)/2]. It follows from Theorem 2 that

Tip1 = V(Xjpq) WV (Xjpp) e V(X)) +e
is a correctable error pattern for C;. Thus, V(x;) and x; can be
correctly decoded.

There is an example for which the second approach can be
applied. For some i=1,2,...,m, suppose that the i-th component
code C; is a linear code with parity check matrix Hj. Note that

other component codes may or may not be linear. At the i-th step
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of decoding, we can apply the second approach for which the
decoding algorithm of C; is the syndrome decoding. We compute
the syndrome for ry based on Hy, i.e.

§; =T; - HT.
From S;, we identify the correctable error pattern (a coset
leader with respect to Cj) which corresponds to S;. 1If w(e) <
[(si-l)/zj, then the corresponding error pattern is

Tiry = V(Xj41)HV(Xj40)+. . o4V (X)) te.
Subtracting rj,, from r;, we obtain V(X;). Then, we can find the

component message X; corresponding to v(x3).

C. Hamming Bound for Systematic UEP Codes

An m-level unequal error protection code C is said to be
systematic if the codeword for the message (X;,X,,...,Xy) has
the following form:

V(Xq1XgpeeeiXp) = (X9,Xp, 000Xy, P)
where p represents the n-k redundant digits. Now we are going
to derive a lower bound on the number of parity-check digits of
an m-level linear systematic unequal error protection code with a
separation vector s = (d;,dy,...,dp)- Let Y=(Y1,Y¥2/s+-+:Yp) be
a binary n-tuple in {0,1)}®. For 1<j<n, define

Y () = (Y4410 -1¥p) -

Note that §*(j) is simply a suffix of y. Define the following
set of n-tuples:

Y = (y : ?é(o,l}“ and the number of nonzero components in

§*(Ai_1+1) is at most tj for 1<i<m) (16)
where 1o=0, tji=|(d;j-1)/2] and Aj=kj+ky+...+k;.
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Lemma 2: Let y and Yy' be two n-tuples in Y. Let v =
V(Xq,X5,+.,%;) and v' = v(%{,X3,...,%X}) be two codewords in
C. Then

y+v=y+Vv
if, and only if, y = y' and v = V',
proof: The if part of the lemma is obvious. Consider the only
if part. Suppose y + V = y' + Vv'. Then

y+y'=v+ V., (17)
From the definition of the set ¥, we see that the number of
nonzero components in the last n-ij_; positions of y+y' is at most
2t; for 1<icm. Assume that Elﬁii. Since the separation vector
of C is (d4,d,,...,4y), we have

d(V,V') = w(VHV') > d; > 2t,+1. (18)
However, from (16), we have

w(VHV') = w(y+y') < 2t,. (19)
The condition given by (18) contradicts the condition given by
(19). Hence the hypothesis that X;»x{ is invalid. As a
result, we must have §1=§i. Since C is systematic, it follows
from (17) that the first A; components of y+y' are zero.

Now we assume that X,~x)}. Then

a(v,v') = w(v+v') > d, > 2t,+1. (20)
However, it follows from (17) and the fact x,=x{ that

w(VHV ) =w(y+Y') < 2t,. (21)
Equation (20) contradicts Equation (21). Hence our hypothesis
that X,»x} is invalid. |

Since §1=§i and §2=§é,’the first 1, components of y+y' are
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zZero. Repeat the above argument, we can prove that

X3=X4,...,Xy=X}. Consequently we must have v=v' and y=y'.
Q.E.D.

Based on the conditions on Y, we can readily find that the

number of elements in Y is

t n m-1 t n-x
1 e e
¥l = % -1 ) (22)
s=0 s e=1 2=te+1+1 2

Next we will prove that the elements in Y are correctable error
patterns for the code C.
Theorem 3: Let C be an m-level (n,k) systematic unequal error
protection code with a separation vector (d4,d5,...,dp). Then
the n-tuples in Y defined by (16) are correctable error patterns
for C.
Proof: For every Vv € C, we form the set

(V+y : ¥V € Y}.
It follows from Lemma 2 that, for Vv, V! € C and v»v',

(VY : Y e ¥} n {(V'+y : ¥ € Y} = 4.
We can use {V+y ¢ Y € Y) as the decoding region for V. If the
received vector r is in (V+y : Y € Y}, we decode T into V.
Hence, if the error pattern during the transmission of a codeword

Vv is a member in Y, then the received word r will be in {(V+y :

Y € Y} and the decoding would be correct. Hence the elements in
Y are correctable error patterns for C.
Q.E.D.
Note that the total number of codewords in C is 2K. We must
have |

2 > 2k . )y, _ (23)
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From (22) and (23), we have the following lower bound on n-k,

t n n-1 t n-=>X
1
n-k > 1log, { I - X e ©
s=0 s e=1 =t q+1 £ (24)

The bound given by (24) is equivalent to the well known Hamming
bound {20] for the single-level error correcting code. For m=1,
(24) recudes to

t; [n

n-k 2> log, { ) }

s=0 s '
which is the Hamming bound for the single-level error correcting
code. Different versions of Hamming bound for multi-level linear
unequal error protection code were proved by Masnick and Wolf[1l],
and Van Gils[23]. Note that our version of Hamming bound applies

to either linear or nonlinear systematic UEP code.

D. Linear Unequal Error Protection Codes

Suppose the component code C; is linear for i = 1,2,...,m.
Then, C = Cy0Cy0. . .0C, is a linear code of length n for the
product message space A = AyxAyX...xXA,, where the i-th component
message space A; consists of all the ki—tuples over GF(2), i.e.
Ai={o,1}ki for 1<i<m. Hence C is an (n,k) code with

K = Kq+kot...+kp.
Every i-cloud Qi(ii) of C consists of zk-ki codewords. The i~
cloud Q; (%;=0) is a (k-kj)-dimemsional subcode of C, and any i-
cloud for which X;»0 is simply a coset of Q;(X;=0). Since
d(u,v) = w(u+v), it follows from (3) to (6) that, for a

linear code C, the minimum separation of i-clouds is
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s; = min { min (w(3) : 3 € Q;(X;)})
Xj € B4
xi » 0

= min (W[V(Xq,eee,X{,.00,%X)] : Xi%0) (25)

Theorem 4: Let C; be an (n,ky4) linear code of length n, where i

=1,2. Consider the (n,k;+k;) code C which is the direct sum of
C; and C,. C 1is a two-level error-correcting code with
separation vector s = (d4,,d,). if the following condition are
satisfied:

(1) The minimum distance of C, is 4,.

(ii) The minimum distance of C-C, is d; and d4 > 4d,.
Then, for any message, the first k, message symbols are protected
against t4 = [(dl—l)/zj or fewer errors and the next k, message
symbols are protected against t, = [(dz-l)/zj or fewer errors.
Proof: Note that the message space A is the product of A, and
A,, vhere A1={0,1}k1 and A2={0,1}k?. Each message X=(X;,X,)
consists of two parts, X, and X,, where X, is a k;-bit component

message and iz is a k,-bit component message. The codeword for

the message is

V(Xq,%X5) = V(X1)+V(X5),
where v(X,) € C; and V(%y) € C5,. The 1-cloud of the code for
%3=0, Q(%X;=0), 1is simply the subcode C,. It follows from
(25) and the given condition that

sy = min { min (w(V) : vV e Q(%X1)})

Xy € Aq
X] * 0

min {w(V) : V e C-Cy)

- dlu
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The 2-cloud of C for X,=0 is simply the subcode C,. Then, it
follows from (25) that

S, = min {(V : V € C-Cq}. (26)
Note that C-C, contains all the nonzero codewords of C,. The
minimum weight of nonzero vectors in C, is 4,. A codeword in C-
C; but not in C,-{0} has weight at least d,. Since d,>d,, it
follows from (26) that

s, = d
2 2°
Q.E.D.

A direct generalization of Theorem 4 is Theorem 5.
Theorem 5: Consider an (n,k) linear code C which is the direct
sum of codes C;, C,, ..., and C,, where C; is an (n,k;) linear
code. Let C(i,i+1,...,m)=C;0C;,10®...0Cq. Let d, be a 1lower
bound on the minimum distance of Cj. If the minimum weight of
codewords in C-C(i,i+1,...,m) is at least d;_; and d; > d, >

> dp, thenC is an m-level error correcting code for the product

message space A = A XA,X...XAp with separation vector

g = (Sl, Sz,...,Sm)
where A; is the component message space for C; and sy > d; for i
=1,2, ... ,Mm.

Proof: Similar to the proof of Theorem 4.
Q.E.D.

Theorem 5 actually describes a method for constructing a
multi-level error-correcting code by taking the direct sum of
component codes. With this method, we are able to construct

codes which are presented in the rest of this paper.
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III. CONSTRUCTION OF LINEAR MULTI-LEVEL UEP CODES

BY COMBINING SHORTER CODES

A. Construction of Linear Multi-level UEP codes by Combining
Generator Matrices of Shorter Codes

We first present a construction method based on generator

matrices. Let G, and

G
aa
Gap
be the generator matrices of an (n,, k;) linear code C,, and an
(ng, ka+2) linear code C, respectively. Clearly C,, is a subcode

of C and G,), is a ixn, binary matrix. Let d,, and 4, be the

a
minimum distances of C_,, and C, respectively. Then d,, 2> d,.
Let be and
G
bb

Gba

be the generator matrices of an (ny, kyp) linear code Cpp and an
(ny, kp+r) 1linear code C, respectively. Note that C;,, is a
subcode of C;, and G, is a Axny binary matrix. The submatrices
G,p and Gy, have the same dimension (number of rows) . Let 4,
and dp, be the minimum distances of C,,,, and C,, respectively. Then
We assume that the following condition holds:
da + db 2 daa Pl dbb'

Now we form the following (k,+Kp+1)x(ny+ny) matrix:

[ Gab Gba ]
G

Gaa °ab

Opa  Spb (27)
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where 0, and 0y, are a Kk xny and a kpyxn, zero matrices. The
matrix G generates an (n +np, Xk,+Kp+i) linear code C. Let C,,
C, and Cj be three subcodes of C generated by matrices, (Gap
Gpals [Gaa Ozpls @and [Op, Gph) respectively. We readily see that
the minimum distance of C; is at 1least d,+d,, the minimum
distance of ¢, is d,,, and the minimum distance of C5 is dp;.
Code C is actually the direct-sum of C,, C, and Cj, i;e.,
C=C ©C, ® Cy.

Note that C;, C, and C5 are codes for message spaces A; = (0,1}*,
A, = {0,1}ka and A5 = {0,1}kb respectively. Hence C is a code
for the product message space A=A;XAj XA,.

Now we examine the distance structure of C=C,eC,0C;. Let
C(2,3) = C,8C3. First we note that a codeword in C-C(2,3) is the
concatenation of a nonzero codeword in C, and a nonzero codeword
in ¢. Hence a codeword in C-C(2,3) has weight at least d,+q4,,.
Next we note that a codeword in C-C, is either the concatenation
of a nonzero codeword in C, and a nonzero codeword in €, or a
codeword in C,. Thus a codeword in C-C; has weight at least
min{d, +d,,4,,) = d,,. In fact the minimum weight of C-Cy is d,,.
It is easy to check that the minimum distance of C is dp,. 1In
summary, C has the followiﬁg distance (or weight) structure:

(1) the ninimum weight of codewords in C-C(2,3) is at least

d,+dy?

(2) the minimum weight of codewords in C-C3 is d,,.

(3) the minimum weight of C is 4.

It follows from Theorem 5 that thetseparation vector of C s
s=(s;,S,,53) where s;>d,+dy, S;>d,, and s3=dj,-
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Example 2: Let a be a primitive element in GF(25). Let Cp) be
the (31,21) BCH code over GF(2) whose generator polynomial has a
and a3 as roots. Let C;, be the (31,26) Hamming code over GF(2).
The minimum weights of C,,, and C, are 5 and 3 respectively, and

Cvb is a subcode of Cb. Let be and

G
6 - {bb}
Gba

be the generator matrices of Cp, and C,, respectively. Then G, is
a 5x31 matrix. Let C,, be the (32,21) code obtained by adding an
overall parity-check bit to each codeword in Cpb* Then the
minimum weight of C,, is 6. Let C, be the (32,26) code obtained
by adding an overall parity-check bit to every codeword in Cp-
Then the minimum weight of C, is 4, and C,, is a subcode of C,.
Let G,, and

6, - [Gaa]

Gab

be the generator matrices of C,, and C, respectively where Gap is
a 5x32 matrix. Then the code C generated by the generator matrix
G of (27) 1is a (63,47) code with a separation vector
§=(sl,s2,s3) where s;2>7, s,>6 and s3=5. We may divide a message
X of 47 bits into two parts, X; and X,, where X, consists of
the first 5 bits of X and X, consists of the next 42 bits of
X. Then all five message bits in X, are protected against 3 or
fewer random errors, and the 42 bits in iz are protected against
two or fewer random errors. Hence C is a two-level UEP code.

Note that there is a single-level double-error-correcting (63,51)
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BCH code and a single-level triple-error-correcting (63,45) BCH
code[20,21].
Consider the special case for which k=0 and Gp=Cpa- Then

the matrix G of (27) reduces to the following form:
[ Gab ©Cba ]
Gaa %ap | (28)

If d,+dp>d,,, the code generated by G of (28) is then an (ny+ny,

G

ka+2) code with a separation vector §=(sl,sz) where s,>d,+d;, and

sp=d,,- This special case was first presented by Boyarinov [17].

B. Construction of Linear Multi-level UEP Codes by Combining
Parity-Check Matrices of Shorter Codes
Let Haa and

Haa
Hab

be the parity-check matrices of an (ng,k;) linear code C,, and an
(ny,ky-r) linear code C, respectively, where Hya is an (ng -k, )xny
matrix, H,y is a rxn, matrix and Hy is an (ng -k +r)xn, matrix. It
is clear that C5 is a subcode of C_,. Let d; and d,, be the
minimum distances of C; and C,, respectively. Then

d, >d

a =~ Yaa°“

Let be and

[ }
b
ba

be the parity-check matrices of an (ny,Xkp) linear code Cp and an
(ny,ky,-r) linear code C,, where Hy) is an (np-k)xn, matrix, Hp,
is a rxny matrix, and Hj is an (np-kp+r)xny, matrix. Note that Cp
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is a subcode of Cpy. Let d}, and dj), be the minimum distances of
Cb and Cbb. Then
dp 2 dpp-
Consider the (ng+ny, katkp-r) 1linear code C with the
following parity-check matrix
H 0
aa ab
H = [ Hay HBpa ]
Opa Hpp

where 0, is an (ny -k, )xny, zero matrix and 0y, is an (ny-k,)xn,

(29)

zero matrix. Let C, be the (n,+ny,k,-r) subcode of C such that
each codeword in C, is a concatenation of a codeword in C, and the
all-zero nyp-tuple. Clearly the minimum weight of C, is d,. Let
C, be the (ny+ny,,k;,-r) subcode of C such that every codeword in C5
is a concatenation of the all-zero np-tuple and a codeword in Cj.
The minimum weight of C5 is 4. The direct-sum of C, and Cj,
denoted C(2,3)=C,eCy, is an (ny+ny, ky+kp-2r) subcode of C. Hence
there must exist r linearly independent codewords in C-C(2,3).
These r linearly independent codewords span an (n,+np,r) linear
subcode C, of C. We readily see that C is the direct-sum of C,,C,
and C3, i.e., C=C,0C,0C5.
Suppose dyatdpp2d,2dy, . Now we examine the distance

structure of C. Any codeword Vv in C can be expressed as

V = (Va,vb)

where v, is an ny-tuple and vy is an np-tuple. Then
(Va:Vp) - HT = 0.
This implies that Va'HaaT = 0 and Vb-beT = 0. Consider a

codeword (V,,Vp) in C-C(2,3). Then, Vv,#0 and Vy,#<0. For v_ =0,
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the weight of v, is at least d,,. This follows from the fact
that any d,,-1 or fewer columns of H,, are linearly independent.
Similarly, for V=0, the weight of vy, is at least dyp- Hence,
for any codeword (V,,Vy) in €-C(2,3), the weight of (V,,Vy) is

at least d,,+dp),. Therefore, the minimum weight of codewords in
C-C(2,3) is at least d_,+dp,. For any codeword (V,, Vy) in C-
C5, either it is in C,, or both Va and Vb are not zero. For the
former case, the weight of the codeword is at least d,. For the
latter case, the weight of the codeword is at least daa+dbb'
Since d,atdpp2d,, the minimum weight of codewords in C-C; is d,.
Since d,,+dy>d, >d,, the minimum weight of C is dp. In summary,
the code C genereated by the parity-check matrix H of (29) has
the following distance structure:

(1) the minimum weight of codewords in C-C(2,3) is at least

daatdpp?

(2) the minimun weight of codewords in C-C, is d,; and

(3) the minimum weight of C is 4,,.
It follows from Theorem 5 that, for 4_,,+d},>d, >d,, the code C
generated by the parity-check matrix H of (29) is a 1linear
block code for the product message space A=A;XA,xA3 Wwhere
A;={0,1)F, 41\2={0,1}ka-r and A3=(0,1)kb_r. The separation vector
of C is s = (sy,85,83) where s;>d_ ,+dp,,, S,2d, and s3=d),.

Now we shall present several classes of linear UEP codes
with parity-check matrices of the form given by (29).

Let a be a primitive element from the Galois field GF(2M).
Every nonzero element in GF(2™) can 5e expressed as a power of a
and can be represented by a nonzero m-tuple over GF(2) (in column
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form). For any nonnegative integer £, let

ﬂll ﬂzl LR lﬁ2m+2_2m

represent all the (m+£)-tuples over GF(2) ( in column form ) for
which the 1last £ components are not all =zero. Consider the

binary code C generated by the following parity-check matrix:

(30)
where each power of a is represented by an m-tuple, 0, is a column
of £ zeros and Op is a column of m zeros. The matrix H consists
of 2m+2 rows and 2™*4-3 colunns, and hence the code C generated by
H is a (2m+£_1' 2m+2-2m-2—1) linear code with 2m+{ parity-check
bits.

Note that the H matrix has the form given by (29) where

m.
Hya = [1 @ a2 ... a2 2]
] m_
rHaa l a a3 cee az 2
H = =
a m.
| Hap | 1 o3 a ... 03(2 2)
_ [ Hpa ]
Hy, - = (B B2 -~ ﬂ2m+2_2m]
H
. Hpp |
Hpp, = some £ X (2™+2_2M) patrix for which any column is

not a zero column.
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The codes, C,, and C,, generated by the parity-check matrices Hya
and H, are simply primitive single-error-correcting and double-
error-correcting BCH codes of length 2M™-1 respectively [20]. Code
Caq has minimum distance 3, and C, has minimum distance 5. It is
also known that the dimensions of Hy, and H;, are m and 2m
respectively. The code Cp, generated by parity-check matrix Hy is
a shortened Hamming code with minimum weight 3. The code Cp}
generated by parity-check matrix Hp, has minimum distance 2. As a
result, C is a code for the product message space A=A;xA,xA3 where
2;={0,1)®, A,=(0,1)2""20"1 apng a,=(0,1)2""*-2"-m-g

The separation vector of C is

s = (81, 83, s3)
where slzdaa+dbb=3+2=5, S,2d,=5, and s3=dp=3.

For this code, the first 2™-m-1 message bits of a message are
protected against up to 2 random errors while the next oWHe_om_p
-2 message bits against any single error. Hence it is a (2,1)-
error-correcting code.

For m=0, C becomes a conventional single-error-correcting
Hamming code [20] of length 2%-1. For #=0, C reduces to a
primitive double-error-correcting BCH code of length 2%-1. For
m=f, C is equivalent to a Boyarinov-Katsman UEP code [16]. The
code C can be transformed into systematic form with identical
two-level error correcting capability. The proof is given in
Appendix B.

Consider the number of parity-check bits required of a two-
level UEP code with the following pafameters:
= 2m+2_1

n ’
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It follows from the Hamming bound given by (24) that

am+l_q om+l_om, g
1+(20%2-1) + -~
2 2

2n‘k

v

= 2-1_(22m+2+1_(2m).2m+2_(2m_2m+1)_2m_(m2_m)+2}
- 2-1,(22m+£+[2m+£(2m-1_2m)+22m(22-1_1)+(Zm_
2) - 28+ (2Pem2+m+2) 1 ). (31)

Let & = 2™M8(2Mm=1_op) 4220 (228-1 9y (2m-2) . 2™+ (2P-m2+m+2).  (32)
From (31) and (32), we have

2h=k 5 p2m+i=1 | ,/5 (33)
For either m=3 and #=3 or m>4 and £>1, the number & is strictly
greater than zero, i.e.,

A > 0. (34)
Hence, it follows from (33) and (34) that

n-k > 2m+2-1. (35)
This is to say that the number of parity-check symbols required
for a two-level 1linear systematic UEP code with parameters,
n=2m+2-1, A1=2m-m—1, t,=2 and t,=1 is at least 2m+£. The two-~-level
UEP code given by the parity-check matrix H of (30) has exactly
2m+2 parity-check symbols. Hence, under the condition that m=3
=f=3, or m>4 and £>1 , the code meets the Hamming bound of (24)
and is optimal. A list of codes of length 31 , 63, 127 and 255
is given in Table 2 for various m énd £, where k1=2m-m—1 and
k2=2m+£-2m-m-£ and k=ki+k, if £<0 . From the table, we see that
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there is a (63,52) code which protects 26 message bits against
two or fewer errors and 26 other message bits against any single
error. Later we shall present a decoding scheme for any code
with parity check matrix of form (29). By that time, we can make
a more thorough comparison between the (63,52) code and the time
sharing of conventional single-level codes based on their

information rates and decoding complexities.

Table 2
Codes of length 31 Codes of length 63
m 2 k k, k5 m 2 k kq ko
0 5 26 0 26 0 6 57 0 57
2 3 24 1 23 2 4 55 1 54
3 2 23 4 19 3 3 54 4 50
4 1 22 11 11 4 2 53 11 42
5 (¢} 21 21 0 5 1 52 26 26
6 (6] 51 51 0
Codes of length 127 Codes of length 255
m 2 k kq k, m 2 k kq ko
0 7 120 0 120 0 8 247 0 247
2 5 118 1 117 2 6 245 1 244
3 4 117 4 113 3 5 244 4 240
4 3 116 11 105 4 4 243 11 232
5 2 115 26 89 5 3 242 26 216
6 1 114 57 57 6 2 241 57 184
7 0 113 113 O 7 1 240 120 120
8 0 239 239 0
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The class of two-level UEP codes given above can be
generalized in a straight forward manner. Consider the binary

code C with the following parity-check matrix:

- m ]
l [e 4 L ) a2 2 | om Ly om
- I
1 o3 ver (@)% | o ... O
|
L ] I
- l
H=1|. |
2t-3 2t-3,2m-2]
1 a - (a ) I Om oo 0 om
_ 1 om_nl Tmmmmmmmmmmee-
1 o2t3 |, (o2t-1)2 2I
--------------------- By +++ Bom+i_om
| 0,0, ... o, | 22T ] (3e)

The code C generated by the parity-check matrix H of (36)

has length n=27*{

-1 and at most mt+£ parity-check bits. It can
be easily proved that the code is a two-level UEP code with a
separation vector s=(2t+1,3). The code provides protection of
at least A1=2m-m(t-1)-1 message bits against t or fewer errors
and protection of other message bits against any single error.

There is another class of linear UEP codes with parity-check

matrices of the form given by (29). The submatrices are given

below:
(1 1 1 ees 1 i
n.
op 1 a ce. o272
37)
n_ (
op 1 o ... (@)% 72
Haa =
- —a. oM_
] Om 1 a2t 3 . (a2t 3)2 2 ]



- - .
Hyp = [0p 1 o271 L., (o2%°1)27-2 (38)
- - m.o
2 1 025-3 e (025-3)2m"2 h
be = . . o0 0 .
m.
1 o .o (a3)2 2
1 . ... o202 ] (40)

where s < t.
Note that H,, and H, = [HaaT HabT]T generate an extended (t-1)-
error-correcting and an extended t-error-correcting primitive BCH
codes of length 2™ respectively. The dimensions of H,, and H, are
at most m(t-1) and mt respectively. The parity-check matrices
Hpp and Hy = [beT HbaT]T generate an (s-1)-error-correcting and
an s-error-correcting primitive BCH codes of length 2B-1
respectively. We require that Hap and Hp, have the same
dimension, i.e. a?%"1 and 42572 from the same subfield of GF(2M).
It follows from the argument given for codes with parity
matrix of form (29) that the code generated by H with submatrices
given by (37) to (40) is a linear block code with a separation
vector s=(s,,s,,S;) where
8, 2 2(t+s)-1, Sy, 2 2t+2, s5 = 2s+l.
The code has at most m(t+s-1)+1 parity-check symbols. It protects
the first k,=m message bits against's+t-1 or fewer errors, the

next k2=2m-mt-1 message bits against t or fewer errors, and the
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other message bits against s or fewer errors.
Example 3 : Let m=5 and t=s=2. Let o be a primitive element in
GF(25). Consider the code generated by the following parity-check

matrix:

-

1 1 1 1 oool 01 01 01 e o o 01

2 30
05 1 [0 2 « eee & 05 05 05 . o0 05

05 1 a3 a6 e 090 1 03 a6 * e 0 ago

30

2
_05 05 05 05 LI 2 05 1 [+ [+ see O

Note that o3 is also a primitive element in GF(25). The code C
generated by H has 3x5+1=16 parity~check bits. It is a (63,47)
UEP code with separation vector s at least (7,6,5). This code

is the same code given in Example 2.

C. Decoding

Now we consider the decoding of linear UEP codes dgenerated
by matrices of the form given by (29). Since the error-
correcting capability of a UEP code depends on the encoding
scheme, we need to know the corresponding generator matrix.
Theorem 6 gives the generator matrix which correspond to the

parity-check matrix of (29).

Theorem 6 : A linear code C with a parity-check matrix

H O.p |

aa ab

H = [ Hap Hpa J
Opa Hpp J-

has a generator matrix of the following form:
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§a

G, G
¢ = [ cb op2 ]
Opa Cbb

(41)
where
(1) 04 is an (ny-k,)xn, zero matrix, Opa is an (ny=Ky,) xny,
zero matrix, 0}y is an (ky-r)xny, zero matrix, 0p, is
an (k,-r)xn, zero matrix.
(2) G, 1is a generator matrix of the (ng,ky-r) code C,
generated by the parity-check matrix [HaaT HabT]T.
(3) Gy is é generator matrix of the (n,,kp-r) code Cp
generated by the parity-check matrix [beT HbaT]T.
(4) [GaaT GabT]T is a generator matrix of the (ny,k,) code
Caa 9enerated by the parity-check matrix Hyg-
(5) [beT GbaT]T is a generator matrix of the (ny, k) code
Cpp generated by the parity-check matrix Hpp -
Proof: See Appendix C.

From the above theorem, we note that both Gap and Gy, have r rows
(or dimension r). The matrix G of (41) is of the same form of
(27).

Now we present a decoding procedure for UEP codes with
parity~check matrices of the form given by (29). Each message X
consists of three parts X,, X, and X3, i.e.,

X = (X1, X5, X3)
where §1 is a binary r-tuple, §2 is a binary (k,-r)-tuple, and §3
is a binary (ky-r)-tuple. The codeword for message X is
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where G is given by (41). For simplicity, we use Vv to represent
V(X3,X5,X3). Every (ng+np)-tuple u can be divided into two
parts, u, and up, such that

T = (T,, Op)

where ﬁa is an nj -tuple and ﬁb is an np-tuple. Then Vv =
(VarVp) - It follows from (41) and (42) that
— - — Gap
Va = (X1,X%5)
aa
and

— - = Gpa
be .

Suppose a codeword V = V(X,,X5,X;) is transmitted and a word
T is received. Let € be the error pattern. Then

r=v + e.
Express TI=(r,,rp) and e=(e,,ep). Then Tr,=v,+e, and
Tp=Vptep. Let w(e) denote the weight of e. The decoding of

r consists of the following steps:

(1) Based on code C,, (with parity-check matrix H,, and
generator matrix [GabT GaaT]T), we decode ?a into a
codeword V; in C_,,, which is a temporary estimate
of Va. Based on code Cp, (with parity-check matrix
Hy), and generator matrix [GbaT beT]T), we decode Iy
into a codeword 5;* in ¢y, which is a temporary

estimate of Vb. Later we will show that either V;

or V;* is a correct estimate if w(e)<[(d,,+dpp-
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1)/2]. The decodings of T, and Iy are based on
the best available decoding schemes for C,, and Cpy,.
(2) Find X and %5 such that
—% —% Gab =%
(Xl,xZ) = Va.
Gaa

Then ii and 23 are estimates of message components X;

and X,. Also, find EI* and §§* such that

G
—kk —k%k ba —%%
(Xl ,X3 ) [ ] = Vb -
Gaa
—%% —%k % . - —
Then X4 and X5 are estimates of Xq and X4 . Note that

i; and EI* are two estimates of X;. If w(e) <
(d,5+dpp=1)/2], at least one of these two estimates is
identical to Xx,.

(3) Form W' = (§I,§;,53)G and u** = (§I*,52,§§*)G where
63 and 62 are a zero (kyp-r)-tuple and a zero (k,-r)-

tuple respectively. Note that w* and U** are codewords

in C.
(4) Compute T* =T + w* and T** = F + ' ".
Note that
TF =V + 8+ W =8+ (X+%),%,+%,%3) G,
B** =T+ e+ T =+ (XX, %y, KytX) ) -G,
G
—% — —  —% = ba
ry, = e, (x1+x1,x3) [ ]
Cpp , (43)
G
—kk — — —%k — ab
ry, = €, + (x1+x1 ,xz)
Gaa . (44)

(5) Based on code Cp, (with parity-check matrix [HbaT beT]T
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(6)

(7)

(8)

and generator matrix Gy, ), decode f; into a codeword

E; in ¢. Based on code C, (with parity-check

matrix [HaaT HabT]T and generator matrix G,,), decode

—%%

. —%%k .
r, into a code word z, in C,. The decoding

algorithms for C, and C,, at this step must be nearest
neighbor decodings.

Find i; and §;* such that E;-be=E; and

iz*-Gaa=E;*. Note that §; and E;* are estimates of

X3 and X, respectively.

*

Form V*=w"+(0,,Z5) and V**=u**+(2}*,0,) where

5a and Bb are a zero ny-tuple and a zero np-tuple

respectively. Note that

—% -k —%k —%

v = (xlllex3) -G, (45)
—%k% —kk —kk —%k*%
v = (X9 ,X5 ,%3 ) G. (46)

From (45) and (46), we see that V* and V'* are

estimates of the transmitted codeword v.

*

Compute the distances d(T¥,v*) and d4(%,v' 7). If

a(r,v*) < a(x,v*"),

we decode T into V*. Then
—k —%k —%
(X1,X%5,%X3)
is the decoded message. On the other hand, if
),
*

= =%
we decode r into v 7, and

a(g,v*) > a(r,v**

—kk —kk —kk
(X7 /%53 ,%37)

is chosen as the decoded message.

Now we need to show that, using the above decoding procedure,
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the following are true:
(1) If w(E)g[(daa+dbb-1)/2J, the message component x; will
be correctly decoded;
(2) 1f w(e)<|(d,-1)/2], both the message components, X, and
22, will be decoded correctly; and
(3) If w(E)s[(db-l)/ZJ, all the three message components
will be decoded correctly.
Consider the first case for which w(E)g[(daa+dbb-1)/2J. Then
either w(e,)<|(d,,-1)/2] or w(ep) <[ (dpp-1)/2]. Thus at least one

of the estimates, V. and V;*, at step 1 of the decoding

a

. . R —_— —
procedure 1is correct, i.e., either v =v,

or Vg*=Vb.
Suppose w(e,)<[(d,,-1)/2]. Then V; is the
correct estimate of Vv, and V;=Va. Also §I=§1 and §;=§2. Hence,
w*=(%],%5,03) -G=(%;,%,,05) -G. Note that

a(T,,Va) = d(T,,V,) = w(E,)- (47)
Let Zp=X5:Gp),. Then zp is a codeword in C,. Recall that, at step
5, ?; is decoded into E;=§§-be. Based on the nearest neighbor
decoding, we have that

a(Tp,Zpy) < A(TpiZp) - (48)
Now consider

d(Ty,,Vp) = A(Tp, Wp+Zp)

A (Tptw, WptZp)
—% —%
d(rb,zb). (49)

From (48) and (49), we have

a(Tp,Vp) < A(Th,Zp)

A (Tp+p, Zptug) - (50)
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Note that W' = (¥X;,X,,03)-G, and (0,,2)=(0,,0,,%;) G,
where 0, is a zero r-tuple. Thus,
Wi+(0,,2p) =V
and WptZp = V.
It follows from (50) that
d(Tp, V) < A(Tp,Vp)
= W(Tp+vp)
= w(ep) - (51)
It follows from (47) and (51) that
d(T,v") < w(®) < |[(daatdpp-1)/2]). (52)
Similarly, we can show that, if w(ep) < |(dpp-1)/2], then
a(F,¥*%) < w(e) < [(dya+dpp-1)/2]. (53)
Hence we conclude that, for w(e)<|[(d,,+dpp-1)/2], the distance
between the received word T and the estimate of V (either V* or
v**) is no greater then L (daa+dpp=-1)/2) if and only if the
corresponding estimate of Xx; is correct. Consequently, the

smaller one of d(T%,V") and d(T,v**) is no greater than L(daa+9pp-

1)/2]. Hence, the decoding rule at step 8 ensures the correct
decoding of message component il.

Next we consider the case for which the error pattern e
contains |(d,-1)/2] or fewer errors, (i.e., w(e)<[(d,-1)/2]) where
d

a is the minimum distance of «code C Since L(as-

a.
1)/2|<|(dy5+dpp-1) /2], it follows from the above argument that X;
is decoded correctly. 1In fact, at least one of the two estimates,
(EI,ES) and (QI*,ig*), at the step 2.is correct. 1If (i{,ig) =

(il,iz), it follows from the same argument as above from (47)
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to (51) that
a(r,v') < w(e) < [(d3-1)/2].

If (X3",%37)=(¥%;,%;), it follows from (44) that

—%k%

since w(ey)<w(e)<|(d,-1)/2], steps 5 and 6 will give the correct
message component §2. Again we can show that
) < L(az-1)/2].

Hence, for w(E)g[(da-l)/ZJ, the distance between r and the

a(x,v**

estimate of V is no greater than |[(d,-1)/2] if and only if the
corresponding estimate of §2 is correct. Thus the decoding rule
at step 8 ensures the correct decoding of §2.

The 1last case is that w(E)sL(db—l)/ZJ. By an argument
similar to the one above, we can show that all three message
components, X;,Xy, and X5, will be decoded correctly. Either
step 2 or 6 gives the correct estimate of x5.

Now, we can compare the (63,52) code listed in Table 2 to
the time sharing of a (31,26) Hamming code and a (31,21) double-
error-correcting BCH code. We see that the (63,52) code is
superior considering information rate but inferior considering
decoding complexity. We can also compare this (63,52) code to
the time sharing of a (63,57) Hamming code and a (63,51) double-
error-correcting BCH code. We see that the (63,52) code is
inferior considering information rate but is superior considering
decoding complexity. In general, the UEP code with parity check
matrix of form (29) provides a tradeoff for coding designs

considering information rate and decbding complexity.
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IV. DIRECT SUMS OF PRODUCTS CODES
Let V be an (N,K) linear code with minimum distance D and W
be an (n,k) linear code with minimum distance d. Let VoW denote
the product of V and W [21]. Then VeW is an (Nn,Kk) linear code
with minimum distance DdA. A codeword in VeW can be arranged as an
nxN array in which every row is a codeword in V and every column
is a codeword in W. For a nonzero code array in VeW, there are at
least D nonzero columns and each nonzero column has at least d
nonzero components. Hence, the weight of any nonzero code array
in VeW is at least Dd. Product codes are capable of correcting
both random and burst errors{2l1l]. Now we consider direct sums of
certain product codes which provide burst error protection in
addition to the two-level random error protection.
Let VvV, and V, be (N,K;) and (N,K,) linear codes with
minimum distances D; and D, respectively. The intersection of Vv,
and V,, denote V4nV,, is a linear subcode of both V, and V,. Let

D be the minimum distance of V4,0V, It is clear that ﬁle and

>

>D,. Let V,+V, denote the set,

{V : v=V,+V, with V€V, and V,eV,}.
V,+V, 1is also a linear code and is a supercode of both V, and V,.
If V4nV,=(0}, then V,+V, is equal to the direct sum V,eV,. Let D
be minimum distance of V,+V,. Then D < Dg,D,. Therefore, we
have

D > p;,D, > D.

Let W, and W, be an (n,kl)-and'an (n,k,) linear codes with
minimum distances d; and d, respectively. We assume that
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WynW,={0)

Then the direct sum W of W; and W, is an (n,k,+k,) linear code.
Let d be the minimum distance of W. Then d < 4,,d,.

For i=1 and 2, the product V;ieW; is an (Nn,K;k;) linear code
with minimum distance Djd;j. Since Wan2=(5}, V,8W, and V,8W, have
only the zero code array in common. Let C be the direct sum of
V8w, and V,eW,. Then C is an (Nn,K1k1+K2k2) linear code. A code
array C in C is the sum of a code array El in V,8W; and a code
array ¢, in V,eW,, i.e.,

c =7¢c, +C,.

Each row in array c is a code word in V;+V,, and each column in
Cc is a codeword in W,eW,.

Now we consider the weight of a nonzero code array c¢ in
C=V,8W,0V,8W,. If C € V,8W,, then the weight of ¢, denoted w(c),
is at least D;d;. If © € V,8W,, then w(c)2Dpd,. If c is neither
in V,8W; nor in V,8W,, then c is the sum of a nonzero code array
El in V,eW, and a nonzero code array Cc, in V,eW,. To determine
the weight of c=c;+c,, there are four cases to be considered.

Case 1I: Suppose that all the nonzero rows in c; and ¢, are alike
and identical to a certain vector V. Then Vv must be a codeword in
V,nV,. Thus, w(V)zﬁ. This implies that there are at least )
nonzero columns in array El and at least D nonzero columns in
array C,. Since wlnw2={6}, the sum of a nonzero column in c; and
a nonzero column in Ez is a nonzero codeword in W;eW,. Thus,
there are at least D nonzero columns. in array E=El+32, and each of

these columns has weight at least d. Therefore, w(E)zﬁd.
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Case II: Suppose that all the nonzero rows in El are identical to
some codeword V; in V, and all the nonzero rows in <€, are
identical to some codeword Vv, in V,, where VlﬂVz. Then v,+V, is a
nonzero codeword in V,+V, and has weight at least D. Note that
w(Vl)le and w(Vz)zDz. There are two types of nonzero columns in
c. The first type is that each column is either the sum of a
zero column in c¢; and a nonzero column in c, or thev sum of a
nonzero column in ¢; and a zero column in c,. Such a column is
either a nonzero codeword in W, or a nonzero codeword in W;.
Therefore, a nonzero column of the first type in ¢ has weight at
least min(dl,dz). The second type of nonzero columns in ¢ is that
each column is the sum of a nonzero column in El and a nonzero
column in c,. Such a column is a nonzero codeword in W,eW, and
has weight at least d. The fact that w(Vl+Vz)zD implies that
there are at least D type-1 nonzero columns in c. Let £ be the
number of type-l1 nonzero columns in ¢ where f>D. Then there are
at least [(D,+D,-f)/2] type-2 nonzero columns in c. Hence a
lower bound on the weight of ¢ is

min (f.-min(d,,d,)} + [(D;+D,-f)/2]-d}

i = D-min{d,;,d,}+[(D,+D,-D)/2]-d.
Case III: Suppose that there are two nonzero rows v; and v{ in
¢, such that v;»v{. Then there are at least D;+[D,/2] nonzero
columns in c;. This implies that there are at least D,+[Dy/2]
nonzero columns in c¢. Each of these nonzero columns is a nonzero
codeword in W,6W, and has weight at least d. Thus the weight of
c is at least {D,+[D;/2]}-d. \
Case IV: Suppose that there are two nonzero rows, V, and v}, in
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62' It follows from the same argument as that in Case III that
w(c)>{D,+[Dy/2]}-4d.
Denote D-min{d,,d,}+[(D,+D,-D)/2]-d by 1, (D;+[D;/2]}-d by A, and
(D2+[D2/2]}-d by 2,. Summarizing the above results we have the
following weight structure of a nonzero code array ¢ in C =
V1®W10V2®W2 :

(1) For c € V 8W,, w(c)2D,4,7¢

(2) For C e V,8W,, w(c)2D,d,; and

(3) For C ¢ Vi8W, and C ¢ V,8W,,

w(c) 2 min (Da,x,x1,25).

From the above weight distribution, we see that the weight of a
nonzero code array c in V,8W, 0V, 80, is at least min {D,yd,,Dpd,,
Dd, A, 27,25}

Suppose min {Dldl,ﬁd,x,xl,xz} > Dyd,.
Then we have the following weight structure of a nonzero code
array C in V,eW,eV,eW, :

(1) For c e V,8W,, w(C) 2 Dyd,.

(2) For c € V,6W,0V,8W, = Vy8W,,

w(€) > min (Dd,,Dd,2,21,25)-

It follows from Theorem 5 that C=V,8W,0V,eW, is linear block code
with a separation vector s = (s,,s,) where

s; = min {Dyd;,Dd,x,21,2,),

Sy 2 D,d,.

Kiky and

The message space A for C is the product of A;={(0,1}
B,=(0,1)Kzkz

Example 4: Let V, and V, be two equivalent (7,4) Hamming codes.
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Let W, and W, be the (7,1) and (7,3) BCH codes over GF(2)
respectively. Then W,eW, is a (7,4) Hamming code. The minimum
distances of V; and V, are D,=3 and D,=3 respectively. The
minimum distances of W,, W,, and W,eW, are d,=7, d,=4, and d=3
respectively. Note that V;nv, is the (7,1) binary code with
minimum distance D=7 while V,+V, is the (7,7) binary code with
minimum distance D=1. Thus, A = D-min{d,,d,}+[(D;+D,-D)/2]-d =
13, Ay = {D;+[Dy/2]):d = 15, A, = {Dy+[D,/2]}-d = 15, Dd=21,
D,d,=21, and D,d,;=12. Note that N=7, K,=K,=4, n=7, k;=1, k,=3.
Since min {Dldl,ﬁd,x,xl,xz) = 13 > D,d, = 12, we see that
V,eW,0V,8W, is a two-level UEP (49,16) binary linear code for the
message space A=A)xA, with separation vector s=(s;,s,), where
a,=(0,1)%, a,=(0,1)}2, s,>13, s,>12. Thus, 4 message bits of a
message are protected against up to 6 random errors, while 12
other message bits of the same message are protected against up
to 5 random errors. We may compare this code to the product code
of two (7,4) BCH codes with minimum distance 3, which is a

(49,16) binary linear code with minimum distance 9.
an

A special case for the above direct sums of product codes is

that _

For this case, if min{D,d,,3,1;,23} 2 Dyd,, then a nonzero code
array c in V,8W,8V,8W, has the following weight structure:
| (1) For c© € VyeW,, w(C)>Dydy;
(2) For C € V,8W;eV,8W,-V,eW,,
w(C) > min(Dyd;,A,A1,25).
Then the code V,eW,@V,eW, is a linear block code with separation
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vector s=(s,,s,) where

Sl pd min(Dldl,A,Xl,Az},

52 2 Dzdz .
A. A _class of Direct Sums of Product Codes

Now we present a specific class of direct sums of product
codes. Let o and 8 be two different primitive N-th roots of
unity. Let Vv, be an (N,K,) binary cyclic code which has a,
az,...,aZt and their conjugates as zeros. Let V, be an (N,K,)
binary cyclic code which has ﬁ,ﬁz,...,BZt and their conjugates as
zeros. Clearly, V, and V, are equivalent codes. Hence, K,=K5,=K
and D,=D,>2t+1, where D, is the minimum distance of V, and D, is
the minimum distance of Va. If the set {(ﬂi)2m ¢ i=1,2,...,2t, m

2t+1 2t+2  2t+2s,

is an integer} contains {a as a subset,

a2t+28 a5 zeros. Thus, either the

then V,nV, includes a,az,...,
minimum distance D of V,nV, is at least 2t+2s+l or V,nV,=(0} which
is the case that V,nV, contains all the al's as zeros. If the set
((ai)2m : i=1,2,...,2t and m is an integer)} contains {ﬂ,pz,...,
2%} as a subset, then V,+V, contains B,8%,...,82% as zeros.
Thus, D, the minimum distance of V,+V, is at least 2u+l.

With the above V, and V,, if min{(2t+1)d,, (2t+2s+1)d, ), 1,4,
Ay} 2 (2t+1)d,, the direct sum V,6W,0V,eW, is an (Nn,K(ky+k,))
code with separation vector s = (sq,85) where

s, 2 min{(2t+1)d,;, (2t+2s+1)d, 2,271,123},

0]
N
\"

A = (2u+l) -min{dy,d,)}+(2t-u+1)d,
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Example 5: Let o be a primitive element in GF(2°). Let V; be a
(31,21) BCH code with minimum distance D,=5, which contains a, o
and their conjugates as zeros. Let V, be a (31,21) BCH code with
minimum distance D,=5, which contains a3, (a3)3, and their

conjugates as zeros. since o’

is a conjugate of a>, V1NV,
includes a,a3,a5, and their conjugates as zeros. Since
V,nV,%{0}, the minimum distance D of Vynv, is at least 7.
Furthermore, the minimum distance D of V;+V, is at least 3 since
a3 is a zero for both V, and V,. Let W, and W, be (7,1) and
(7,3) BCH codes over GF(2). Thus, the minimum distance of W, is
d;=7 and the minimum distance of W, is d,=4. Furthermore, W,oW,
is a (7,4) BCH code over GF(2) with minimum distance d=3. *Ehus,
t=2, s=1, wu=1, X = (2u+l)-min{d,,d,}+(2t-u+l)-d = 24, X3 = Ay =
(3t+2)-d = 24, Dd>(2t+2s+1).d=21, Dyd,=(2t+1)-d;=35, and D,d, =
(2t+1) -a,=20. Note that N=31, n=7, k;=1, k,=3, K;=K,=21. Since
min{D;d,,Dd,1,24,3,) > 21 > D,d, = 20, V,eW,0V,eW, is a (217,84)
binary two-level UEP linear code for the message space A=A;XA,
with separation vector §=(51'52) wvhere . A1={0,1}21, A2={0,1}63,
81221, and s,>20. Note that the product code of a (7,4) Hamming

code with minimum distance 3 and a (31,21) BCH code with minimum

distance 5 has minimum distance 15.

B. Burst Error Correction
So far, we have studied the multi-level error-correcting
capabilities of block codes through their separation vectors.

However, the separation vector of a block code only specified its

49




multi-level random-error-correcting capability. Now we want to
show that the direct sum of product codes inherits the burst-
error-correcting capability from their component product codes.
If an nxN code array c in V,8W,0V,8W, is transmitted row by row,
any error burst of length N.|(d-1)/2] can affect at most |(d-
1) /2| components in each column of c. Hence, every column of c
can be correctly recovered. That means that any error burst of
length up to N-|(d-1)/2] can be corrected. Thus, in addition to
the random-error-correcting capability, V,eW,eV,eW, has burst-
error-correcting capability. Suppose that V,eW,eV,eW, is a code
for the message space A=A,XA, with separation vector s=(s4,8,),
where s;>s,. Let t,=|(s;-1)/2], to=|(s5-1)/2]. We shall show
that
(1) Any component message from A, is protected against up to
t, random errors and any error burst of length up to
N-|(d-1)/2] (not the combination of both random errors
and error burst).
(2) Any component message from A, is protected against up to
t, random errors and any error burst of length up to
N-|(d-1)/2].
For 1i=1,2, let Eéi) be an nxN array with at most t; nonzero
components. Let e, be an nxN array with a burst of length at
most N-|[(d=-1)/2]. To justify property (1), we need to show that
both €£1)+62 and ep+c) are correctable error patterns for
V,8W,, where 62 and Eé are two arbitrary code arrays in V8w, .
Equivalently, we need to show that €§1)+Ez and ep+c) can
not be in the same coset of the standard array for V;eW, if
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E§1)+52 » ep+cy. To justify property (2), we need to show
that both Eéz) and e, are correctable paéterns for
VoW, 8V, 60, . Equivalently, we need to show that 3£2) and ey
can not be 1in the same coset of the standard array for
Vi8W 0V eW, if 3%2) * ep.

Suppose that €§1)+Ez and epy+c) are in the same coset
of the standard array for V,eW;, where 52 and Eé are two
arbitrary codewords of V,eW,. The sum of §§1)+62 and ept+cy
must be equal to some codeword 31 in V,eHW,. Then, we have
E§1)+§b=31+52+35. If c,=0, then €£1)+62=€b+55. We only have
to consider the case for which E§1)+62¢€b+65. Hence,
cy%0. Thus, the weight of €£1)+€b is at least s,. Consider
a nonzero column of E£1)+€b, which is a nonzero codeword of W.
Thus, this column has at least d nonzero components. Note that
thére are at most t=|(d-1)/2] nonzero components in each column
of e. Thus, a nonzero column of €§1)+€b is composed of at
most t nonzero components from Eb and at least d-t components
from E;l). This implies that a nonzero column of §£1) has At
least d-t nonzero components. Since there are at most t,

nonzero components in Eél), there are at most [t,/(d-t)]

nonzero columns in Eél). This implies that there are at most
lt;/(a-t)| nonzero columns in e,. Therefore, @e, has at most
t,/(d-t) |-t nonzero components. Then, we see that E§1)+€b

contains at most [tl/(d-t)J-t+t1 nonzero components. However,
[tl/(d-t)J-t+t1 < t{[t/(d-t)]+1}

< 2tl
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< 51-

This contradicts the previous result which requires w(Eé1)+Eb)
to be no less than s,. Thus, we have proved property (1).

Suppose that Eéz) and Eb are in the same coset of
V,8W,eV,8W,. Then, €§2)+€b=6 for some nonzero codeword ¢ in
VieW eV, eW, . Thus, w(3£2)+3b)252. By an argument similar to
that for property (1), we find that there are at most [tz/(d-t)J
nonzero columns in Eb. Then, €£2)+Eb contains at most

[t/ (a-t) ] 4ty < to([t/(d-t)]+1)

< 2%,

< s,
nonzero components, which leads to a contradiction. Thus, we have
proved property (2).

Consider the (49,16) binary code illustrated in Example 4.
For this code, 4 message bits of a message are protected against
up to 6 random errors and any error burst of length up to 7,
while the other 12 message bits of the same message are protected
against up to 5 random errors and any error burst of length up to
7.

Consider the (217,84) binary linear code illustrated in
Example 5. For this code, 21 message bits of a message are
protected against up to 10 random errors and any error burst of
length up to 31, while the other 63 message bits of the same
message are protected against up to 9 random errors and any error
burst of length up to 31.

If an nxN code array ¢ in V,eW,eV,eW, is transmitted column
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by column, any error burst of length n-[(D-l)/ZJ can affect at
most | (D-1)/2] components in each row of ¢. Hence, every row of
c can be recovered. Therefore, any error burst of length up to
n-|(D-1)/2] can be recovered. With an argument similar to the

case for which a codeword is transmitted row by row, we can show

that
(1) Any component message from A, is protected against up to
t; random errors and any error burst of length up to
n-|(D-1)/2].
(2) Any component message from A, is protected against up to
t, tandom errors and any error burst of 1length up to
n-|(D-1)/2].
V. CONCLUSION
This research is concerned with coding for unequal error
protection. The basic idea is that it is possible to achieve

multi-level error-correcting capability of a block code by

partitioning the code into disjoint groups (clouds). ;or a

linear direct-sum code, if a partition yields a proper weight

structure, then the code has multi-level error-correcting

capability and hence is a UEP code. By studying the weight

structures of various linear codes, we presented the following
UEP codes:

(1) A class of UEP codes for which the generator matrices

(or parity check matrices) are certain combinations of

generator matrices (or parity check matrices) of

shorter codes. Especially, there is a class of system-
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atic codes which meet the Hamming bound for
systematic UEP codes.

(2) A class of direct sums of product codes which are UEP
codes and have greater minimum distance than the
simple product codes of comparable dimensions.
Besides, the direct sums of product codes still retain
the Dburst-error-correcting capabilities of simple
product codes.

We have also constructed two classes of UEP cyclic codes
which are not presented in this paper due to limited space[22].
From the results of our research, we believe that, by our
approach, i.e., studying the weight structure of block codes,
more classes of powerful UEP codes can be constructed in the

future.
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APPENDIX A

Proof of Lemma ]
Let V, and W, be two vectors in V and W respectively
such that
d({r},Vv) = d(¥,vq),
and a({¥},W) = d4(T,W,).

Since Hamming distance satisfies triangluar inequality, we have
d({r},V)+d((T},W) = 4(T,Vy)+d(T,wy) > d(vy,Wg)-
However, it follows from the definition of 4(V,W) given by (3)

that
d(Vg,Wg) 2 4(V,W).
Combining the above results, we obtain the inequality,

d({T),V)+d((T)},W) > 4(V,W).
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APPENDIX B
s c ivalent Cod e Code with i Cch Matrix
\'4 30

Now, we will show that the code C with parity check matrix H
given by (30) can be transformed into a systematic code with
identical two-level error correcting capability.

Let H(2™-1) be the submatrix of H which consists of the
first 2™-1 columns of H. Note that a linear combination of less
than 5 columns from H with at least one column from H(2™-1) can
not be zero. This implies that a codeword of C with at least one

nonzero component at the first 2™-1 positions has weight at least

5. By row operations, H can be transformed into the following
form:
I 0
H' = top 12 P!
021 I

where I, is an mxm identity matrix, I, is an (m+£)x(m+£) identity
matrix, 0,9 is the zero (m+£)x m matrix, 0,5, is the zero
mx(m+£) matrix, P is some (2m+£) x (2™-1-m) matrix, and P' is
some (2m+2) x (28t£-2M.p_y) matrix. Let k,=2"-m-1 and k2=2m+£—
20-m-g. Let X, be a component message from A1={0,1}k1 and X,
be a component message from A2=(0,1}k2. Thus, x; and X, are
kj-tuple and k,-tuple respectively. From H', we see that any
codeword V(X;,X;) of C can be written as |
(P X3 P' Xx3),
where p and p' are some m-tuple and some (m+£) -tuple

respectively which represent the (2m+£) redundant digits {[20].
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Regardless of the order of redundant digits and message digits,
the expression of V(Xy,%;)=[p X; P' X;] is in fact in
systematic form. Note that the message digits in x; are located
within the first 2™-1 positions of V(Xq,X%5) . From the result
at the beginning of this paragraph and (25), we have

s, = min (W(V(Xy,X,) : X,€A; and X;%0} > 5.
Clearly, s, = min {(w(V(Xy,X;) : Xj€A, and X,%0} = 3.
Thus, C is in systematic form with 2™-m-1 message bits protected
against any 2 or fewer random errors, while the other M+ E_om_p_p

message bits protected against any single error.
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APPENDIX C

Proof of Theorem 6

Pick an arbitrary generator matrix G,, of the (n,,k,-r) code
C, generated by the parity check matrix [HaaT HabT]T. It is easy
to check that (G , Oéb]-HT=0. Hence, the subcode C, generated
by the generator matrix [G,, Ojp] is a k,-r dimensional subcode
of C. Pick an arbitrary generator matrix G, of the (ny, ky-r)
code C; generated by the parity check matrix [beT HbaT]T. We
see that [O), be]-HT=5. Hence, the subcode C; generated by
the generator matrix [0}, Gpp] is a ky-r dimensional subcode of
c. Since C, n C;3 = {0), the direct sum of C, and C4 forms a
katkp-2r dimensional subcode of C. There must exist an r
dimensional subcode C; such that C is the direct sum of C,, C,p,
and Cj . Pick an arbitrary generator matrix of C; which is
expressed as [G,p, Gpa] Where G,y is an rxn, matrix and G, is an
rxny matrix. Thus, the matrix G of (41) is the generator matrix
of C. Note that Gab'HaaT=5 and Gba'beT=5° To prove that

(G T ¢ T] is a generator matrix of the (n,, Kk code C
aa ab a

a) aa

generated by the parity check matrix H,,, we need to show that
G,p generates an r dimensional subcode C,;, of C,,, for which the
only common codeword with C, is the zero n,-tuple. The fact that
Gab'HaaT=6 implies that G, generates a subcode of C,,- Assune
that the rank of G, is less than r. Since the rank of [G,) Gp,]
is r, there exists a nonzero codeword v in C; for which the
first n, positions are all zero. This implies that V is in C4
which contradicts the fact that C is the direct sum of C;, C,,
and Cj. Thus, the rank of Gy is r and G, generates an r
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dimensional subcode C,,, of C,,. Assume that the code C,), and C,
have a nonzero common codeword V,. Let v =[V, V,,] be a
codeword of C, where Vb is some nonzero n,-tuple. Note that
V,=[V, 0p] is a codeword of C,, where Oy is the zero np-
tuple. Then, V,+V,=[0, V], where 0, is the zero n,-tuple.
Thus, [0, V)] is in C; which again leads to a contradiction.
Hence, C,, and C, have only zero na-tuple_as conmon codeword.
Thus, we have shown that [GaaT GabT]T is a generator matrix of
the (n,, k,) code c,, generated by the parity check matrix Haa-
We can similarly prove that [beT GbaT]T is a generator matrix of

the (ny,ky) code Cp,, generated by the parity check matrix Hy, .
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