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HIGHLIGHTS OF UNSTEADY PRESSURE TESTS ON A 14 PERCENT SUPERCRITICAL 
AIRFOIL AT HIGH REYNOLDS NUMBER, TRANSONIC CONDITION 

Abstract 

Robert W. Hess*, David A. Seidel**, W i l l i am B. Igoe***, 
and Pierce L. Lawing**** 

NASA Langley Research Center 
Hampton, V i r g i n i a  23665-5225 

Steady and unsteady pressures were measured 
on a 2-0 s u p e r c r i t i c a l  a i r f o i l  i n  t h e  Langley 
Research Center 0 .34 Transonic Cry0 en ic  Tunnel 
a t  Reynolds numbers from 6 x 10% t o  35 x 
lo6. The a i r f o i l  was o s c i l l a t e d  i n  p i t c h  at  
amplitudes from k.25 degrees t o  kl.0 degrees a t  
frequencies from 5 Hz t o  60 Hz. The special 
requirements o f  t e s t i n g  an unsteady pressure 
model i n  a pressurized cryogenic tunnel are 
discussed. Selected steady measured data are 
presented and are compared w i t h  GRUMFOIL 
c a l c u l a t i o n s  a t  Reynolds number o f  6 x 106 and 
30 x lo6. Experimental unsteady r e s u l t s  a t  
Reynolds numbers o f  6 x 106 and 30 x 106 are 
examined f o r  Reynolds number ef fects .  Measured 
unsteady r e s u l t s  a t  two mean angles o f  a t tack a t  
a Reynolds number o f  30 x 106 are also 
examined. 

Nomenclature 

chord 
1 i f t  c o e f f i c i e n t  
pressure c o e f f i c i e n t  
modulus o f  o s c i l l a t i n g  pressure 
c o e f f i c i e n t  
frequency, Hz 
reduced frequency, based on semichord, 
ncf  /v 
Mach number 
Pressures i n  f l a w  r e s t r i c t o r  
c a l i b r a t i o n ,  f i g u r e  5 
Reynolds number based on chord 
ve loc i t y ,  f t / sec  
streamwise coordinate measured from 
leading edge, in. 
peak o s c i l l a t i o n  ampli tude i n  p i t c h ,  
degrees, p o s i t i v e  leading edge up, deg. 
steady o r  mean dynamic amplitude i n  
p i t c h ,  p o s i t i v e  leading edge up, deg. 
micron, 1 x 10-6 meters 
phase angle between o s c i l l a t i n g  pressure 
and o s c i l l a t i n g  wing p i t c h  angle, deg. 
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Aerodynamics Branch, Loads and Aeroe las t i c i t y  
D iv i s ion ,  Member AIAA. 

**Research Engineer, Unsteady Aerodynamics 
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***Senior Research Engineer, Transonic 
Aerodynamics D iv i s ion ,  National Transonic 
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****Senior Research Engineer, Transonic 
Aerodynamics Div is ion,  Experimental Techniques 
Branch, Senior Member A I A A .  

Su b s c r i  p t  s 

C corrected value 
t t e s t  measurement 

I n t  roduct i on 

The advent o f  l a rge  cryogenic wind tunnels  
al lows unsteady pressure measurements t o  be made 
on models a t  Reynolds numbers t y p i c a l l y  
experienced by h i  gh performance a i  r c r a f  t , thus 
e l i m i n a t i n g  t h e  need f o r  a r t i f i c e s  such as 
boundary-layer t r i p s  t o  simulate boundary l a y e r  
t r a n s i t i o n  a t  h igh  Reynolds number. New ' 

m in ia tu re  transducers s p e c i f i c a l l y  designed t o  
measure unsteady pressures i n  a cryogenic 
environment make these measurements possible. 
The study repor ted i n  t h i s  paper was conducted 
i n  the  0 . 3 4  Transonic Cryogenic Tunnel 10.34 
TCT) a t  the NASA Langley Research Center. With 
i t s  combined pressure, cryogenic temperature, 
and t ransonic  speed c a p a b i l i t i e s  the 0 .34  TCT 
can prov ide f l i g h t  equiva lent  a i r f o i l  r e s u l t s  
f o r  current  a i r c r a f t .  This tunnel was used i n  
the  Advanced Technology A i  r f o i  1 Test (ATAT) 
program i n  extensive steady f low a i r f o i l  studies 
t h a t  demonstrated the necessity f o r  h igh  
Reynolds number test ing.  The a i r f o i l  used i n  
the  present unsteady t e s t s  i s  a fourteen-percent 
t h i ck ,  s u p e r c r i t i c a l  a i r f o i l ,  designated Sc(2)- 
0714, which was developed a t  t h e  NASA Langey 
Research Center.3 The purpose o f  t h i s  t e s t  was 
t o  ob ta in  unsteady t ransonic  pressure 
measurements from an o s c i l l a t i n g  s u p e r c r i t i c a l  
a i r f o i l  over a wide range of Reynolds number t o  
supplement the previous steady f l ow  resul ts .  A 
secondary o b j e c t i v e  o f  t he  t e s t  was t h e  
development o f  inst rumentat ion techniques f o r  
measuring unsteady pressures a t  cryogenic 
temperatures. 

The two-dimensional model had a s i x  inch 
chord and an e i g h t  inch span. The t e s t  was 
concentrated a t  a tunnel freestream Mach number 
o f  0.72, which previous t e s t s  i nd i ca ted  t o  be 
t h e  design Mach number. Reynolds number [based 
on a s i x  inch chord) was var ied from 6 x 106 
t o  35 x 106 and Mach number was var ied a t  two 
Reynolds numbers. The range o f  t e s t  frequencies 
was from 5 Hz t o  60 Hz a t  o s c i l l a t i n g  p i t c h  
amplitudes which va r ied  from k0.25 degrees t o  
21.0 degrees. I n  t h i s  paper, se lected steady 
measured data are presented and are compared 

o f  6 x 106 and 30 x lo6. Experimental 
unsteady r e s u l t s  a t  Reynolds numbers o f  6 x 
106 and 30 x 106 are examined f o r  Reynolds 
number e f fec ts .  Measured unsteady r e s u l t s  a t  
two mean angles o f  a t tack a t  a Reynolds number 
o f  30 x 106 are a l so  discussed. 

.*4+h GRUMFO:: ca lcu la t i ons  a t  Reynolds Embers 
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Apparatus 

Model 

The Sc(2)-0714 a i r fo i l  model is shown i n '  
F i g .  1. I t  was machined from an alloy 
(Vascomax-200) t h a t  has superior dimensional 
s t ab i l i t y  properties a t  cryogenic conditions. A 
cavity machined i n  the underside of the w i n g ,  
Fig. 2,  provided the space necessary t o  mount  
the transducers. This cavity was closed by a 
cover plate  on which some lower surface 
transducers were mounted. The wing was 
supported on one end by a c lose-f i t t ing tang 
fixed to  a d r i v i n g  plate  w i t h  machine screws; 
this end, seen on the l e f t  i n  F i g .  2 ,  was sealed 
with epoxy. The other end was supported by an 
integral shaf t  which rotated i n  a bushing i n  the 
tunnel side wal l  plate. A s l iding seal of f e l t  
was used to seal the gap between the end of the 
osc i l la t ing  airfoi l  and the fixed tunnel 
sidewall plate. The position of the supports 
was designed to  locate the pitch a x i s  a t  
t h i  rty-fi ve percent chord. 

Transducers 

Forty-three unsteady pressure transducers 
were mounted internally in the model. Because 
of space constraints, forty of the transducers 
were mounted i n  receptacles connected by a short  
length (nominally 0.75 inch) of tubing to  the 
or i f ice .  The remaining three transducers were 
mounted w i t h  the transducer head less  t h a n  0.1 
inch below the surface of the wing. The 
or i f ices  of these three transducers were paired 
with tube mounted transducers for  comparison 
purposes. A series of t e s t s  was conducted to  
examine the effects of or i f ice  diameter, tube 
diameter, and tube length on the dynamic 
response of the system. A t  atmospheric 
conditions there was no significantreduction of 
dynamic amplitude response or phase s h i f t  of the 
t e s t  configuration up t o  100 Hz. 

The location of the transducers i s  given 
schematically i n  Figures 3 (a )  and 3(b) .  The 
tube-mounted transducer or i f ices  are located 
al ternately i n  two rows 0.25 inches on e i ther  
side of the center line. On  the top surface the 
o r i f i ce  distribution of the twenty-five 
transducers resul ts  in an or i f ice  every 2% of 
chord to  x/c = 0.1 and 4% chord to  x/c of 0.70. 
The dis t r ibut ion of the 15 tube-mounted 
transducer or i f ices  on the lower surface is 2% 
to an x/c of 0.1 and increases to  5% 
thereaf ter .  The close-mounted transducers and 
reference or i f ices  are located 0.5 inches from 
the center l ine.  

The elements o f  the transducer system are 
shown in Fig. 4. Since the different ia l  
pressure between the wing surface and the tunnel 
s t a t i c  pressure could exceed the rated 
capabi 1 i ty of the transducer, the transducer was 
referenced t o  a manifold which i n  t u r n  was 
vented to  one of five reference or i f ices .  A 
reference transducer measured the pressure 
different ia l  between the manifold and the tunnel 
s t a t i c  pressure. 

The f inal  configuration consisted of 
transducers w i t h  a 10 psi range and with outputs 
of between 5 and 9 mv/psi. Each transducer was 
mounted i n  a receptacle which i n  t u r n  was 
connected to  the 0.015 inch diameter o r i f i ce  by 
a 0.75 inch length of .030 inch i . d .  tubing. 

The connection between the manifold and the 
reference o r i f i ce  was interrupted by a porous 
flow re s t r i c t e r  which damped out the osc i l la t ing  
pressure from the s t a t i c  reference o r i f i ce  
(replacing the long lengths of t u b i n g  usually 
used for th i s  purpose). The resul ts  of a se r ies  
of cal ibrat ions made on different  combinations 
of porous flow res t r ic tors  and tube lengths are 
g iven  i n  Fig. 5. The flow res t r ic tors  tes ted 
were c o n e r c i  a1 ly  avai 1 ab1 e sintered f i  1 t e r s  
composed of constant diameter par t ic les ,  w i t h  
diameters ranging from 1 0 ~  to  2511. Except for  
the resul ts  for  two 25p res t r ic tors  i n  se r ies  
(shown i n  the curve labeled 1=.5, 2-25p) the 
data shown i n  F i g .  5 are  for  s ingle  flow 
res t r ic tors .  The reduction i n  unsteady 
pressures i s  shown (Fig. 5) as the ra t io  of the 
imposed osc i l la t ing  input pressure amplitude, 
P , ,  to  the output pressure amplitude, P,, as a 
function of frequency and for  different  
combinations of f i l t e r s  and tube length, 1. 
Also given i n  the same figure is the time 
required, t, for  the system t o  reach equilibrium 
a f t e r  the application of a s t a t i c  pulse. 

Two 25p f i l t e r s  i n  ser ies  were selected for  
the wind  tunnel t e s t .  Because of lack of space 
i n  the model the manifolds and flow re s t r i c t e r s  
were located outside the model during the t e s t  
and were connected to  the model with 
approximately 6 inches of t u b i n g .  

The transducers were t o  be recovered a f t e r  
the t e s t  and consequently could not be 
permanently bonded to  the receptacle. A se r ies  
of t e s t s  were conducted w i t h  candidate mastics 
and dumy transducers a t  120 deg. K and 20 psi 
pressure different ia l  t o  determine which, i f  
any, would maintain a seal a f t e r  repeated 
cycling. A mastic supplied by the transducer 
vendor was selected for  the instal la t ion.  

V r g e  variations in temperature (120 
deg. K to  320 deg. K) and stagnation pressure 
(1.4 atm. - 6 atm.) over the operating range of 
the C.3M-TCT resu l t  in sidewall deformations 
tha t  required special considerations i n  the 
design of the osc i l la t ing  drive system. Figure 
6 shows the model and the drive system 
ins ta l la t ion  in the t e s t  section. The test 
section i s  shown to the r i g h t  with the test 
section cei l ing removed and can be ident i f ied by 
the two s lo t s  on the f loor  which run under the 
model. The model i s  between the t e s t  section 
sidewalls which i n  t u r n  are between the t u n n e l  
plenum spaces and f ina l ly ,  the tunnel pressure- 
shell or plenum walls. The c r i t i ca l  elements of 
the system are  ident i f ied in the schematic 
drawing i n  F i g .  7. The hydraulic-rotary 
actuator required the maintenance of precise 
alignment for  the duration of the t e s t .  Since 
the 0.3-m TCT t e s t  section f loa t s  on a cable 
suspension system to  accommodate thermal 
contraction a t  the cold operating conditions, 
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t h e  a c t u a t o r  and suppor t ing s t r u c t u r e  were also 
supported by a system o f  cables, b locks,  and 
coun te r  weights so t h a t  they could m v e  w i t h  the 
t e s t  sect ion.  

An i n s u l a t i n g  spacer between t h e  ac tua to r  
and t h e  d r i v e  s h a f t  and two ho t  a i r  b lowers were 
used t o  reduce t h e  c h i l l  on t h e  ac tua to r  and 
system components ex te rna l  t o  t h e  tunnel .  A 
T e f l o n  (reg. t r a d e  mark) bushing and pressure 
seal  were t h e  remaining f i x e d  support  p o i n t s  f o r  
t h e  ho l l ow  aluminum d r i v e  shaf t .  The s h a f t  was 
a t tached  t o  t h e  r o t a t i n g  s idewa l l  d r i v e  disk 
through a bel lows t h a t  i s o l a t e d  t h e  s h a f t  from 
t h e  r e l a t i v e  i n - l i n e  movement of t h e  tunnel  
s idewa l l .  The r o t a t i n g  d r i v e  d i sk  was Tef lon  
coated on i t s  c i r c u m f e r e n t i a l  bear ing surfaces 
and had a rec tangu la r  s l o t  t o  accommodate the  
wing tang. The tang was ho l l ow  t o  prov ide a 
pa th  f o r  t ransducer  cables and t u b i n g  which went 
through a matching ho le  i n  the  p l a t e  and e x i t e d  
through t h e  cab le  p o r t s  i n  t h e  d r i v e  shaft .  
Th i s  end o f  t h e  wing was sealed wi th  epoxy and 
b o l t e d  t o  the  r o t a t i n g  d isk .  

The o the r  end o f  t h e  wing was supported by 
t h e  i n t e g r a l  ho l l ow  wing s h a f t  and a bushing i n  
t h e  s idewa l l  p la te .  Th is  end o f  t h e  wing moved 
r e l a t i v e  t o  i t s  mounting p l a t e  and was sealed 
w i th  f e l t  t h a t  matched t h e  p r o f i l e  o f  the  wing. 
The wing sha f t  was at tached t o  a r o t a r y  
t ransducer  by an i n s u l a t i n g  sha f t .  The hol low 
wing s h a f t  prov ided a pa th  f o r  t h e  remaining 
i ns t rumen ta t i on  cables. The r o t a r y  t ransducer 
was heated w i t h  sur face heaters  under thermostat 
c o n t r o l  and t h e  e n t i r e  assembly covered w i th  an 
i n s u l a t e d  can. 

The system d i d  no t  develop any problems 
d i i r i ng  t h e  tes t .  The angie o f  a t t a c k  was 
checked v i s u a l l y  against  a s idewa l l  s c r i b e  mark 
a t  t h e  beginning o f  each days t e s t  be fo re  the 
i n t r o d u c t i o n  o f  cryogenic n i t r o g e n  caused 
ex tens i ve  f r o s t  t o  be formed on t h e  view por ts .  
The c o r r e l a t i o n  o f  t h e  geometric f l ow  angle o f  
a t tack  between t h e  s c r i b e  mark a t  t h e  t r a i l i n g  
edge and t h e  i ns t rumen ta t i on  d i d  not vary dur ing  
t h e  t e s t .  

Data A c q u i s i t i o n  and Reduct ion 

S t a t i c  da ta  f rom t h e  model and tunnel  
i ns t rumen ta t i on  were acqui red us ing  t h e  0.3M-TCT 
data  a c q u i s i t i o n  system. The model angle of  
a t tack  and pressure data were f e d  t o  the 
system's analog data a c q u i s i t i o n  channels. The 
system has 192 channels which a re  f i l t e r e d  w i t h  
a 10-Hz low-pass f i l t e r  and then d i g i t i z e d  a t  20 
samples pe r  second. S t a t i c  data values are 
acqu i red  by averaging t h e  d i g i t i z e d  values over 
a one second i n t e r v a l .  

Dynamic model data were acqui red using 
analog tape  recorders.  The ins t rumen ta t i on  
s i g n a l  was a m p l i f i e d  t o  be a va lue o f  about one 
w!t RYS. The mcde! :ngle o f  att:ck and 
pressures were taken d i r e c t l y  from the 
a m p l i f i e r s  and recorded on two 28-channel analog 
tapes opera t i ng  a t  15 inches pe r  second. To 
o b t a i n  ampl i tude and phase in fo rma t ion  a t  the 
f requency o f  o s c i l l a t i o n  and t h e  lowest 
harmonics, t h e  data was d i g i t i z e d  a t  32 samples 
p e r  c y c l e  o f  o s c i l l a t o r y  mot ion f o r  64 

cont iguous cycles.  A Fast Four ie r  
Transformat ion average (FFT) was taken o f  t h e  
data t o  c a l c u l a t e  t h e  harmonic components o f  t h e  
unsteady pressures. The data sample r a t e  and 
number o f  cyc les  analyzed was se lec ted  t o  g i v e  
an accurate est imate o f  t h e  f i r s t  t h r e e  
fundamental harmonic componets. The harmonic 
pressure c o e f f i c i e n t s  a r e  normal ized by t h e  
ampl i tude of t h e  harmonic wing mot ion i n  
degrees. A l l  phase angles were r e l a t i v e  t o  t h e  
wing pos i t i on .  

S idewal l  boundary l a y e r  and angle of a t t a c k  
c o r r e c t i o n s  were app l i ed  t o  t h e  measured steady 
pressure resu l t s .  The s idewa l l  boundary l a y e r  
c o r r e c t i o n s  a re  based on t h e  theory of Ref. 4 
which i s  used i n  Ref. 5 with measured values o f  
s idewa l l  displacement and momentum th i ckness  t o  
compi le t h e  t a b l e s  which were used t o  c o r r e c t  
t h e  exper imental  values i n  t h i s  paper. The 
angle of a t tack  co r rec t i ons  descr ibed i n  Ref. 6 
(sometimes r e f e r r e d  t o  as the  "Barnwell -Davis- 
Moore" c o r r e c t i o n )  ad jus t  t h e  theory o f  Davis-  
Moore w i t h  exper imental  data. The w a l l  induced 
downwash immediately over t h e  model f o r  t h e  
0.34 TCT i s :  

-c. C 

The parameters necessary t o  make t h e  c o r r e c t i o n  
are:  

c = chord = 6 i n .  
h = tunne l  semi-height = 12 in.  
a = s l o t  spacing = 4 in .  
6 = w i d t h  o f  s l o t  = 0.2 i n .  

j = aK/h 
K = 3.2 (semi emp i r i ca l  constant,  

f u n c t i o n  of 6 and a )  

For C1 = 1.0 

A: = -1.73245 deg. 

Resul ts  and D i s c u r n  

The t e s t  was designed t o  exp lo re  t h e  
e f f e c t s  o f  Reynolds number on unsteady pressures 
and t o  generate a data base f o r  v a l i d a t i n g  
unsteady-aerodynamic computer codes. The t e s t  
cond i t i ons  as def ined by Mach number and 
Reynolds number a r e  shown i n  Fig. 8. Test 
p o i n t s  were taken a t  t he  design Mach number o f  
0.72 a t  t e s t  Reynolds numbers va ry ing  from 6 x 
106 t o  30 x lo6. Mach number was va r ied  a t  
two Reynolds numbers, 15 x lo6 and 30 x 
106. A t o t a l  o f  976 t e s t  p o i n t s  were taken. 
The pr imary data base was taken f o r  p i t c h -  
o s c i l l a t i o n  frequency between 5 Hz and 40 Hz a t  
ampl i tude of t0.25 degree as i n d i c a t e d  by t h e  
open and c losed symbols. Once t h i s  data was i n  
hand, t h e  p i t c h  ampl i tude was increased t o  20.5 
and kl.0 degree and t h e  p i t c h  f requency was a l s o  
increased t o  60 Hz a t  t e s t  c o n d i t i o n s  i n d i c a t e d  
by the so!id symbn!~. 

Steady Pressures 

Steady pressure d i s t r i b u t i o n s  f o r  f o u r  

angles o f  a t tack ,  at, approx imate ly  2.5", 
2.0", 1.5", and O", and f o r  two Reynolds 
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numbers, 6 x 106 and 30 x lo6, are shown i n  
F i g .  9. The experimental data are shown as 
symbols and the  c a l c u l a t i o n s  as s o l i d  l i n e s .  
The pressure data have been co r rec ted  f o r  
s idewa l l  e f f e c t s  ( re f s .  4 and 51 and angle o f  
a t t a c k  ( r e f .  6). Ca lcu la ted  pressure 
d i s t r i b u t i o n s  f rom the f u l l  p o t e n t i a l  GRUMFOIL 
computer code ( r e f .  7 )  are a l s o  compared (F ig.  
9). The GRUMFOIL code c o n s i s t s  o f  a f u l l  
p o t e n t i a l  equat ion f low so l ve r  i n t e g r a t e d  w i t h  a 
v iscous boundary layer  model. GRUMFOIL may be 

entered by spec i f y ing  e i t h e r  a o r  C1 .  The 
c o r r e c t e d  values o f  Mach number and C1 were 
used as the i n p u t  data f o r  the computed r e s u l t s  
which are compared w i t h  the co r rec ted  
exper imental  values o f  Cp shown i n  F i g .  9. 

Below each f i g u r e  a re  l i s t e d  M, a, and C1 
values f o r  t he  tunnel t e s t  cond i t i ons ,  t he  
co r rec ted  values, and the values r e s u l t i n g  f rom 
t h e  GRUMFOIL ca l cu la t i ons .  

The comparisons between experiment, shown 
as symbols, and ca l cu la t i ons ,  s o l i d  l i n e s ,  i n  
F i g .  9 are very good. The shock moves a f t  by 
approximately 8% t o  10% o f  chord f o r  a g iven 

va lue o f  i t  when Reynold2 number i s  increased 
f rom 6 x 106 t o  30 x 10 . The GRUMFOIL code 
under -p red ic t s  the  p o s i t i o n  o f  the shock a t  both 
Reynolds numbers by approximately 2-3% o f  chord 
even though C1 i s  matched. 

L i f t  c o e f f i c i e n t s  f o r  several cases are 
shown i n  F i g .  10 p l o t t e d  aga ins t  co r rec ted  angle 
o f  a t tack  and against  angle o f  a t tack  as 
computed by GRUMFOIL f o r  i n p u t  values o f  Ma h 

and 30 x lo6.  The angles c a l c u l a t e d  from 
GRUMFOIL a re  c o n s i s t e n t l y  l a r g e r  than those 
determined from the c o r r e c t i o n  procedure o f  
r e f .  6. T h i s  t rend  i s  s i m i l a r  t o  the  one shown 
i n  r e f .  8. I r r e s p e c t i v e  o f  the angle o f  a t tack  
c o r r e c t i o n s ,  an increase i n  C 1  o f  
approx imate ly  0.1 i s  shown as Reynolds number i s  
increased from 6 x lo6 t o  30 x lo6.  Th is  
i nc rease  r e s u l t s  f r o m  the rearward movement o f  
t he  shock shown i n  F ig .  9. 

number and C1 f o r  Reynolds number o f  6 x 10 E 

Unsteady Pressures 

The e f f e c t s  o f  Reynolds number and 
frequency o f  o s c i l l a t i o n  upon the  unsteady 
pressure d i s t r i b u t i o n  i s  shown i n  F i g .  11. 
Resul ts  are g iven i n  terms o f  the modulus o f  the 
unsteady pressure c o e f f i c i e n t  normal ized by t h e  
o s c i l l a t i n g  p i t c h  angle, a, and the phase angle, 
Q, between the  unsteady pressure and t h e  
o s c i l l a t i n g  wing pos i t i on .  Resul ts  are shown 

f o r  a t  = 1" and 2" and f o r  R = 6 x 106 and 
30 x 106. Two o s c i l l a t i o n  f requencies,  5 Hz 
and 20 Hz, are presented f o r  a p i t c h  ampl i tude 
o f  k0.25 degrees. The upper sur face pressure 
d i s t r i b u t i o n s  a re  shown i n  F ig .  l l ( a )  and the  
corresponding lower sur face pressures a re  i n  
F i g .  l l ( b ) .  

The shock wave, i d e n t i f i e d  by the  peak i n  
t h e  unsteady pressures, moves a f t  about 8% t o  
10% chord as R i s  increased from 6 x l o 6  t o  30 
x lo6  a t  t h e  same tunnel  t e s t  angles. The 
unsteady pressures,  a t  both Reynolds numbers, 
a re  s i g n i f i c a n t l y  greater  ahead o f  the shock a t  

- 

is = 1 degree than a t  2 degrees. There i s  no 
s i g n i f i c a n t  d i f f e rence  i n  the  magnitude o f  t he  
unsteady pressures due t o  a change i n  frequency 
from 5 Hz t o  20 Hz. 

F o r  the  t e s t  c o n d i t i o n s  shown, t h e  
pressures ahead o f  t he  shock are approximately 
180" o u t  o f  phase w i t h  the  wing o s c i l l a t i o n .  
Imned ia te l y  a f t e r  the shock wave the  phase angle 
a t  t he  pressure ab rup t l y  changes from -180" t o  
approx imate ly  0" t o  be in-phase w i t h  the  wing 
p i t c h i n g  mot ions. A f t  o f  t he  shock wave the  

phase angle remains a t  0" a t  a t  = 2", b u t  i s  
more dependent on frequency a t  t he  lower  mean 

p i t c h  angle, a t  = lo, tending t o  go back t o  
-180" a t  20 Hz and t o  0" a t  5 Hz. 

The lower  sur face pressures and phase 
angles are shown i n  F ig .  l l ( b ) .  The pressures 
are low and decrease from lead ing  t o  t r a i l i n g  
edge; the phase angle i s  c lose  t o  zero except a t  
the reg ion  o f  t he  lower sur face i n f l e c t i o n .  

The e f f e c t  o f  va ry ing  the  ampl i tude o f  t he  
p i t c h  o s c i l l a t i o n  a t  M = 0.72 i s  shown i n  F i g .  
12. Pressure d i s t r i b u t i o n s  are shown f o r  R = 

30 x l o 6  f o r  two mean angles, ht = 1" and 2" 
and f o r  b o  f requencies,  f = 40 and 60 Hz. Data 
f o r  p i t c h  ampl i tudes o f  0.25, 0.5, and 1.0 
degree are shown. I n  m s t  cases, i n  t h i s  and 
the f o l l o w i n g  f i g u r e ,  the data p o i n t s  are n o t  
connected i n  the  neighborhood o f  the peak shock 
ampl i tude because the  peak pressure i s  n o t  
de f i ned  by a f i n i t e  number o f  pressure 
o r i f i c e s .  The upper sur face pressure 
d i s t r i b u t i o n ,  F ig .  12(a) ,  shows a reduc t i on  and 
broadening o f  t he  shock-generated peak amp1 i tude 
as the  p i t c h  ampl i tude, a, i s  increased from 
0.25" t o  1" a t  bo th  f requencies and mean 
angles. Note the  s u b s t a n t i a l  change i n  mean 
shock p o s i t i o n  due t o  p i t c h  ampl i tude a t  
f = 60 Hz and U t  = 1". 

A secondary peak i n  the  magnitude o f  the 
o s c i l l a t i n g  pressure i s  ev iden t  immediately 

behind the shock a t  a t  = 2" and 1" which cou ld  
be a t t r i b u t e d  t o  f l ow  separat ion and 
reattachment as discussed i n  Ref. 9. However, 
an i n v i s c i d  c a l c u l a t i o n  us ing  the X T R A N Z L ~ O S ~ ~  
computer code p r e d i c t s  t h i s  secondary response, 
a l b e i t  n o t  p r e c i s e l y  a t  the same chord 
l o c a t i o n .  Ca lcu la t i ons  w i t h  GRUMFOIL shown i n  
F i g .  13 i l l u s t r a t e s  t h a t  a more probable reason 
f o r  the secondary response der ives f rom the  

supersonic reg ions  above the  a i r f o i l .  A t  at = 
1" t h e r e  i s  a secondary supersonic reg ion  behind 
the  shock which i s  engu l fed  by the  pr imary 
supersonic reg ion  when the  angle o f  a t tack  i s  

increased t o  i t  = 2". Tijdeman12 and o the rs  
have noted t h a t  t he  f l o w  i n  the  supersonic 
reg ion  p r i o r  t o  the  format ion o f  a shock i s  
cha rac te r i zed  by a s u b s t a n t i a l  increase i n  
unsteady pressure.  

The upper su r face  phase angle,  Q, shows 
changes i n  the neighborhood o f  the shock and a f t  
p o r t i o n  o f  the a i r f o i l  w i t h  p i t c h  ampl i tude, 
F ig .  1 2 ( a l .  

The lower  sur face pressure ampl i tude and 
qhase, $, are given i n  F igu re  12(b) .  Both are 

- 
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r e l a t i v e l y  independent o f  p i t c h  amp1 i tude except 
i n  the  neighborhood o f  the i n f l e c t i o n  o r  cusp 
reg ion  o f  the a i r f o i l .  Both pressure and phase 
decrease from leading edge t o  t r a i  1 i ng edge. 

The e f f e c t  o f  vary ing the o s c i l l a t i o n  
frequency a t  M = 0.72 i s  shown i n  F ig .  14. 
Pressure d i s t r i b u t i o n s  are shown f o r  R = 30 x 
l o6  f o r  mean angles i t  = 1' and 2" and f o r  
p i t c h  amplitudes o f  0.25" and 0.5'. Data f o r  
frequencies o f  5, 15, 40, and 60 Hz are 
presented. I n  general the excursion o f  the 
shock on the upper surface, Fig. 14(a), i s  
reduced a t  60 Hz and again the second peak i s  
g rea te r  a t  a t  = 1' than a t  at = 2" and i s  
n o t  a s t rong func t i on  o f  frequency. As expected 
t h e  phase angle i s  a f u n c t i o n  o f  frequency 
showing s i m i l a r  c h a r a c t e r i s t i c s  as shown i n  the 
prev ious f i g u r e  decreasing t o  approximately 0' 
behind the shock. The lower surface pressures 
and phase angle, F ig .  14(b) again decrease from 
a maximum a t  the leading edge t o  a minimum a t  
t he  t r a i l i n g  edge and showing some dependence 
on frequency. 

- - 

Boundary Layer S ta te  

The unsteady pressure transducers used i n  
t h i s  t e s t  a l so  enabled measurements t o  be 
nhtai ned which are o f  i n t e r e s t  regard ing the 
s t a t e  o f  the boundary l aye r .  The t ime h i s t o r i e s  
o f  the pressures a t  f i v e  transducer locat ions 
taken when the a i r f o i l  was locked a t  f i x e d  angle 
of a t tack  are shown i n  F ig .  15. The data shown 
i n  t h i s  f i g u r e  are a l l  a t  a gain o f  10 b u t  the 
transducer s e n s i t i v i t y ,  given w i t h  each trace, 
has no t  been app l i ed  t o  p u t  the t ime h i s t o r i e s  
i n  engineering un i t s .  The t i m e  h i s t o r i e s  taken 
a t  two f i x e d  angles o f  a t tack ((It = 0" and 2') 
a t  R = 35 x 106 are shown i n  F ig .  15(a)  and 
F ig .  15Eb) respect ive ly .  The steady pressure 
d i s t r i b u t i o n s  are shown a t  the r i g h t  o f  each 
f igure.  The s o l i d  p o i n t s  on t he  pressure 
d i s t r i b u t i o n  mark the l o c a t i o n  (x/c .14, .28, 
.46, .62, .75) o f  the f i v e  transducers. I n  
Fig. 15(a)  (it = 0') t he  t ime h i s t o r i e s  have 
t h e  c h a r a c t e r i s t i c s  o f  a t u r b u l e n t  boundary 
l aye r .  However i n  Fig. 15(b) ( i t  = 2') the 
pressure i s  quiescent a t  x/c o f  0.14 and 0.28 
i n  comparison w i t h  the transducer responses a t  
a t  = 0'. A t  an x/c o f  0.46 the e f f e c t  o f  
shock movement i s  observed. A t  an x/c o f  0.62 
the  shock movement i s  s t i l l  observed and 
turbulence i s  apparent. A t  x/c o f  0.75 the 
s igna l  i s  comparable t o  t h a t  a t  i t  = 0'. The 
most obvious d i f f e rence  between the condi t ions 
a t  the two angles o f  a t tack  i s  the presence o f  a 
shock and the s l i g h t l y  more favorable pressure 
g rad ien t  a t  i t  = 2'. The t ime h i s t o r i e s  
i n d i c a t e  t h a t  laminar flow was present  a t  
a t  = 2" and t h a t  t r a n s i t i o n  t o  turbulence was 
between an x/c o f  0.28 and 0.46 corresponding to  
t r a n s i t i o n  Reynolds numbers between 9.8 x l o6  
and 16.1 x lo6. The p o s s i b i l i t y  e x i s t s  t h a t  
l o n g  runs of laminar f l ow  ex i s ted  i n t e r m i t t e n t l y  
dur ing the tes ts .  

- 

- 

Conclusions 

Steady and unsteady pressures on a 14 
percent supercr i  t i c a l  a i r f o i l  a t  t ransonic  Mach 
numbers have been measured a t  Reynolds numbers 
from 6 x l o 6  t o  35 x lo6. Inst rumentat ion 
techniques were developed t o  measure unsteady 
pressures i n  a cryogenic tunnel a t  f l i g h t  
Reynolds numbers. Experimental steady data, 
corrected f o r  w a l l  e f fec ts ,  show very good 
agreement w i t h  ca l cu la t i ons  from a f u l l  
p o t e n t i a l  computer code w i t h  an i n t e r a c t e d  
boundary l aye r .  The steady and unsteady 
pressures both show a shock p o s i t i o n  t h a t  i s  
dependent on Reynolds number. Fo r  a super- 
c r i t i c a l  pressure d i s t r i b u t i o n  a t  a chord 
Reynolds number o f  35 x lo6, laminar boundary 
l a y e r  f l ow  was observed over a s i g n i f i c a n t  
percentage o f  the a i r f o i l  chord. 
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