## NASA Technical Memorandum 89105

FURTHER GENERALIZATION OF AN EQUIVALENT PLATE REPRESENTATION FOR AIRCRAFT STRUCTURAL ANALYSIS<br>(NASA-TM-89105) EURTEER GENEEALI2ATION CF

Gary L. Giles

February 1987

National Aeronautics and Space Administration

Gary L. Giles<br>NASA Langley Research Center, Hampton, Virginia

## Abstract

 to provide an equivalent plate representation for aircraft structural analysis are described. Previous work provided an equivalent plate analysis formulation that is capable of modeling aircraft wing structures with a general planform such as cranked wing boxes. However, the modeling is restricted to representing wing boxes having symmetric cross sections. Further developments, which are described in this paper, allow modeling of wing cross sections having asymmetries that can arise from airfoil camber or from thicknesses being different in the upper and lower cover skins. An implementation of thermal loadings, which are described as temperature distributions over the planform of the cover skins, has been included. Spring supports have been added to provide for a more general set of boundary conditions. Numerical results are presented to assess the effect of wing camber on the static and dynamic response of an example wing structure under pressure and thermal loading. These results are compared with results from a rinite element analysis program to indicate how well a cambered wing box can be represented with an equivalent plate formulation.
## Nomenclature

| $a, b, c, e, t, b$ | -Planform dimensions (see Fig. 3) |
| :---: | :---: |
| $A_{i}, B_{j}, C_{k}$ | Coefficients of polynomial |
|  | displacement functions for $U, V$, and $W$ components, respectively |
| n | -Wing box depth |
| $K_{i j}$ | -Stiffness submatrix for i, j |
|  | displacement components |
| $P_{u}, P_{v}, P_{w}$ | -Load vectors corresponding to U,V,W deformations |
| $Q^{k}$ | ```-Lamina stiffness matrix for k layer``` |
| $S_{1 j}$ | -Components of lamina compliance matrix (see eqn.(6)) |
| $t$ | =Thickness of cover skin layer |
| T | -Temperature |
| U,V,W | -Displacement functions in the $x, y, z$ directions, respectively |
| $x, y$ | =Global streamwise and spanwise coordinates, respectively |
| $X_{i}, Y_{i}$ | - Polynomials in $x$ and $y$ for defining |
| zc | -Location of mid-camber surface |

[^0]| $a_{x}, a_{y}, a_{x y}$ | -Thermal coefficients of expansion in $x-y$ coordinates |
| :---: | :---: |
| $a_{1}, a_{2}$ | -Thermal coefficients of expansion along orthotropic material axes |
| $\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{x y}$ | -Total strains in $x-y$ coordinates |
| $\varepsilon_{1}{ }^{\prime}, \varepsilon_{2}{ }^{\prime}, \varepsilon_{12}$, | -Stress induced strains along orthotropic material axes |
| $\varepsilon_{1}{ }^{\prime \prime}, \varepsilon_{2}{ }^{\prime \prime}, \varepsilon_{12}{ }^{\prime \prime}$ | -Temperature induced strains along orthotropic material axes |
| $\xi, \eta$ | -Local nondimensional streamwise and spanwise coordinates, respectively |
| $\Omega$ | -Function used in surface fitting procedure (see eqn.(15)) |
| II | =Potential energy |
| ${ }^{0}{ }^{\prime}{ }^{0} y,{ }^{0} \mathrm{xy}$ | -Stresses in $x-y$ coordinates |
| $\theta$ | -Orientation of orthotropic material axes (see Fig. 1b) |
| $\dagger$ | -Parameter to define magnitude of wing camber |

## Introduction

Simplified beam or plate models of aircraft wing structures are often used for analysis during early preliminary design. ${ }^{1}$ For example, an equivalent plate model of the wing structure is used in the TSO (Aeroelastic Talloring and Structural Optimization) computer program. ${ }^{2,3}$ This program has had widespread use for aeroelastic talloring of composite wings. 4 However, the structural analysis formulation used in TSO is limited to trapezoidal planforms.

Recently, a new equivilent plate analysis formulation has been developed with the capability to model aircraft composite wing structures with general planform geometry such as cranked wing boxes. ${ }^{5}$ This formulation contains only bending terms in the expression of the equivalent plate energy. Therefore, the modeling is restricted to representing wing boxes having cross sections that are symmetric about a midplane. Also, all applied loads, such as aerodynamic pressures, must act normal to this midplane.

The present paper describes a further generalization of the equivalent plate representation. This extension allows modeling of unsymmetric wing cross sections which can arise from alrfoil camber or from having different thicknesses in the upper and lower cover skins. This capability is included in the formulation by adding stretching terms to the deformation of the reference surface which does not have to be located at the midplane of the wing. The addition of stretching deformations in the reference surface provides fully-coupled bending-stretching behavior of a composite plate to be represented.

Inplane loads can also be applied in this generalized formulation. An implementation of thermal loadings, which are described as temperature distributions over the planform of the cover skins, has been included. Spring supports have been added to provide for a more general set of boundary conditions.

The paper will include a description of the analytical formulation along. with an example to demonstrate the additional features. Results will be presented to assess the effect of wing camber on the static and dynamic response of an example wing structure under pressure and thermal loading. These results will be compared with corresponding results from a finite element analysis program to indicate how well a cambered wing box can be represented with a plat plate formulation.

It is assumed that the reader of this paper is ramiliar with reference 5 which contains a description of the basic method. The material contalned in the present paper will pocus on providing a description of extensions to the previous work and will repeat only a minimal amount of information contained in reference 5 .

## Analytical Modeling

The wing box structure is represented as an equivalent plate in this formulation. Planform geometry of this equivalent plate is defined by multiple trapezoidal segments as illustrated by the two-segment box in Figure 1 a . The global cartesian coordinate system has the $x$-axis in the streamwise direction and the $y$-axis in the spanwise direction. A separate local coordinate system is associated with each segment. These local coordinates are nondimens ionalized such that $\xi$ refers to a fraction of the local chord and $n$ refers to a fraction of the span for a given segment as indicated in Figure 1 b . The subscripts on the $\xi$ and $n$ coordinates, shown in Figure 1 to refer to a particular segment, are omitted in the remainder of this paper since the development of the analysis method is described for a typlcal segment. The orthotroplc material axes, denoted 1 and 2, are also shown in Figure 1 b for a typical layer in the cover skin.

The cross-sectional view of a typlcal segment in Figure 2 lllustrates the analytical modeling of the wing box structure. The location of the mid-camber surface of the wing is defined as the distance, $z c$, from a user specified reference plane. Thls distance varies over the planform of each segment and is expressed as a polynomial in the global coordinates $x$ and $y$.

$$
\begin{equation*}
z c(x, y)=z_{00}+z_{10} x+z_{20} x^{2}+z_{01} y+\ldots+z_{m n} x^{m} y^{n} \tag{1}
\end{equation*}
$$

The coefficients $z_{m n}$ are constants which are defined by the analyst for each segment. Similarly, the depth of the structural box, which also varies over the planform, is defined by the analyst again in polynomial form.

$$
\begin{equation*}
h(x, y)=h_{00}+h_{10} x+h_{20} x^{2}+h_{01} y+\ldots+h_{m n} x^{m} y^{n} \tag{2}
\end{equation*}
$$

The cover skins consist of orthotropic layers
with the thickness of each layer being defined independently also in polynomial form

$$
\begin{equation*}
t_{k}(x, y)=t_{00}+t_{10} x+t_{20} x^{2}+t_{01} y+\ldots+t_{m n} x^{m} y^{n} \tag{3}
\end{equation*}
$$

The properties of the layers can be defined to represent wing skins which are stiffened panels or composite laminates. Orientation of the stiffness properties and corresponding thickness, are specifled for each layer and the orientations and thicknesses can be different in different planform segments. In the present
implementation, the thickness of a layer in the lower skin is specified as a factor times the thickness of the corresponding layer in the upper skin. This simplification is implemented to reduce the number of variables which must be considered in a design application of this procedure. The exponents of the polynomlal terms, $m$ and $n$, are not necessarily the same for equations (1), (2), and (3). These exponents are specifled by the analyst and values of the 4 th power have been found sufficient for representing a fairly general class of wing box geometry.

New options have been added for modeling the volume between the covers. This volume can be (a) considered empty to represent a dry wing, (b) used to represent fuel by assigning a puel density, or (c) specified as solid structure by giving material stiffness properties. Option (c). is provided to analyze wind tunnel models for conditions where aeroelastic effects may be important. Although not shown in Figure 2, rib and spar caps can be represented as axial members and concentrated masses can be defined for vibration analysis as described in reference 5. Thermal loading is included for static analysis along with concentrated forces and distributed pressure loads. Thermal loads are specified as temperature distributions over the planform of the cover skins. The temperature is assumed constant through the thicknesses of all layers making up the skin. In the present procedure, materlal properties in the skins are not considered to be a function of temperature.

## Energy Expression for Plates

An expression for the strain energy of a plate segment is needed for the Ritz solution procedure that is used. This expression is developed in terms of bending and stretching of the reference plane shown in Figure 2. The Kirchhoff assumption is made that lines normal to the reference plane remain stralght and normal under deformations of the equivalent plate. This condition is analogous to the assumption that cross sections of a beam remain plane and normal to the centroidal axis in beam theory. The deformations in the equivalent plate are given as

$$
\begin{aligned}
& U=U_{0}-z W_{1} x \\
& v=v_{0}-z W_{1} y \\
& W=W
\end{aligned}
$$

where $U_{0}$ and $V_{0}$ refer to stretching of the
reference surface in the $x$ and $y$ directions at $\mathbf{z = 0}$, and $W$ is a deformation normal to the surface caused by bending. Corresponding strains in the $x$ and $y$ directions are given by


In order to include thermal loading, the total strain, $\varepsilon$, is separated into the sum or stress-induced components, $\varepsilon$ ', and temperatureinduced components, $E^{\prime \prime}$ as in reference 6 . These strains can be expressed for each layer in the cover skins in terms of orthotropic material properties along the axes 1 and 2 as

$$
\left\{\begin{array}{l}
\varepsilon_{1}  \tag{6}\\
\varepsilon_{2} \\
\varepsilon_{12}
\end{array}\right\}=\left[\begin{array}{lll}
S_{11} & S_{12} & 0 \\
S_{12} & S_{22} & 0 \\
0 & 0 & S_{66}
\end{array}\right]\left\{\begin{array}{c}
o_{1} \\
o_{2} \\
0_{12}
\end{array}\right\}+\left\{\begin{array}{c}
a_{1} \Delta T \\
a_{2} \Delta T \\
0
\end{array}\right\}
$$

where the first and second set of terms in the summation are $\varepsilon^{\prime}$ and $\varepsilon^{\prime \prime}$ respectively. The stresses and stress-induced strains in each lamina are transformed to the global ( $x, y$ ) coordinate system and used in the expression for strain energy as

$$
\begin{equation*}
\Pi=1 / 2 \int_{\operatorname{vol}}\left(\sigma_{x} \varepsilon_{x}{ }^{\prime}+o_{y^{\prime}} \varepsilon^{\prime}{ }^{\prime}+o_{x y} \varepsilon_{x y}{ }^{\prime}\right) d V \tag{7}
\end{equation*}
$$

This energy expression can be written in terms of total strains as the sum of two parts $\Pi=\Pi_{1}+$ $\Pi_{2}$.

$$
\begin{align*}
& \pi_{1}=1 / 2 S_{v o l}\{\varepsilon\}^{T}\left[Q^{k}\right]\{\varepsilon\} d V  \tag{8a}\\
& \Pi_{2}=-1 / 2 S_{v O 1}\{\alpha\}^{T}\left[Q^{k}\right]\{\varepsilon\} d V \tag{8b}
\end{align*}
$$

where $\{\varepsilon\}^{T}=\left\{\varepsilon_{x}{ }^{\varepsilon_{y}}{ }^{\varepsilon_{x y}}\right\}$ are total strains,
$\{\alpha\}^{T}=\left\{\alpha_{x} \alpha_{y} \alpha_{x y}\right\}$ are "effective"
thermal coefficients as discussed in reference 7 , and $\left[Q^{k}\right]$ is a lamina stiffness matrix.

Equation (8a) gives the strain energy of the plate and equation ( 8 b ) is the potential energy of the thermal loading. When the strain energy of the plate from equation (8a) is expanded in terms of the reference surface displacements in equation (5), a total of 29 terms result as given in reference 8 . Note that for bending alone there are only 6 terms in the energy expression as given in reference 5 . Therefore, the addition of the stretching deformations to handle cambered wing boxes requires considerable additional computation.

## Analysis Procedure

The Ritz method is used to obtain an approximately stationary solution to the variational condition on the energy of the structure and applied loads. In this application of the Ritz approach, each component of the deformation of the reference surface is assumed to be the sum of contributions from sets of specified displacement functions

$$
\begin{align*}
& U=\left\{A_{i} X(x)_{i} Y(y)_{i}\right. \\
& V=\sum_{j} X(x)_{j} Y(y)_{j}  \tag{9}\\
& W=\sum_{k} C_{k} X(x)_{k} Y(y)_{k}
\end{align*}
$$

As in reference 5, these displacement functions are specifled as products of terms from a power series in the $x$-direction with terms from a power serles in the $y$-direction. Different sets of functions can be used for the $U, V$, and $W$ components of the deformation.

For static analysis, the Ritz procedure as described in reference 5 produces a system of simultaneous equations which can be solved for the unknown coefficients in equation (9) to minimize the total energy expression. These equations can be written in partitioned matrix form as

$$
\left[\begin{array}{c:c:c}
K_{u u} & K_{u v} & K_{u w}  \tag{10}\\
\hdashline K_{u v} & K_{v v} & K_{v w} \\
\hdashline K_{u w} & K_{v w} & K_{w w}
\end{array}\right]\left\{\begin{array}{c}
A \\
\hdashline- \\
B \\
\hdashline
\end{array}\right\}=\left\{\begin{array}{c}
P_{u} \\
\hdashline P_{v} \\
\hdashline \\
P_{w}
\end{array}\right\}
$$

These equations represent the fully-coupled bending-stretching behavior of a composite plate. The evaluation of the terms in the submatrices of the stiffness matrix of equation (10) requires the integration of the strain energy in equation (8a) over the volume of structural material. This integration involves functions of the camber shape, zc, the wing depth, $h$, and the thlckness of each cover skin layer, $t_{k}$, along with the corresponding lamina
stiffness matrix, $Q^{k}$. To simplify calculations and make the resulting stiffness matrix a linear function of layer thickness, all layers in a skin are assumed to be located at the same distance from the reference surface. During integration their thicknesses are simply summed to yield the appropriate stiffness values. This
simplification is invalid for plates with a small distance between the covers but results in only a small error for typical wing structures where the depth of the wing is large compared to the thickness of the covers. Exact integral expressions are formed and evaluated at limits on the upper and lower covers for the material between the covers. The expressions describing the model shown in equations (1)-(3) must be combined with quadratic functions of the strains, hence displacement functions, as given in equation (5) to complete the expression for strain energy of the plate as shown in equation (8a). The formation and evaluation of the terms
in these integral expressions is algebraically cumbersome and involves tedious manipulations. However, the mathematical operations involved $y$ ield polynomials in $x$ and $y$ and the same library of subroutines which were developed in reference 5 are used to perform all the mathematical operations on these polynomials in an efficient manner.

## Thermal Loads

Thermal loading is included for static analysis along with concentrated forces and distributed pressure loads. Thermal loads are specified as temperature distributions over the planform of the cover skins. The temperature is assumed constant through the thicknesses of all layers in the skin. The thermal loads are calculated using equation (8b). The thermal coefflelents which are needed for each layer are transformed to the global $x-y$ coordinate system by

$$
\begin{align*}
& \alpha_{x}=\cos ^{2} \theta \alpha_{1}+\sin ^{2} \theta \alpha_{2} \\
& \alpha_{y}=\sin ^{2} \theta \alpha_{1}+\cos ^{2} \theta \alpha_{2}  \tag{11}\\
& \alpha_{x y}=2 \sin \theta \cos \theta\left(\alpha_{1}-\alpha_{2}\right)
\end{align*}
$$

where $\theta$ is the angle from the $x$-axis to the 1 axis of the orthotropic material. At present, the stiffness properties of the layers, $Q$, are not considered to be a function of temperature in the analysis procedure.

If the temperature distribution, $\Delta T(x, y)$, is input as a polynomial, the necessary integrations are performed using closed form expressions. often, the temperatures have been calculated in a separate program on a grid over the wing planform. In this case, numerical integration can be performed with the appropriate values of temperature, thermal and stipfness coefficients, strain, and planform area associated with each point in the grid being used. This integration must be performed for each of the displacement punctions which are used in the analysis as described in reference 5. This procedure is analogous to the procedure used for application of aerodynamic pressure loads in the equivalent plate formulation. 9

The capability to consider both aerodynamic and thermal loading indicates a potential use of this procedure for static aerothermoelastic calculations for advanced vehicles where aerodynamic neating is an important design consideration. Such calculations would involve an iteration on a combination of thermal loads, structural deformations, and aerodynamic loads to arrive at a set of loads which are consistent with the deflected shape of the loaded wing at some specified flight condition.

## Definition of Constralnts

For static analysis, rigid body motion of the plate must be constrained. These constraints are often referred to as boundary conditions. In
reference 5 , the example equivalent plate wing model was clamped along the x-axis which represented an aircrapt centerline. This is accomplished by excluding selected terms from the set of displacement functions as follows:
(a) the condition that the displacement, $W$ is zero at $y=0$ can be specified by excluding all $y^{0}$ terms from the set of displacement Punctions
(b) the condition that the slope, $W$, $y$ is zero at $y=0$ can be specified by excluding all $y^{1}$ terms from the set of displacement Punctions
(c) clamped conditions at $y=0$ is specified by imposing both (a) and (b).

This method of specifying constraints is limited to the $x$ and $y$ axes. Other methods of applying constraints which are avallable in the
11terature ${ }^{10}$
0
were evaluated as candidates to provide for specification of more general types of boundary conditions. The Lagrange multiplier method allows exact specification of constraints but at the expense of introducing additional equations with zeros on the diagonal. The method selected for use is an adaptation of the penalty function method discussed in reference 10 . This method will satisfy the constraints only approximately. A penalty number is used and the larger the penalty number the better the constraints will be achieved. For the purposes of constraining the equivalent plate, this penalty number is taken to be the stiffness of a spring at the location of the desired constraint. Such springs can resist translation or rotation and are defined at a point or distributed along a specifled line. Although displacements cannot be specipied to be exactly zero at a selected location, use of sufficientiy stiff springs will provide a good approximation to the desired condition.

A combination of excluding terms from the displacement functions and application of stiff springs is used to define the constraints on the example wing which will be discussed in a later section of this paper. The input data used to define the displacement functions for the analysis are

| DIR | NX | $X$ powers |  |  |  |  | NY | $Y$ powers |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 0 | 1 | 2 | 3 | 4 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
| 2 | 5 | 0 | 1 | 2 | 3 | 4 | 5 | , | 2 | 3 | 4 | 5 |  |
|  | 5 | 0 | 1 | 2 |  | 4 | 6 | 0 | 2 | 3 | 4 | 5 | 6 |

The directions $1,2,3$ refer to the $U, V, W$ deformations and NX, NY indicate the number of terms to be used in the $x$ and $y$ directions respectively. The displacement function in each direction is composed of a polynomial containing the sum of terms from all combtnations of the $x$ powers and y-powers which are given. Constraints for the example are imposed by omitting $y^{0}$ for the U-deformation to provide a deflection
constraint at $y=0$ and by omitting $y^{\prime}$ for the $W-$ deformation to constrain the slope at $y=0$.

In addition to the more general capability for specifying constraints, an eigenproblem shift parameter ${ }^{11}$ has been included for use in vibration analysis. This shift parameter allows a vibration analysis to be performed on a model with unconstrained (rlgid body) motions.

## Implementation of Method

This equivalent plate analysis procedure is being developed for use with mathematical optimization procedures for application in early prellminary design. Therefore, an important facet of the development is the implementation into a computationally efficient computer program. Although a detalled description of the computer program is beyond the scope of this paper, some of the significant approaches used to achieve the desired efficiency are outlined in this section.

## Generation of Stiffness Matrix

The terms associated with calculating coefficients of a stiffness matrix for an anisotropic plate segment are algebraically cumbersome and tedious to manipulate. The general procedure for calculating these terms for only the bending deformation, $W$, is described in reference 5. To include the stretching deformations $U$ and $V$, the size of the stiffness matrix is increased as indicated in equation (10). The procedure involves evaluation of the integral shown in equation (8a). The strains needed for this evaluation can be written as the sum of components from the $U, V$, and $W$ deformations as shown in equation (4). Each submatrix in equation (10) is formed by using the appropriate combination of the components in the various directions.

The procedure is implemented by generalizing the corresponding procedures used for $\mathrm{K}_{\mathrm{ww}}$ in reference 5. These calculations can then be performed by looping through this common set of generalized procedures with the origin of each submatrix and the definition of the strain components being changed at the beginning of each loop to correspond to the desired combination of the $U, V$, and $W$ directions. The strain components are defined in a table containing the direction, the coefficients, and an indicator to specify the proper derivative operation.

## Integral Tables

The evaluations outlined above are performed for all combinations of terms which are specified in the displacement functions for each direction in order to complete a submatrix. All these evaluations involve generation and integration of lengthy polynomial expressions. Since these expressions are all sums of terms containing a coefficient multiplied by $x^{m} y^{n}$, tables are generated with each entry containing the integral of such terms over the planform of the segment being evaluated for all combinations of $m$ and $n$ that are required. Entries in the table are evaluated by integrating over the unit square for each plate segment after expressing the terms in
the local coordinate system. The coordinate transformations are given in terms of the planform variables shown in Figure 3 as

$$
\begin{align*}
& x=e+a \xi+(f-e) \eta+(c-a) \xi \eta  \tag{12}\\
& y=g+b n \tag{13}
\end{align*}
$$

The coordinates of the differential area are transformed by the determinant of the Jacobian as
$d x d y=[a b+(c-a) b \eta] d \xi d \eta$
The distance from the reference surface to either the upper or lower cover skin is indicated by the symbol $z$ in the expression for the $W$ component of strain in equation (5). This distance can be expressed in polynomial form in terms of the mid-camber and wing depth definitions given in equations (1) and (2). The maximum power of $z$ is 2 for the pure bending, $K_{w w}$
submatrix for cover skins and is 3 after
integrating through the wing depth for solid plates. In the implementation used herein, eight integral tables are generated corresponding to the $0,1,2$, and 3 powers of $z$ for the upper and lower surfaces. The tables contain evaluation of terms corresponding to $z^{j}$ times $x^{m} y^{n}$ which are used to generate the stiffness submatrices for appropriate combinations of strain components.

## Input of Analytical Model

The definitions of the mid-camber surface, wing depth, and thicknesses of layers in the cover skins are given in terms of the global coordinates in equations (1)-(3). Such a definition results in all subsequent polynomials that are generated being the sum of $x^{m} y^{n}$ terms. Retaining this form allows the efficient handing of the integral operations as described above. An input option is provided for defining the model directly in the $x-y$ coordinate system. However, it is often more convenient for the user to input these quantities in the local $\xi_{5}-\eta$ coordinate system of each segment as was done in reference 5. This input option has been included in the present implementation but a transformation from the $\xi-n$ system to the global $x-y$ system is necessary. A direct transformation using the inverse of equations (12) - (14) results in a complicated form rather than the desired simple power series polynomials. Therefore, an approximate transformation to the power series polynomials is used.

This approximate method minimizes the square of the difference between the input polynomial in the $5-\eta$ system and a power series polynomial in the $x-y$ system integrated over the planform of the segment'. The function to be minimized can be written as

$$
\begin{align*}
\Omega & =\int_{\text {area }}(F-G)^{2} d A \\
& =2 \int_{\text {area }}\left(1 / 2 G^{2}-F G+1 / 2 F^{2}\right) d A \tag{15}
\end{align*}
$$

where $F=f(\xi, \Pi)$ which is input
and $\quad G=g\left(C_{m n} x^{m} y^{n}\right)$ is the desired polynomial.

Differentiating equation (15) with respect to the unknown coefficients, $C_{m n}$, ylelds a set of
simultaneous equations which can be generated and solved using the same procedures at that for the potential energy given in equation (8). This solution is the desired surface fit and the procedure can be used to obtain the coefficients for equations (1)-(3) to define an analytical model.

## Analysis Time

The time required to perform an analysis includes the time required for input preparation to define the analytical model, the execution time of the program, and time required for the analyst to assimilate the output data. The specification of model characteristics as continuous distributions in polynomial form requires only a small fraction of the volume of input data for a corresponding finite element structural model where geometry and stipfness properties are specified at discrete locations. Equivalent plate models are applicable for cases where the stiffness can be represented as a continuous distribution within segments, therefore limiting the complexity of modeling.

The execution time is a function of complexity and refinement of the analytical model. The number of degrees of freedom used in an analysis to give adequate accuracy is problem dependent. Results are presented in this paper for two different sets of displacement functions for the equivalent plate model and for two different element mesh refinements for the finite element model. Computational times and selected results are compared to give an indication of the accuracy and computational effictency of these procedures for different levels of modeling.

The number of degrees of freedom in an equivalent plate model is readily changed by simply changing the specification of terms in the displacement functions rather than refining the number of joints and elements in a finite element model. The output quantities such as displacements, strains, stresses, and vibration mode shapes are calculated on a user specified grid over each plate segment. Since the definitions of these quantities are given as continuous polynomials, the grid can be as pine or as coarse as desired. Presently, no graphical presentation of output data has been implemented.

## Application and Results

## Model Description

The planform of an example wing box which is being used to evaluate the effects of including camber in the formulation is shown in Figure 4. A two segment planform, representative of a pighter aircraft wing, is used for testing purposes. The planform is composed of a clipped delta outer segment with a 45 degree leading edge sweep and an inner segment to represent a carry through structure. A delta planform is selected for evaluation because cambering of the long chord length in the inboard portion of the wing leads to significant changes in the $z$ coordinate of the wing surfaces. Two loading conditions
were used for testing. The first is an externally applied loading of a uniform 1 psi pressure acting over the planform of the outer segment. The second is a thermal loading which is specified as the temperature of the lower surface of the wing segment being 100 degrees $F$ greater than that of the upper surface. Boundary conditions are imposed by: (a) by excluding selected terms from the displacement runctions as described in an earlier section to constrain the slope of the bending deflection, $W$, and the spanwise stretching deflection to zero at $\mathrm{y}=0$ and.: (b) using stiff springs to constrain the $U$ and $W$ deflections at support point $A$ and the $W$ deflection at support point $B$ as shown in Figure 4.

A simple expression for the shape of the mid-camber surface is used to evaluate the effects of camber. This shape is specified as a quadratic function of the chord length (parabolic $\operatorname{arc}$ ) with the maximum dimension, $\mathrm{zc}_{\text {max }}$, located at $50 \%$ chord location. The amount of camber will be depined as $\Phi$; where $\Phi=\mathrm{zc}_{\text {max }}$ local chord.
Results are presented for no camber (symmetric wing) and a camber of $p=.03$. The equivalent plate analysis for the cambered wing is performed using two different sets of displacement functions for the bending deflection, W. The first set, referred to as the $4 \times 6$ analysis, has the exponents shown earlier in the discussion of constraints with 4 being the largest exponent in the $x$-direction and 6 being the largest exponent in the $y$-direction. In the second set which is referred to as the $5 \times 5$ analysis, 5 is the largest exponent in both the $x$ - and $y$-directions.

Results from the equivalent plate analysis for the cambered wing are compared with corresponding results from the EAL finite element analysis program. ${ }^{11}$ The EAL model is built up of membrane rib, spar, and cover elements with the grid of cover elements shown in figure 4. Analyses are performed for two levels of modeling. One model has a grid of cover elements with twice the refinement as the other model in both the x and y directions and has additional $r i b$ and spar elements corresponding to the edges of each cover element. The models will be referred to as the 435 degree of freedom (d.o.f.) model and the 1565 degree of freedom model as indicated in Figure 4.

## Numerical Results

An indication of the relative level of accuracy of results and corresponding computational time for the different models used to analyze the cambered wing box structure are presented in Table 1. A measure of the overall accuracy is given by the total strain energy of the deformed structure for the pressure and thermal load cases. Increased accuracy is indicated by an increasing value of strain energy, so that the 1565 degree of preedom finite element model is shown to provide the best overall results in this study. The corresponding increase in computational time required to provide the improved accuracy is also shown in Table 1. The equivalent plate analyses required less computational time than the finite element analyses. However, the magnitude of the
difference is very dependent on the level of modeling used. Values of deflections and stresses at selected locations on the wing along with vibration frequencies are presented in the remainder of this section to provide a detailed comparison of results.

Static displacements for the uniform pressure load are presented along the trailing edge of the wing in Figure 5. These results indicate that camber reduces the deflection by approximately 5\% at the wing tip. This relatively small difference suggests that a flat representation of a cambered wing may be adequate for aeroelastic calculations. The difference between the deflections from the $4 \times 6$ and the $5 \times 5$ equivalent plate models are negligible so that only results from the $4 \times 6$ model are shown in Figure 5. The deflection obtained from the finite element model of the cambered wing with 435 degrees of freedom is in close agreement with that obtained from the equivalent plate method. However, these deflections are lower than those given by the 1565 degree of freedom finite element model.

Distributions of the stress in the spanwise direction for the upper surface and lower surface of the wing are shown in figures 6-8. These distributions are given at the $y=20,80$, and 120 locations illustrated on Figure 4. In some regions there are significant differences between the stresses for a flat wing and the stresses for a cambered wing. For example, this difference is as large as a factor of 2 at some points of the $y=120$ location. These results indicate the importance of considering camber if the analysis is used in a procedure to size cover skins for strength requirements since the resized thicknesses are proportional to the calculated stresses.

In general, the agreement in stresses for the equivalent plate procedure and the rinite element analysis is acceptable for use during preliminary design. The largest difference occurs in the bottom surface at the $y=80$ location. This is the region of transition from the carry through structure to the outer delta portion and it appears that the degree of the polynomials used for the displacement functions is not large enough to represent the gradients occuring in this region. The $5 \times 5$ equivalent plate model gives better agreement than the $4 \times 6$ model in this region. Attempts to use larger exponents for this particular problem gave 1llconditioned equations which caused the solution subroutine to abort with an error message.

The deflections along the leading and trailing edges of the wing box produced by a temperature differential of 100 degrees $F$ on the lower surface of the wing are shown in Figure 9. A negative 0.6 degree angle of attack is produced at the wing tip. Such twisting of the wing that occurs from this thermal loading could affect aerodynamic loads and indicates a potential use of this procedure for aerothermoelastic calculat ions.

Vibration frequenctes calculated for the cambered and uncambered wings are shown in Table 2. Camber was found to have only a small effect on the values of the first ten frequencies. The values of frequencies from the equivalent plate analyses are higher than from the inite element analyses, indicating that the displacement
functions which were used did not represent the vibrational behavior of the wing as well as the finite element model. However, the level of accuracy of the frequencies indicate that the equivalent plate method provides an acceptable representation of the vibration characteristics of the wing for use during preliminary design.

## Concluding Remarks

A description is given of a further generalization of the equivalent plate formulation to provide capability to model aircraft wing structures with unsymmetric cross sections. The analytical procedures used to provide this capability are given along with gome of the methods used for implementing these procedures into a computer program.

Some typical numerical results are presented to assess how well a cambered wing box can be represented by a plate formulation. In general, the difference in results between static displacements and vibration frequencies for the cambered wing example and a plat representation is less than $10 \%$. However, the difference in stresses is significant; a factor of 2 difference in some regions. This large difference in stresses indicates the importance of inciuding the effects of camber in a general structural resizing procedure.

The degree of the polynomials used for the displacement functions was limited by iliconditioning of the resulting equations and the same level of accuracy of the finite element results could not be achleved with the equivalent plate procedure. However, the results from the equivalent plate analyses exhibited the same trends and approached the accuracy of the finite element analysis resulis. Considerably less total analysis time was required to generate the equivalent plate results.

In summary, the application or the generalized equivalent plate analysis procedure to cambered wing structures is shown to produce results with adequate levels of accuracy in a shortened analysis time. Hence, the procedure provides a useful capability for the analysis of aircraft structures during early preliminary design.

## References

${ }^{1}$ Stroud, W. J., Dexter, C. B., and Stein, M., "Automated Preliminary Design of Simplified Wing Structures to Satisfy Strength and Flutter Requirements," NASA TN D-6539, December 1971.
${ }^{2}$ McCullers, L. A. and Lynch, R. W., "Dynamic Characteristics of Advanced Filamentary Composite Structures," AFFDL-TR-73-111, Vol. II, September 1974.
$3_{\text {Lynch, R. W., Rogers, W. A., and Braymen, W. }}$ W., "An Integrated Capability for the Preliminary Design of Aeroelastically Tailored Wings," AIAA Paper No. 76-912. Presented at the AIAA 1976 Aircraft Systems and Technology Meeting. Dallas, Texas, September 27-29, 1976.
${ }^{4}$ Triplett, William E., "Aeroelastic Tailoring Studies in Fighter Aircrapt Design," AIAA Paper No. 79-0725. Presented at the AIAA/ASME/ASCE/AHS 20th Structures, Structural Dynamics, and Materials Conference. St. Louis, Missouri, April 4-6, 1979.

5Giles, Gary L., "Equivalent Plate Analysis of Aircraft Wing Box Structures with General Planform Geometry," J. Alrcraft, Vol.23, No.11, November 1986, pp.859-864.
${ }^{6}$ Tauchert, Theodore R. Energy Principles in Structural Mechanics. McGraw-Hill Book Company, 1974.

7 Jones, Robert M., Mechanics of Composite Materials. Scripta Book Company, 1975.
${ }^{8}$ Ashton, J. E., and Whitney, J. M., Theory of Laminated Plates. Progress in Materials Science Series...Vol IV, Technomic Publishing Company, Inc., 1970.
${ }^{9}$ Pittman, James L., and Giles, Gary L., "Combined, Nonlinear Aerodynamic and Structural Method for the Aeroelastic Design of a ThreeDimensional Wing in Supersonic Flow." AIAA Paper No. 86-1769. Presented at the AIAA 4th Applied Aerodynamics Conference, San Diego, California, June 9-11, 1986.
${ }^{10}$ Zienkiewicz, O. C., The Finite Element Method. Third Edition, McGraw- $\overline{H 111}$ Book Company (UK) Limited, 1977.
${ }^{11}{ }_{\text {Whetstone, }}$ W. D., "EISI-EAL Engineering Analysis Language Reference Manual - EISI-EAL System Level 2091," Engineering Information Systems, Inc., July 1983.

Table 1. Comparison of strain energy and computational time for different levels of structural modeling.

| Model | Strain Energy, in, -16. <br> Pressure <br> Load | Thermal <br> Load | Computation <br> Time, sec. |
| :--- | :---: | :---: | :---: |
| Eq. plate <br> $4 \times 6$ | 19660.7 | 78874.0 | 50.9 |
| Eq. plate <br> $5 \times 5$ | 19700.1 | 78917.6 | 54.7 |
| FEM <br> 435 dof <br> FEM | 19919.9 | 81211.5 | 122.0 |

Table 2. Comparison of natural frequencles
from vibration analysis.

| Number | Eq. plate, $\phi=0$ $4 \times 6$ model | Eq. plate, $\Phi=.03$ |  | FEM, $\Phi=.03$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $4 \times 6$ mode 1 | $5 \times 5$ model | 435 dof | 1565 dof |
| 1 | 16.24 | 16.52 | 16.52 | 16.38 | 15.90 |
| 2 | 53.46 | 54.54 | 54.41 | 51.89 | 52.58 |
| 3 | 80.63 | 77.23 | 77.17 | 72.27 | 72.56 |
| 4 | 83.01 | 82.01 | 82.06 | 79.63 | 81.08 |
| 5 | 88.65 | 93.72 | 93.12 | 80.58 | 82.20 |
| 6 | 127.54 | 128.28 | 128.83 | 119.43 | 124.28 |
| 7 | 184.06 | 185.06 | 180.68 | 173.09 | 173.30 |
| 8 | 192.34 | 193.81 | 191.36 | 178.77 | 185.71 |
| 9 | 212.40 | 213.60 | 207.06 | 199.33 | 199.57 |
| 10 | 227.48 | 231.32 | 233.87 | 218.25 | 214.80 |



Figure 1. Coordinate systems used to define wing box structure.


Figure 2. Analytical modeling of wing box


Figure 5. Deflection of tralling edge of wing box.


Figure 6a. Stress distribution at $y=20$; top cover.


Figure 7a. Stress distribution at $y=80$; top cover.


Figure 6b. Stress distribution at $\mathrm{y}=20$; bottom cover.


Figure 7b. Stress distribution at $y=80$; bottom cover.


Figure 8a. Stress distribution at $\mathrm{y}=120$; top cover.


Figure 8b. Stress distribution at $y=120$; bottom cover.


Figure 9. Thermal deflection of wing box.



[^0]:    *Senior Research Engineer, Interdisciplinary Research Office, Structures Directorate.

