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This tutorial article treats certain aspects of the description and measurement of

oscillator stability. Topics covered are time and frequency deviations, A llan variance, the

zero-crossing counter measurement technique, frequency drift removal, and the "three-

cornered hat. "

I. Deviations in Phase, Time, and Frequency

The purpose of this article is to define the Allan variance,

relate it to various kinds of disturbances in oscillators and

measurement systems, and to describe, from the point of

view of an analysis and software person, the frequency stabil-

ity measurement method used at the JPL Frequency Standards

Laboratory. This is an expanded version of a talk given in Oct

1983 to DSN operations. It outlines the JPL frequency stabil-

ity measurement methodology.

Let oscillators 1 and 2, both running at nominal frequency

v o, have the outputs

sin (2rtVot + 41 (t)), sin (2_'Vot + tb2(t))

where ¢l(t) and _b2(t ) are the phase deviations relative to fre-

quency u o. Suppose that both oscillators are used for driving

clocks. At true time t, the clock times tl, t 2 are defined by

27trot I = 27rVot + ¢1(0 (1)

2rtUot 2 = 27trot + ¢2(t) (2)

In other words, t i is the time at which the output of a perfect

oscillator, sin (21trot), would have the same total phase as
oscillator i at time t.

The relative phase and time deviations of the pair of oscil-

lators are defined by

_t) = ¢1( 0 - q_:(t)

x(t) = t I - t z

Subtracting (2) from (1) gives

The fractional frequency deviation is defined by

1 de

y(t) - 2rrv° dt
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Then

dx
y(t) = -E

x(t) =f y(t) at

The average fractional frequency deviation over the time

interval (t-r, t) is defined by

y(t,z) = 1Tft_r y(s) ds

_ x(t) - x(t - 7-)

ArX( t)

where A r is the backward first difference operator. We call 7,
the averaging time. When someone says that two oscillators

differ in frequency by 5 × 10 -14, say, he is most likely quot-
ing a value of y(t,r). To understand the quote, the value of

r must be known. Is it one second or one day?

Figure 1 shows plots of x(t) and y(t,7,) from a test of two

hydrogen masers, where 7,= 4094 s and both x aMY are sam-

pled once every 7-. The lower curve y is approximately the

derivative of the upper curve x. Notice that x = 0 at both end-

points. This is an artifact of the presentation; the mean y has
been subtracted off.

II. Allan Variance

The Allan variance was invented to solve the problem of

characterizing the RMS frequency deviations of a pair of oscil-

lators. Given time-deviation samples x(0), x(7,), .- -, x(mr,) over
the time T = mr, let

Yj = Y(/7,, 7-)

the average frequency between (j - 1)7, and jr. One could
compute the averages

m

(x)- 1
m+ 1 E x(jr,)

j=O

m

1

j=l

and the RMS deviations

XRM S = (x(jr,) - (x)) 2
j=O

I/: ]"_ 1 (.V/- (_))2YRMS = m

j=l

Often, however, these quantities tend to grow with T; more-

over, they may fail to be reproducible from one T-interval to

the next. (For example, if y- is a random walk, then the mean

and standard deviation off, MS are both proportional to T.)

For many types of oscillator phase deviations, the Allan

variance, denoted by Oy2(7,), avoids these problems while still
yielding a meaningful measure of frequency stability. To

define theoretical Allan variance from the preceding setup, we

must assume that x(jr,) is available for all non-negative inte-
gersj. Then, by definition,

m

1
@(r) = lim 2(m- 1) E (.g/-__,)2 (3)

m_ j=2

if the limit exists. In other words, Oy(r) is the RMS average of

the quantities (yj - Y-i-1)/V_" thus ay('r) measures the RMS
change in y(t,r) when t changes by r. Note that

Yj-Yj-1 = @EArX(Jr")- Ar x((j- 1)7,)]

1E )]= -- x(jr) - 2x((j - 1)r) + x((j -2)r
7,

where A2 is the backward second difference operator. The

quantity 02(7,) is called the Allan variance for the averaging

time 7-. It seems that Oy(r) (without the square) should be
called Allan deviation. In this writeup, it will be done so for

the sake of precision. In casual discussions, however, Oy(7,) is
called the Allan variance without confusing anyone.

The factor 2 (or x/_') is there for historical reasons. On the

other hand, if the two oscillators are judged to be of like qual-

ity, then the Allan deviation of the pair is sometimes divided
by X/_ to give the Allan deviation of the individual oscillators.

This is a different V_. Moreover, this procedure assumes that

the second 7,-differences of phase of the two oscillators are

201



orthogonal random processes. If linear frequency drift is

present, or if the two oscillators are subject to the same envi-
ronmental fluctuations, then this assumption is unrealistic,

at least for large r.

The usual estimator of o2(r), given x(t) for 0 _< t _< T -- mr,
is

m

1 )2
S2(r'm)- 2(m-1) E (V, - yj_,

/'=2

m

1 y_ [A2rx(/T)] 2
2r2(m- 1) i=2

(4)

Table 1 gives a numerical example, a fragment from an actual
test of two hydrogen masers. Elapsed time t is given in units of

ro = 256 s, and x(t) is given in units of 10 -14 s. From these
data, the following estimates can be calculated:

SY(r°'8) x/_r'--_ (872 + "'" + 72 1/2

= 2.92 X 10 -ls

= 10-14 I1 )1 1/2
Sy(2ro'4) X/_'2r ° ( 1252 + 562 + 372

= 1.13 X 10-is

10 -14

Sy(3,ro,2 ) - .V_-3_.o
91

= 8.37 X 10 -16

There are other estimators of Oy(r). The RMS average of
the second differences of x can include values of A2x(t) for t

not a multiple of r. In the last example, for r = 3z o, the values

A2x(t), t = 6, 7, 8, can be used for computing the estimate

1° 4 ,1 = 7.48 X 10 -16
x/_3ro (912 + 872 + 632 1/2

Is this a better estimate than Sy(3"r O,2)? If so, then in what
sense is it better? This subject is controversial (Refs. 5, 6,
and 8). 1

1Also, D. Percival, letter to J. Barnes, Aug. 31, 1982.

Figure 2 shows Sy(r, m) ("sigma") versus r for the same
test that yielded Fig. 1.

A. Naive Error Estimate

If, in the last sum of (4), the A2X(/r) were independent,
zero-mean Gaussian random variables with the same variance,

then S2(r,m) would be proportional to a ×2 variable with
m - 1 degrees of freedom. The assumptions of independence
and zero mean are almost never realistic. Not knowing the

true situation, however, one usually estimates the standard

deviation of S2v(r, m) by the naive formula S2(r, m)e, where
e = x/2/(m - 1). Then

IS(r, m)Vq-e,S,(r,m)l_/i--g-'e] (5)

is presented as the roughest sort of "one-sigma" error bar for

Sy(r, m). If drift is removed (Section IV), then e = X,/_-(m - 2)
is used. Figures 2 and 6 show the intervals (5) and also give

m - 1, the "number of samples."

Don't use (5) unless m >/4; even then, don't take it seri-

ously. Naturally, if you know the properties of the process

x(t) in advance, you can compute more accurate variance esti-
mators and confidence intervals (Refs. 2, 3, 5, 6, 7, and 8). 1

But if you did know all this, you wouldn't be testing the

oscillators in the first place. In any case, make sure that the
user of the results knows the number of samples.

B. Deterministic Examples

The phase fluctuations of oscillators can often be modelled

as a simple nonrandom function of time, plus a random com-

ponent. Therefore, it is useful to know the effect of certain

deterministic phase functions on Allan variance.

(i) Constant phase and frequency offsets:

x(t) = a0 + a I t

Here, A_x(t) = 0, so o_,(r) = 0 for all r. Such constant
offsets have no effect on the Allan variance, which is

non-zero only if the frequency difference of the two

oscillators is changing with time.

(ii) Linear frequency drift:

1 2

x(t) = Tct (soy(t) = ct)

In this case A2rx(t ) = c7 "2 , and

1

Oy(r) =_ Iclr 2

Iclr
=-- (6)

V7
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(iii)

A linear frequency drift causes the Allan deviation

to be proportional to r. Section IV shows one way
of estimating the drift and removing it from the
measurements.

Higher powers of t. If n/> 3 and x(t) = ct n , then

A_x(t) = cn(n - 1)r2t n-2 + terms of lower degree

Since this grows like a positive power of t, the Allan

variance does not exist. (The limit in (3) is +*_.)

(iv) A single frequency spike. This is the same as a step in

phase or time. Suppose that x(t) jumps by an amount

X 0 during a measurement of duration T. Given r = Tim

there is an index k such that A rx(kr) =X o and the
other A r x(jr) are zero. Then

A2x(kt) = X o, A2rX((k + 1)t) = -X o

and the rest are zero. It follows from (4) that

2

X o

S2(r, m) - r(T- r)

Thus, for r << T, the estimated Allan variance is

approximately proportional to 1/r. A single frequency

spike mimics white frequency noise (see below). This
is appropriate, since a Poisson train of spikes is a form
of white noise.

(v) Periodic disturbances. These can be caused by daily

temperature variations, periodic weather fluctuations,

problems with the measurement system, or even prob-
lems with the oscillators themselves. Their effect on

Allan variance measurements can be bizarre. For exam-

ple, let

x(t) = X o cos (2rrvt + 0)

Some computation yields

Oy(7) =

iX01 /V_-Icos 0 I, if 2 vr = integersin 2 (troT) • /
1, otherwise

This is the theoretical Allan deviation (passing to the

limit in (4)). For 0 = 0, this function looks like Fig. 3.

If your Allan deviation plot has a lot of wiggles or

looks like a staircase, inspect your raw x or V data for
periodic contamination.

C. The Classical Random Clock Noise Model

This is a combination of five "power-law" random proc-

esses, each of which contributes its signature to the Allan

variance. The model is specified by the one-sided spectral den-

sity Sy(f) of the fractional frequency y(t):

Sy(f) = h2f2 + hi f+ h 0 + h 1f-1 + h_2f-2

= E ha f°t
(R=_2

Table 2 gives the Allan variances of the five components of
the model (Ref. 1).

For example, if one sees Oy(r) proportional to 1/x/r"over
two decades or more, one usually interprets this as the effect

of white frequency noise. You had better eyeball the x or

data versus time to make sure that the 1/x/t-'is not caused

by a single monster phase jump (see item (iv) above). The

inference of a model from Oy(r) is unreliable without some
common-sense checks.

For white phase and flicker phase, the @(r) formulas are
approximations that require 2zrfhr >> 1. Moreover, the white
phase formula can be extended to the case of a stationary

time deviation process x(t) having an autocovariance function

Rx(r ) = Ex(t)x(t + r). Let 02 = Rx(O), the time variance. If

there is a r 0 such that IRx(r)i <<Rx(0 ) for r ) %, then

3(l 2

@(r) _ x r i> ro (7)
72 '

III. Zero-Crossing Counter Technique

Figure 4 shows how the frequency and timing groups in

the Communications Systems Research Section measure the

time deviation x(t) of two oscillators. The oscillators are off-

set in frequency by Vb, which, in the present setup, is at most

1 Hz. Oscillator 2 runs at the higher frequency. If oscillators 1

and 2 have phases ¢1 and _2, then the beat-note signal is

sin (2nvbt - 6p(t))

where _b(t) = _b1(t) - _b2(t). The zero-crossing detector triggers

the counter at the beat-note upcrossing times to, tl, t2, "--.

The counter, running continuously at frequency vc (1 MHz in
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the present setup), records discrete approximations t 0, t_,

t_, "-- for further digital processing. The quantization errors

tf- ti will be dealt with later.

Let rb = Hub, the nominal beat period. Then ti - ti_ x _ %.

Note that rb is not precisely defined by the data. It could be

t 1 - to, or the average of all the ti - t]_l over the duration of

the test. Changing r b also changes _b(t), but only by const • t,
so that frequency stability is not changed.

The time deviation of the beat note is

_(t)_ Vo $(t)_ Vo

xb(t ) - 2try b vb 2try ° vb x(t)

where x(t) is the time deviation of the oscillator pair. (Note

the sign reversal.) Since the factor Vo/V b is large, typically
106 to 10 8 , the fluctuations of the oscillators are magnified

so that they can be measured. The Allan deviation of the oscil-

lators is vb/v o times the Allan deviation of the beat note.

The computation of the Allan variance of the beat note is

not totally straightforward. By definition, the ]th upcrossing

t/ occurs when the total phase of the beat note is 2hi, i.e.,

27rvbt/ - _b(t.) = 2rq"

At time t! the time deviation of the beat note is

*(9
xb(_) - 2try b - jr b - t., ] = O, 1, 2, ""

(another sign reversal), and hence the time deviation of the
oscillators is

Now suppose that the aim is to measure oy (r) for r = r%,
r a positive integer. This could be done if we had the sequence

X(to), x(t o + r), x(t o + 2r), "'" (8)

What we do have is the sequence

X(to), x(tr), x(qr), ... (9)

which is x at times that are not exactly spaced by r. This is all

right as long as the periods tit -t(]_l)r differ from z by at
most 1%, say. In other words, the fractional frequency stabil-

ity of the beat note must be no worse than 1%. The beat note

itself must be a reasonably good clock, but not so good that its
fluctuations are hidden by counter quantization. In most of

our tests, this stability is 10 -4 or better. There was one test,

however, in which the beat periods tj - tj_ 1 fluctuated by a
factor of two or more. In this situation, the Allan variance esti-

mate given below is invalid. It is thought, however, that there

might be a more sophisticated algorithm that would still be

able to estimate Allan variance for r >> r b.

Since the second differences ofj are zero, we have

Arax(t.r) = v.__b_b A2 tjr
v0 r

p
= b

V7 (tlr - 2t(l_l)r + t(i_2) r)

Using this in (4) in place of A2rx(jr ) gives the Allan variance
estimate

2

k[,,] =S2y(g,m) - vb 1 12 2r 2 m 1 2r J
P0 j=2

where r = rr o and the duration of the test is mr. Look again
at the numerical example in Section II. The x(t) column of

Table 1 actually gives tf_ in microseconds (r = 256,] = 0 to 8,

% = 1 s) with the gross linear part jr% already subtracted off.
Since % = 1 Hz, vo = 10 a Hz, the scale factor is 10 -6 %/%
= 10-14.

Quantization Error. Let the counter frequency be vc. (Ours

is 1 MHz.) My model for the recorded time t� of the ]th up-

crossing t/is

t i' = t.+q/

where t]' is a multiple of 1/Vc, and qi' the quantization error,

satisfies 0 _< q/< 1/%. As an approximation, assume that the

processes t/and q/are uncorrelated, and that q! is a process of
independent, uniform random variables. This approximation

also yields Sheppard's second-moment correction in statistics.

Then the q/alone contribute an Allan variance

(This follows from (7).) For example, if vo = 5 MHz, vt, = 1 Hz,

vc = 1 MHz, then oq(r) = 10-13/r. One should subtract o_(r)

from the measured @(r) (from t/') to get the true oF(r ) (from

ti). In other words, o_(z) contributes to the measurement-
system noise floor.
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IV. Drift Removal

During a long test of a pair of hydrogen masers, it is often

apparent that the frequency deviation y(t) appears to be dom-

inated by a linear component, which also causes Oy(r) to
increase like r for large r, thus masking the effect of the ran-

dom fluctuations. See Fig. 5 and the upper curve of Fig. 6.
The model is

1 2

x(t) = ao +alt+_ct +Xo(t)

or

dx o

y(t) = a I + ct + d--'[-

where c is the frequency drift rate (Af/f per second) and

Xo(t ) is a mean-zero process. The constants ao, a1 are irrele-

vant for a frequency stability study. Let o_(r), O_o(r) be the

Allan variances of x(t), xo(t ). We would like to estimate c and

to use the estimate F to extract an estimate of o_,0(r ), the
Allan variance of the underlying fluctuations.

A. Estimating _ From x(t), 0 <- t <- T

Assume a sample time of %. The F estimators given below
are all unbiased.

Method 0. Least-squares quadratic fit to x(t):

_(t) = ao + a'l t +lFot2
2

where a'o, a'l, Fo are chosen to minimize Y_[_(t) - x(t)] 2. This
method is optimal (minimal variance) in the presence of white

phase noise.

Method 1. Least-squares linear fit to 7(t, ro):

_(t) = fi'l + F1 t

where a'l, _'1 are chosen to mi.nimize E [_(t) -y(t,ro) ] 2. This

method is optimal in the presence of white frequency noise.

Method 2. Mixed second difference of phase. This is the one

that has been used here for tests of frequency standards (Refs.

4 and 7). No one else is thought to have used it. So far, no

complaints have been received. Let

Y(T,r c) - Y(%,%)

T-T
¢

In other words, drift rate equals average frequency at the end

of the run, minus average frequency at the beginning of the

run, divided by the time span between the midpoints of the

averaging intervals [0, re] and [T- rc,T]. Take

T
7 --
c 6.29

a value that minimizes the variance of _'2 in the presence of
flicker-frequency noise. This value is not critical. In terms of

x(t),

x(T) - x(T- re) - X(rc) + x(O)

"c2 = rc(T - rc ) (10)

so that only four values ofx(t) are needed.

This estimator, although suboptimal for all the classical
noises, performs well in the presence of white, flicker, and ran-

dom walk frequency noises. If Xo(t ) is random walk fre-

quency, then the standard deviation of_ 2 is

°Y°(rc) (11)
o(_'2) = 4.6 T

and this formula is pessimistic for white and flicker frequency.

Note that you have to remove drift in order to estimate

Oyo(rc); see (13) below.

B. Removing Drift

Suppose that some unbiased estimate _is obtained, perhaps

one of the foregoing, perhaps some other. An estimate of the

residual Xo(t ) is

_o(t) = x(t) -_ct(t- T)

See Fig. 7 for the effect of this (F = _2) on the data of Fig. 5.
Then

A2"_o(t ) = A_x(t)- Ft 2

is used in the estimate

S_,o(r,m) I_ _1 _-_IA2,, . ] 22r2 m 1 rXo(lr)
/'=2

for O_o(r ). Expanding the square gives

T 2 _.2

S2yo(r,m ) = S2(r,m)--f c2r +-_- (Cr-_') 2 (12)

205



where

C
T

_- _(13 - x(r- _) - x(O + x(O)
r(T- r)

and T = mr. If_= _'2, then

T 2

S_o(rc,6 ) = S_(rc,6) - c^2-_-c 2 (13)

is used for estimating o20(%) , needed in (11). The lower

curve in Fig. 6 is Syo(r,m), the upper curve is Sy(r,m), and
the straight line is (6) with c = _'2.

CAUTION

If _"is based on the test data x(t) (0 <_ t <_ T), T = mr,

m is small (_<5, say), and random walk frequency noise

dominates Xo(t), then S_o(r, m) severely underestimates
O_o(r ) on the average, and has a larger variance than

Sy(r,m). Ifc - c2, the bias ofSy 0 Is gwen by Ref. 7.

m 10 7 5 4 3 2

Bias -16% -24% -34% -43% -59% -89%

The error bars in Fig. 6 are the naive ones, and do not

reflect these biases. The lesson here is to use a long-term

estimate of c if possible. For example, cavity retuning of

a hydrogen maser gives an independent measurement of
frequency drift.

V. Three-Cornered Hat

The previous material has been about the relative stability
of a pair of oscillators. If one has a triplet of oscillators, one

may be able to estimate the stability of each one individu-

ally by using the three pair-comparisons. The setup, as shown

in Fig. 8, has oscillators A, B, C, and pair-channels 1, 2, 3.

We measure the pair Allan variances o_(r), o_(r), o_(r) and

would like to compute o_(r), og(r), @(r) for the individual
oscillators.

Assumptions

(1) The phase fluctuations of the three oscillators are
independent.

(2) Relative linear frequency drift is negligible or removed.

In other words, the second differences of x A , xB, x c
have mean zero.

If the assumptions are satisfied, then, for a fixed r, the

processes At2XA ' /X2XB ' A2 XC are orthogonal. Therefore,

2 2 2

O 1 = O'B +O" C

2 2 + 2
0 2 = tl C 0_

2 2 2

03 = %+%

(14)

and so

2 1 2 _o21)oA = -_-(0 2 +0 2

2 1 (o23 2 o_) (15)OB = _- +O 1

2 1(o2 2 2)O C =-_" +02-0

Figure 8 shows the geometric interpretation.

Difficulties

(1) Since frequency standards are sensitive to changes in

the environment (temperature, pressure, humidity,

magnetic field), it seems that frequency standards in

the same room must violate assumption t for long-term
fluctuations, say, for 1000 s or more.

(2) The pair-channel 02(r) values are not available, just
estimates such as S2(r,m). When estimates are substi-

tuted for the 02 values in the right side of (15), it often

happens that some oscillator 02 comes out negative.
One interpretation of this is that a confidence interval

for that o goes all the way down to zero. For example,

if S 2 > S 2 + S], then the 02 estimate is negative. (If

a triangle has sides S 1 , S 2, Sa, then the angle between

S 2 and S a is obtuse.) If the stronger inequality S 1 > S 2

+ S 3 holds, then something is wrong with the measure-

ments. (There is no triangle with sides $1, $2, S 3.)
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Table 1. Data from a stability test of two hydrogen masers

t x(t) A lX(t) A2X(t) Z_2x(t ) A2X(t) Aax(t ) A23x(t )

0 0

1 658 658

2 1229 571 -87 1229

3 1701 472 -99

4 2333 632 160 1104

5 2991 658 26

6 3493 502 -156 1160

7 4095 602 100

8 4690 595 -7 1197

1701

-125 1675

1762

56 1792

1762

37 1699

91

87

-63

Table 2. Spectral density and Allan variance of the components

of the classical clock noise model

a Name Sy(f) O2_v(r)

3

2 White phase h2f2' f< fh h2fh 4n2r2

3

1 Flicker phase h 1 f' f < fh h 1 -- In (8.88 fhr)
4n2r 2

0 White frequency

-1 Flicker frequency

-2 Random walk

frequency

1

%, Ih : +.. ho

h lf-l, fh=+W h_lln4

2n2r

h-2f-2' fh=+'* h-2 3
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Fig. 1. x and _ from a test of hydrogen masers
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Fig. 2. Estimated Allan deviation of a pair of hydrogen masers
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Fig. 3, Allan deviation for x(t) = cos (2_rvt)
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Fig. 4. Frequency stability test setup
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Fig. 5. x and _'before drift removal
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Fig. 6. Estimated Allan deviation before and after drift removal
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Fig. 7. x and _ after drift removal
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Fig. 8. Three-cornered hat
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