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Finite fieM multiplication is central in the implementation of some error-correcting

coders. Massey and Omura [4] have presented a revolutionary design for multiplication in
a finite fieM. In their design, a normal basis is utilized to represent the elements of the

field. In this article, the concept of using a self_lual normal basis to design the Massey-

Omura finite fieM multiplier is presented. The article first presents an algorithm to locate

a self-dual normal basis for GF(2 m) for odd m. Then a method to construct the product

function for designing the Massey-Omura multiplier is developed. It is shown that the

construction of the product function based on a self-dual basis is simpler than that based

on an arbitrary normal basis.

I. Introduction

Finite field multiplication is central in the implementation
of some error-correcting coders [1] [2] and authentication

devices [3]. There is a need for good multiplication algorithms

that can be easily realized. Massey and Omura [4] have devel-

oped a new algorithm for multiplication in a Galois field based

on a normal basis representation. Using this normal basis, the

design of the finite field multiplier is simple and regular [5].

The product components can be obtained by the same logical

function operating on the cyclically shifted versions of the

components of the multiplicand and multiplier. Hence, design-

ing a Massey-Omura multiplier is essentially designing this

product function. An architecture for implementing Massey-

Omura multipliers in GF(2 m) was presented in [5]. The nor-

mal basis used in the design of [5] is the linearly independent

roots of a generating polynomial of GF(2ra). However, it is

very difficult to verity the linear independence of the roots

of a polynomial. Wah and Wang [6] [7] have shown that if

m + 1 is a prime and 2 is primitive mod (m + 1), the all-one

polynomial of degree m is irreducible and its roots constitute

a normal basis. Pei, Wang and Omura [8] have also presented
necessary and sufficient conditions for an element to generate

a normal basis for the field GF(2 m) for some particular m's.

Recently a generalized algorithm to locate a normal basis in

any field has been developed [9]. In [9], the concept of dual

basis is used to design the product function of the Massey-

Omura multiplier.

In this article, a self-dual normal basis is used to design the

Massey-Omura multiplier. It is well known [1] that there
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exists a self-dual normal basis in GF(2 m) if m is odd. This arti-

cle will show that the construction of the product function for

a self-dual normal basis is simpler than that for an arbitrary

normal basis. It also presents an algorithm to locate a self-dual

normal basis in GF(2 m) for odd m. Finally, a method to con-
struct the product function is developed.

II. Massey-Omura Finite Field Multiplier

The fundamental concept of Massey-Omura finite field mul-

tiplication [4] [5] [9] is based on the utilization of a normal
basis of the form {a, a2, a4, ..., ot2m-1). Multiplication in

the normal basis representation requires the same logic cir-

cuitry for any one product component as it does for any other

product component. Adjacent product-component circuits

differ only in their inputs, which are cyclically shifted versions
of one another.

Let {or, ot2 , ot4, °. o, @2m-1 } be a normal basis for GF(2m).

Any two elements y and z in GF(2 m) can be expressed as

where

Gore -2 = [(Ym - 1' YO' Yl' "'" Ym-2 ;

gra_l , Zo, Z1 , "°°,Zm_ 2)

601 = f(Y2'Y3 '.'''ym-I'yo'yl;

z2, z3,..., z_ a' Zo' z_)

w o = f(yl,y2, "",Ym_I,Yo;

z l, z_,...,z_l, Zo)

f(a O, ax, ...,am_l; bO, b 1, "", bin_l)

(4)

2 2 2m-1

y = yo _ +Y10_2 +y2c_ + ... +Ym_lOt

m-I
i

= Z Yi Or2

i=0

22 2m-1

= ZoOt +ZlOt2 +Z20t 4" *.° +Zm_lOt

rn-1

= Z ZiOt 2i

i=0

Let

CO =y°z

2 2 2 m-1
= (.O00t + t.,.)l Or2 + (_20t + "" " + t.Om_lO_

m-1

= E _Ok_2k
k=O

(a)

Then, as stated in [4] [5] [9],

wm-I = f(Yo'Yl 'Y2' "" "Ym-I ;

Zo,Zl,Z2, "',z_ l)

(2)

(3)

m-1 m-1

= E Z Pi/ai b" (4a)
i=0 j=O

with Pi/= 0 or 1. Therefore, the central problem in designing a
Massey-Omura multiplier is to construct the product function

f given in (4a). A product function can be constructed in such

a way that the coefficient p# ofaib 1 in (4a) is

= " -1)Pi] rr (0_ 2i ° Ot21 ° _ 2m (5)

where Tr(x) denotes the trace value of the element x in
GF(2 m ) and (% 3,2, ') '22 , "" °, ')'2m-1 ) is the dual basis to the

basis (or, 0_2, a22, ..., o12m-1) [9].

A simple and equivalent way to represent the product func-

tion f is by means of a Boolean matrix

m-1

fi =[Pii] ij=o (6)

where the i-] entry PO of _ is the coefficient ofa i b/given in
(5).

III. Properties of Boolean Matrix Generated
by a Self-Dual Normal Basis

A self-dual basis is a basis whose dual basis is itself. It is

known [1] that, if m is odd, GF(2 m) has a self-dual normal
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basis. Let {a, a 2 , 0/22 , °*', Ot2m-1 } be a self-dual normal basis,

that is, Tr(a 2i • a21) = 6i1 where 6i/= 0 for i ¢/" and 1 for
i = ]. From (5), the Boolean matrix associated with this self-
dual normal basis can be written as

where

m-1

: ;,;=o (7)

(7a)

Three properties of the Boolean matrix _ have been proved in

[9]. They are

Property 1

is symmetric, that is, a_ = p_.

Property 2

p.-_
/ 0ifi:_m -21 ifi=m-2

Property 3

1
m-1 | O, ]=Pm-1

y_ *= f# o
i=o 1, ]=m-1

In addition, there are two more properties for the Boolean

matrix generated by a self-dual normal basis.

Property 4

Proof:

i,m-I Pm-l,i _iO

p_
i,m-1 = P*-_,i

= Tr(ot2i.ot2 m-1 .or 2m-1)

= Tr(ot2i.ot 2m )

I= " = _iO"

Property 5

Pij = P(m-l+i-j)(m-j-2) = P(j-i-1)(m-i-2)

for i< j and O<_i,j <m-1

Proof:

Since Tr(o 0 = Tr(_2),

Also,

= Zr(ot2 [i+(m-l-i)l • Ot2 [ /+(m-l-i)]

• Or2 [(m-1)+(m-l-i)])

= Tr(ot2 m-I . or2 (m-l-i+j) • Or2 (2m-2-i))

= Tr(ot 2m-1 , or2 (/-i-1) °°t 2(m-2-i))

= Ptj-i-l)(m-2-i)

p_] = Tr(o_2 [i+(m-1-])l . or2 []+(m-l-])l

• Or2 [(m-1)+(m-l-])l)

= Zr(_2 (m-l+i-j)

I (m-l+i-/)

= Tr_ 2

• 0_2 m-1 . Or2 (2m-2-j))

• a2 m-1 . _2 (m-2-/))

= P_m-l+i-j)(m-j-2)

Property 4 implies that the components of the last column and
the last row of _ are all zeros except the first component as

shown in Fig. 1. Property 5 illustrates a triangular symmetric
structure as shown in Fig.1. This triangular symmetry is

described as follows.
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Since _ is symmetric with respect to the diagonal (Prop-

erty 1), it is sufficient to discuss only the upper-right triangle
of _. Ignoring the main diagonal and the last column, the

upper-right triangular portion of the matrix consists of [m/3]

equilateral triangles in the sense that the numbers of elements

on all of the three sides of each triangle are the same. Here,

[x] denotes the greatest integer which is smaller than or equal

to x. Let /x 1 denote the outer-most (largest) triangle, and A i

the ith outer-most (ith largest) triangle. The triangular symme-
tric structure is such that the sequences of the vectors count-

ing clockwise on three sides of the triangle Ai are identical.

Define this identical sequence by _i. As shown in Fig. 1,

2i = (at, bi, ci .... ) where ai, b i, c i .... E GF(2). The dimen-

sion of 2i is (m-3i). As the structure merges toward the
inner-most (smallest) triangle, one of the following three

possible patterns will happen.

IV. Locating a Self-Dual Normal Basis in
GF(2m) When m Is Odd

Theorem 26 of Chapter 4 of [1] shows that GF(2 m) has a
self-dual normal basis if m is odd. In this section, a method to

locate a self-dual normal basis for GF(2 m) when m is odd is

presented. Let (__) _ {_, c_2, a22, .... t_2m-1) be an arbitrary

normal basis and __} _ _, 32, 322 ..... [32rn-1) be a self-dual

normal basis in GF(2m). Then a can be expressed

• 2 2 2 m-I

a = bo/3 + blfl2 + b2fl + ... + bm_l[J (8)

Due to the fact that _ 2m =/3, one can obtain

(i) If m = 0 mod 3, then (_

(ii) Ifm=lmod3, then ©©
©

(iii) If rn = 2 mod 3, then

where au, b u E GF(2), and u = [m/3].

One advantage of using this particular Boolean matrix is

that its construction requires fewer trace computations. For

GF(2m), the number of trace computations required to con-
struct this Boolean matrix is

m 2 - 3m + 2
6 , ifm 4=0 mod 3; and

where

0t

Ot 2

0_2 2

o

0_2 m-1

b o

bm_ 1

bm -2

fl

_5

32 2

o

o

_2m--1

b 1 b 5 •..

b o b I ...

bm_ 1 b0 ...

Lbl b2 b 3 ...

(9)

bm_l_

b
m--2

bm-3 (9a)

b o

m 5 - 3m
-- +1, ifm=0mod3,

which is less than one-third of that required for a Boolean

matrix corresponding to an arbitrary normal basis as given in
[91.

is the transformation matrix from the basis __) to the basis

(ct}. Clearly, JR is invertible. Taking the transpose of (9) results
in

- ]Ic_ 55 ] = it_,_5,_=2, p-' _'T (10),Or 2, Ot ,...,Or 2m-'

.J
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Multiplying(9)by(10),onehas

ot

ot 2

o_22

_@2m- I

]
0t 0t2 0t22 . .. 0t 2ra-1]

2 ... _2m-l] _T (11)

Carrying out the multiplication of the column and row vec-

tors, and then taking the trace function Tr on both sides of
(1 1), it can be shown that

i,/=O

i,/=0

= ff_-T (12)

since Tr (/32 i+2/) = 6./.

To locate the self-dual normal basis __) from {_ct},B-of (9a)

needs to_ be solved from (12). Since Fi/(tx ) = El- T /_-1 (or)
where ]-1 = (/-1) mod m, in (12), it is sufficient to consider

only the equality between the first row of if(a) and the first
row of the product ofB'B r. Therefore,

2 2+ 2+..+b2m 1Tr(a 2) = bo + b 1 b2 . _

Tr(a 3) = bobm_ 1 +bib 0 + b2b 1 +...+brn_]bm_ 2

m-I

Tr(a2/*1)= Z bkbm-/+k
k=O

Tr(ot2m-l+l) = bob I + bib 2 + b2b 3 +... + bm_lb 0

(13)

Since (a_} is a normal basis, Tr(_) must be 1. Also, since bi E
GF(2), b_ = bi. Then the first equation of (13) becomes

1 = bo+b I +b2+...+bm_ 1.

This implies that the set of {bo, bl, b2 ..... bin-1 } must have
an odd number of l's.

Applying Lemma 11 of [9], that is, Tr(ot 2j+l ) = Tr(ot 2ra-j+l)

for 1 _< j < m/2, it can be seen that, ignoring the first equa-

tion, the first half of the remaining equations in (13) is identi-

cal to the second half of the equations in a reverse order. This

means that (13) has at most (m - 1)/2 + 1 = (m + 1)/2 linearly

independent equations which are

bo+bl +b2 +"'+bm-I = Foo(U) = I

m-I

E bkb_ = FO/(CO
k=O

for/ = 1,2,3 ..... (rn-1)/2

(14)

But, in equation (14), m unknowns (bo, bl, b2 ..... bm-I }

need to be found. Therefore, the solution is not unique.

Now, an algorithm to find a solution to (14) is demon-

strated by using a simple example of m = 7. In this case, (14)
becomes

bo+b 1 +b 2 +b 3 +b 4 +b s +b 6 = 1 = /700

(15a)

bob I +bib 2 + b2b 3 + bab 4 + b4b s + bsb 6 +b6b 0 = F01

(lSb)
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bob 2 + bib 3 + b2b 4 + b3b s + b4b 6 + bsb 0 + b6b 1

bob 3 + bib 4 + b2b 5 + b3b6 + b4b 0 + bsb I + b6b 2

= Fo2
(15c)

= Fo3

(lSd)

The purpose of the algorithm is to find a possible solution vec-

tor _b=_(bo, bl, b2, b3, b4, b s , b6), for a given vectort_(Foo,

Fol , Fo2 ,/703 ) under the condition that Foo = 1. Notice that
the left hand sides of equations (15b), (1 5c) and (15d) are the

sums of all possible products bibi--_ (i = 0, 1, 2 ..... 6) for

k = 1,2, and 3 respectively. Let no, n 1 , n2 , and n 3 be the num-
bers of l's to be added in (15a) (15b), (15c), and (15d),

respectively. That is, no is the number of l's in _b, and nk

(k = 1, 2, 3) is the number of i's such that bibi-_ = 1 where

i = 0, 1,2, 3, 4, 5, 6. Note that no must be odd. Since bibi'¥-k

E GF(2), it is clear that, when Fog = 0, k = 1,2, 3, nk must be

even (considering 0 is even too). On the other

hand, when Fok = 1, nk must be odd.

In this algorithm, bo is assumed to be always 1. Since the

first element /70o of t must be 1, eight possible patterns of
vector t need to be considered.

Case (i): t = (1,0, 0, 0)

As Fol = Fo2 =/703 = 0,n 1 ,n 2 and n3 must be even. Recog-

nize that the condition that bj = 0 for all j 4:0 can result in
n I = n2 = n3 = 0, and, consequently, satisfy the equalities of
(15b), (15c) and (15d). Hence, a possible solution b is (1,0,

0, 0,0,0,0).

Case (ii): _t = (1,0, 0, 1)

As F03 = 1,n 3 must be odd. Letn 3 = 1. From (15d),b 3 = 1

can at least satisfy the condition of n 3 = 1 (since bo = 1).
Then, a pattern of_b = (1, X, X, 1, X, X, X),where "X" indi-

cates an undecided value, can be temporarily set up. Since no
must be odd, there must be at least one, but not an even num-

ber of, j's for j 4:0 or 3 such that bj = 1. Let no be the mini-
mum, that is, let there be only one j(j 4:0 or 3) such that bj

= 1. Since Fol = Fo2 = 0, thisj must be chosen so that n 1 and

n2 are both even and n 3 = 1. In order to satisfy this condition,

this particular j must satisfy the condition that b[-_ bj = bjbjT-k
for all k. The only solution for this is that this j is located at

the center of a segment which is composed of odd consecutive

X's. Hence, b s = 1, that is, b = (1, X, X, 1, X, 1, X). Now,

letting X = 0 satisfies the condition that Fol = Fo2 = 0 and

Fo3 = 1. Therefore, a solution to (15) isb = (1,0, 0, 1,0, 1,0).

Case (iii): t = (1,0, 1,0)

Following the same rules discussed in Case (ii), a solution b

to (15) can be sequentially decided as

(1) b = (1, X, 1, X, X, X, X) because Fo2 = 1 ;

(2) b = (1,1, 1, X, X, X, X) because, as stated in Case (ii),
b requires an additional "1" to satisfy the condition of

no being odd, and, this additional "1" must be located
at the center of a segment of odd consecutive X's;

(3) LettingX = 0,b = (1, 1,1,0,0,0,0).

Case (iv): t = (1, 1,0, 0)

Again, a solution b can be sequentially decided as

(1) b = (1, 1, X, X, X, X, X) because Fol = 1 ;

(2) b = (1, 1, X, X, 1, X, X) because of the same reasons
stated in step (2) of Case (iii);

(3) LettingX =0, b =(1, 1,0,0, 1,0,0).

Case (v): t = (1,0, 1,1)

As in Case (ii), the first step is to recognize that Fo3 = 1.

This gives a pattern of b = (1, X, X, 1, X, X, X). Since the
number of elements in b is odd, the locations of l's must

divide the present b pattern into two segments of consecutive
X's. One segment has an even number of X's, while the other

has an odd number of X's. The second step is to recognize that

Fo2 = 1. As in Case (iii), a pattern of 1, X, 1 should exist inb.
Notice that pattern 1, X, 1 has an odd number of bits. In order

not to affect the equalities given in (15b), (15c) and (15d),

this pattern 1, X, 1 must be placed at the center of a segment
in b which has an odd number of consecutive X's. Therefore

b = (1, X, X, 1, 1, X, 1). Since no must be odd, letting no be
the minimum, the third step is to add an additional "1" inb.

Again, following the same argument described in Case (ii), this

additional "1" must be placed at the center of a segment with

odd consecutive X's, resulting in _b = (1, X, X, 1, 1, 1, 1).

Finally, letting X = 0, a solution b = (1,0, 0, 1,1,1,1) to (15)
can be obtained.

Case (vi): t = (1, 1,0, 1)

First, since Fo3 = 1, b = (1, X, X, 1, X, X, X). Next, since

Fol = 1, a pattern of 1, 1 should exist in _b"Similar to what
was described in Case (v)-'-_since there are an even number of

bits in pattern 1,__1.1,this pattern should be placed at the center
of a segment of even consecutive X's in b. Therefore, b be-

comes (1, 1, 1, 1, X, X, X). Finally, since no is odd, letting no

be the minim--'_m results in b = (1,1,1,1,0,_1,0).

Case (vii): t = (1,1,1,0)

Using the arguments given in Case (v) and Case (vi),_b can

be sequentially decided as

(1) _b= (1,X_ 1, X, X, X, X) because Fo2 = 1 ;

(2) b = (1,X, 1,X, 1, 1,X) becauseFol = 1;
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(3) _b=(1,1_1,X,1,1,X)becauseno is odd;

(4) Letting X = 0, b = (1,1,1,0, 1,1,0), finally•

Case (viii): t = (1, 1, 1,1)

Again,_b can be sequentially decided as

(1) b = (1, X_ X, 1, X, X, X) because Fo3 = 1 ;

(2) b = (1, X, X, 1, 1, X, 1) because Fo2 = 1 ;

(3) _b= (1, 1, 1, 1, 1, X, 1) because Fol = 1 ;

(4) _b=(1,1, 1,1, 1,1, 1),because no is odd.

For an arbitrary odd number m, the algorithm of solvin_
b _= (bo, bl, b2, ..., bin_l) to equation (14) for a given_t =

(Foo, Fol, " " ",Fo(m-1)/2) can be described as follows

(i) Setbj = 0for/ = 0,1,...,m-1.

Set k = (m - 1)/2.

Set ISTART = 0.

(ii) If Fok = 0, go to (iii).

Else,

(A) ifb 0 =.0, setb o = 1,bg = l andlSTART = k;

(B) ifb o = 1,

(a) iflSTART = odd,

(1) ifk = odd,

bOSTART_k)/2 = 1 and

b( = 1"ISTART+k)/2

(2) ifk = even,

blSTART+(m-ISTART--k)/2

bm...(m_ISTART...k)/2 = 1;

(b) if ISTART = even,

(1) ifk = odd,

blSTART+(m-ISTART-k)/2

bm.(m_ISTART_k)/2 = 1;

(2) ifk = even,

b(ISTART_k)/2 = 1 and

b(ISTART+k)/2 = 1.

= 1 and

= 1 and

(iii) Set k = k - 1

(iv) If k :_ 0, go to (ii).

(v) If ISTART = 0, bo = 1.

Else, (A) if ISTART = even, b(ISTART+I)/2 = 1 ;

(B) if ISTART = odd,b(m+ISTART)/2 = 1.

(vi) End.

Figure 2 illustrates a flow chart of this algorithm to solve equa-
tion (14) when m is odd. It should be pointed out that this

algorithm is not the only algorithm for solving b_. However,

this algorithm is the optimum in the sense that the number of
l's in b is minimum.

Since the matrix B- in (9) is formed by_b which depends on

only a according to the algorithm described, a self-dual normal
basis (3, 32, /322, "'" ,/32m-l) can be constructed from another

normal basis (a, a 2 , a 22 , • • - , a 2m-l) in such a way that

322 , !

• = _-1

Ot

O_2

0t2 2

0_2 rn -J

(16)

where/7 -1 is the inverse of B-

V. Construction of a Boolean Matrix from a
Self-Dual Normal Basis When m is Odd

For an arbitrary element 0 in GF(2 m) such that Tr(0) = 1.
A

Foj = Tr(02j+l) for/' = 1,2, ...,m - 1, can be calculated.
Following the algorithm described in the last section, a solu-

tion_b = (bo, bl , b2 , • • •, b,n_l ) to the equation (14) can be ob-
tained. Then, a matrix B can be constructed in the form of

(9a).

Theorem 1

If B is invertible, (0,02, 022, • • •, 02m-1 ) is a normal basis.

Proof:

Since B is invertible, _'-1 exists. It can be easily shown
that _--x must be of form that the row vectors in _-1 are the
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cyclically shifted versions of one another which is the form of

B_ Then, _-1 can be expressed as

_--1 =

' ' ' • • • b'bo bl b2 m -1

b' ' ' " • " b'
m -I bo bl m -2

b' b' ' • • • b'
m -2 m -1 bo m -3

t • • I

b 3 • bo

Let

m-I

[3 = E b'i O=i
i=0

and

fl = [/3,/32,fl22,/323,-.-,/32m-11.

Then

/3._Y: _--1 oT (17)

where

O0 = [0,02,022,023,...,02m-1].

Let us first prove that :fl, /32, /322, "",/32 m-l) is a normal

basis. A contradiction proof is used here.

2 22 2m -1 •

Suppose that (/3,/3,/3 ,.. •,/3 A ) are hnearly dependent,
there must exist a non-zero vector C = [Co, Cl, C2,... , Cre_l]
such that

C/_ T = 0

From (17),

C_-1 oT = 0

Since 0 is a normal basis, vector C/_ -1 must be an all-zero vec-
t t

tor. This implies that _0, bl, b2, • " " ,--bin-1 } are linearly
I

dependent where _bk is the kth row vector of/_-l. It con-

tradicts the fact that _-l is invertible. Therefore, (/3, /32,

/322, -.., /_2rn-1} is a normal basis. Since OT = _-/3T and

B'is invertible, it is clear that (0,02,022,... ,02m-I } is a nor-
mal basis.

Theorem 2

If B- is invertible, {fl, 132, /322, ...,/3=m-l} which is con-

structed by (17) is a self-dual normal basis.

Proof.-

From Theorem 1, (0, 02, 022, • • •, 02m-1 ) and {fl, /32, /322,

• . . , /32m-1} are both normal bases. Following the same proce-

dure of (9)(10) and (11) by replacing t_ by 0 arrives to

T(0) : _P-(/3)_-r

where/_(x) is an m X m matrix with entryFq(x) = Tr(x2i+2J),
i,] = 0, 1 ..... m - 1. Then,

#-_ P-(o)(_--_)r = P-6_)

Since _b is a solution of F--(O) = B fir, _-1 F(0) (_-l)r = I.
Therefore, if(/3) = I, that is _, /32, /322, • • • ,/32m-1) is a self-
dual normal basis.

Now, an algorithm of constructing a Boolean matrix for
a self-dual normal basis for GF(2 m) when m is odd can be
described as follows.

Starting with an arbitrary element 0 in GF(2m), one first

computes (Foo(0), Fol (0), F02(0), • • -, Fo,(m_l)/2 (0)). Going

through the procedure described in the last section, one can

obtain a solution b = (bo, bl, b2,. • • ,bin_l) to ecluation (14).
After forming a matrix B as shown in (9a), one checks whether

is invertible. If it is, (0, 02 , 022 , • • •, 02m-1) is a normal

basis. If it is not, try another 0 until the corresponding matrix

ff is invertible. From the normal basis (0,02, 022, • • • , 02m -1),
a self-dual normal basis (/3,/32,/322, . . .,/32m-1) can be formed

by (17). Finally applying Property 1, 2, 4 and 5 in section 3,
• = Tr(/32 i •/32J •/32 m-l) for/= 0, 1 •one can compute Pi/ , • ",

[m/3] - 1 andj:2i+ 1,2i+2,. - .,m-3-i, andthenset

up the Boolean matrix _ = [p_.]m-1 of structure given in
i,]=O

Fig. 1.

Figure 3 illustrates a flow chart of setting up the Boolean
matrix. Our initial goal is to determine whether (0, 02, 022,

.. • , 02m-1) is a normal basis. Theorems 7 and 8 of [9] show

two quick check rules to do this before solving the b. Notice

that Theorem 9 of [9] is not applicable here because m is

odd. Figures 4(a), (b) and (c) illustrate the Boolean matrices

obtained by using this algorithm for m = 9, 17 and 31, respec-

tively. [7] also presents the Boolean matrix for m = 127. Fig-

ure 5 shows the CPU time required on VAX-11/750 to con-
struct the Boolean matrix based on a self-dual normal basis
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of GF(2m). Compared to Fig. 5 of [9], it can be seen that,

for large m, the computation time required for a self-dual nor-

mal basis is reduced to about 1/3 of that for a regular normal

basis. For example, for m = 127, it takes only 16 minutes to
construct a. Boolean matrix versus 40 minutes indicated in

Fig. 5 of [9]. This is due to the fact that the number of
trace computations required in this algorithm is less than 1/3

of that required in the algorithm stated in [9]. When m is

small, the pre-matrix computation which includes the program
initial setup and locating the normal basis dominates the com-

puter time. Therefore, Fig. 5 doesn't show significant reduc-

tion on computer time when m is small.

In [5], it has been shown that the complexity of the VLSI

design of Massey-Omura multipliers depends on the numbers
of l's in Boolean matrix _. A matrix with fewer l's is more

desirable. Comparing our computer results in this article with

those in [9], it is observed that the number of l's in the

Boolean matrix generated by a self-dual normal basis is less

than that generated by an arbitrary normal basis.

VI. Conclusion

In this article, it has been shown that the Boolean matrix

obtained by a self-dual normal basis maintains a special sym-

metric structure so that the time required to construct it can

be reduced to 1/3 that required for an arbitrary normal basis.

To locate a self-dual normal basis in the field GF(2 m) has been

a challenging problem. This article has presented an algorithm
to locate a self-dual normal basis and then to construct a

Boolean matrix when m is odd.
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SET bj = 0 FOR) = 0, 1..... m~ 1
SET k = (m - 1)/2
SET ISTART = 0

|i °1

Fig. 1. Structure of a Boolean matrix corresponding to a self-dual
normal basis

_-_ b0= 1

YES IF

.=

bo= 1

bk = 1 IF
ISTART = k ISTART = 0?

NO NI_FN 0

m . ISTART = ODD

J
/"IF _" YES Y:

,_= ODD? . _ t _

.
b(ISTART- k)/2 = 1 I
b(ISTAR T + k)/2 = 1

I

tF

k = ODD?

b(ISTART + m - k)12 = 1 Ib(ISTART + m + k)/2 = 1

I

NO

b(m + ISTART)/2 = 1 ] ] b(ISTART+ 1)/2 = 1

Fig. 2. Flow chart of computing the vector b
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STARTING WITH ANY I
ELEMENT eIN GF(2 m) l

I

I"
COMPUTE Tr(01+2j)

iFORj=O,l,2....... 11[
1

CHECK IF Tr(0) = 0 OR 1

Tr(81+2j) = 1 FOR ALL
YES

j=0, 1,2,.. m-1
"' 2

1N°
FIND A VECTOR b BY THE
ALGORITHM GIVEN IN FIGURE
2 AND SET UP A MATRIX

BY EQUATION (9a)

1
1 ,S ,NVERTIBLE tN°

YES

I FORM SELF-DUAL NORMALBASlS{__}

ICOMPUTETr, 2' 2m-1,I

USE ANOTHER ELEMENT I

IN GF(2 m) J

Fig. 3. Algorithm of constructing the Boolean
matrix for a self-dual normal basis

(a)

:01

0 : 00

1 : 00

2:01

3:00

4: 1 10

5: 101

6: 101

7:000

8: 100

NUMBER OF

(b)
000

012

0 010

1 100

2 000

3 100

4 010

5 1 1 1

6 1 1 0

7 010

8 I 0 0

9 001

10 110

11 000

12 001

13 001

14 001

15 101

16 1 00

2345678

0011101

1010000

0101100

1011010

100010

100010

000000

111010

000000

1'slNBOOLEANMATRIX=29

00000001111111

34567890123456

10110101000011

01111001000000

00100010011110

00010110100100

00000111110110

00011001110110

10100011101000

00100100110010

11001001000100

11010001101010

01110110111000

11111011001000

01101001001000

00010011110000

11100100000010

01101010000110

00000000000000

NUMBER OF l's IN BOOLEAN MATRIX = 117

(c)

: 00000000001 1 1 1 1 1 1 1 1 1 22222222223

:0123456789012345678901234567890

0:01101

1:10100

2:11000

3:00000

4:10000

5:01101

6:11111

7:11010

8:10100

9:11000

10:10100

11:11110

12:11011

13:10010

14:01001

15:00111

16:01000

17:01101

18:00010

19:01011

20:01100

21:11011

22:11011

23:11111

24:00110

25:11000

26:00110

27:00110

28:10011

29:11010

01111111100000001110100111

11101011010110111110100010

11010110001010010011011000

01100011101001101111011110

11000001011010101110000100

00011011010001000011001110

00111111100101100011000010

01011011000101001000111110

11101101100110011101011010

11110011000001000010110110

01010001011010000100100110

11101000001011101010010010

11111100011010001011101110

01010000001000011100000000

10000101000011100000111100

00000111100010011000010100

01110000000010010010100000

00010111011101101111111100

11101010010010111101110100

01000010010011010100010100

00010000101101101100011110

00110011101011010101001110

00010100100011111011010010

11001011000110000101111100

11010001000011001110011010

00101101010111000010010000

00111010011011110111100000

10110001010010011011000110

10101101011011111010001010

11111111000000011101001110

30: 1000000000000000000000000000000

NUMBER OF l's IN BOOLEAN MATRIX = 453

Fig. 4. Boolean matrix (a) for GF(29), (b) for GF(217), and (c) for GF(2 31)
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102

101

I0-I

f
10-2 I
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I
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I
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I I
80 100

m

I
120 140

Fig. 5. CPU time required to construct Boolean matrix for GF(2 m)
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