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PERFORMANCE CHARACTERISTICS OF AN ADAPTIVE CONTROLLER BASED ON 

Rajiv S. Mehtat and S. J. Merhav* 
NASA Ames Research Center, Moffett Field, California 

LEAST-MEAN-SQUARE FILTERS* 

Abstract 

A closed-loop, adaptive-control scheme that 
uses a least-mean-square filter as the controller 
model is presented, along with simulation results 
that demonstrate the excellent robustness of this 
scheme. It is shown that the scheme adapts very 
well to unknown plants, even those that are mar- 
ginally stable, responds appropriately to changes 
in plant parameters, and is not unduly affected by 
additive noise. A heuristic argument for the 
conditions necessary for convergence is presented. 
Potential applications and extensions of the 
scheme are also discussed. 

Introduction 

An adaptive controller is a controller that 
can change its behavior to maintain good control 
in response to changes in the process and inputs. 
One common approach to adaptive control is called 
Model Reference Adaptive Control (MRAC), in which 
the specifications are given in terms of a refer- 
ence model which determines how the plant output 
ideally should respond to the command signal. In 
most MRAC schemes the controller is modeled as a 
differential equation in one of the common forms 
(i.e., transfer function or state space) with 
parameters that are adjusted to modify its behav- 
ior. 
modeling is that relatively fast convergence of 
the adaptive algorithm can be achieved as a result 
of the small number of parameters involved. How- 
ever, this approach requires that enough is known 
about the plant to construct a valid model. The 
resulting controller design can be quite complex 
and its performance strongly dependent on the 
assumed form of the plant model.’ An excellent . 
survey of adaptive control which discusses many of 
the problems of the parametric approach is found 
in Ref. 2. Concerns about the robustness of these 
schemes has also recently been expressed in 
Refs. 3 and 4. 

A substantial advantage of such parametric 

A different approach involves adaptive con- 
trol schemes based on impulse response modeling. 
Richalet5 modeled multivariable industrial pro- 
cesses with impulse responses and used these 
models off-line to determine the resu ts of vari- 
ous possible input sequences. Widrow used what k 

*This paper, AIAA-86-2160, was presented at 
the AIAA Guidance, Navigation and Control Confer- 
ence in Williamsburg, Virginia, on August 18-20, 
1986. 

tResearch Scientist. Member AIAA. 
*Professor, Department of Aeronautical 

Engineering, Israel Institute of Technology, 
Haifa, Israel. Member AIAA. 

is known as a least-mean-square (LMS) filter in an 
essentially open-loop MRAC scheme. The LMS fil- 
ter, which determines the coefficients of a 
moving-average model using a gradient algorithm, 
is a modeling approach that has been widely used 
in the communication systems field.’l With this 
approach one attempts to produce an approximate 
impulse response of the desired system and not its 
exact mathematical form in terms of the coeffi- 
cients of a differential equation. 
can be used even when little is known about the 
physical process. The use of the LMS filter in an 
adaptive scheme provides robustness and insensi- 
tivity to unmodeled modes. 
convergence because of the comparatively large 
number of parameters. 

This approach 

The penalty is slower 

Previous MRAC schemes which used LMS filters 
have been essentially in open-loop or off-line 
configurations. Closed-loop control is desired 
because of its ability to suppress both distur- 
bances and the effects of abrupt changes in plant 
parameters. One of the principal factors that has 
hampered the development of closed-loop adaptive 
control is the interaction between the feedback of 
the learning process and that of the control sig- 
nals. This interaction greatly complicates the 
analysis underlying the design of dependable con- 
trol systems. A closed-loop MRAC schem based on 
LMS filters have recently been proposed8 that has 
been shown to work well with a wide range of 
plants, even for processes that are barely stable. 

This paper presents a further study that 
extends the work presented in Ref. 8. The adap- 
tive algorithm is first described, followed by a 
demonstration of its performance. Next, the heur- 
istic arguments are provided to analyze its con- 
vergence properties and simulation results demon- 
strate its robustness. Further simulations show 
the scheme’s tolerance for and response to changes 
in plant characteristics and to noise. Finally, 
the potential applications of this adaptive con- 
troller are discussed. 

The Concept 

The LMS filter, shown in Fig. 1, consists of 
an input signal x(t) that is sampled and pro- 
cessed by a set of delays (a “tapped delay line,” 
where g is a delay operator), variable weights 
wi which multiply the signals at the delay line 
taps, a summer z where the weighted signals are 
combined to form the filter output y and an 
adaptation algorithm to adjust the weights to make 
the filter output match a desired signal. 

1 



SAMPLER A 

"TAPPED 
DELAY LINE" 

Fig. 1 

The filter error equation, in discrete form, 
where d is the desired output, yj is the 
actual filter output and w is the weight vector, 
is 

m 

where 

The weights are adjusted using a gradient algo- 
rithm to minimize the square of the filter error 

In he following, "gradient" will refer to 
(ae /a!), while "error gradient" will refer to 
(ae /a!). The term u is a gain factor that is 
choden to assure the stability of the gradient 
algorithm. Using Eq. (1) the error gradient is 

5 
J 

= -x (5) -J W'W j 

ACTUA- FILTER 
OUTPUT 

DESIRED FILTER 
OUTPUT 

The LMS filter. 

and 

Aw = 2pe x (6) -J j - j  

The properties of this filter have been studied 
extensively7v9 and are briefly summarized here. 
Eq. ( 3 )  represents a difference equation which can 
be analyzed for stability and convergence. 
sufficient c ndition for stable convergence is 
(0 < u < l/x 5 1. 
LMS filter id iet 

A 

8 In the implementation of the 

and use F as a design parameter. The theoreti- 
cal settling time of the filter can be shown to be 
(N + 1)F iterations, and the accuracy of the 
convergence is related to l/F, so the parameter 
F 
ments of speed and accuracy. 
ing u in this manner, the parameter change, 
Eq. (61, is normalized with respect to the input 
power. 

may be used to balance the conflicting require- 
Note that by choos- 

A necessary condition for the convergence and 
stability of the LMS Filter is for the error equa- 
tion, Eq. (l), to be linear in the weight vector. 
This requirement poses a challenge to the design 
of a closed-loop adaptive controller using LMS 
filters because the desired filter output d can 
become a function of the filter weights, possibly 
in a nonlinear manner. Other considerations in 
the development of a satisfactory controller are 
the realizability of the error gradient and 
whether the controller is determined "directly" Or 
"indirectly." 
troller is determined from an identified plant 
model, and therefore involves at least one addi- 
tional stage beyond that required for directly 

Indirectly means that the con- 
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Fig. 2 The system configuration. 

determining the controller. As was shown in 
Ref. 8, a closed-loop configuration that is 
stable, realizable, and direct is extremely diffi- 
cult to design. The configuration presented in 
this paper yields an expression for the closed- 
loop gradient which strongly indicates global and 
uniform convergence properties. 

Figure 2 shows the system configuration: 
P(s) is the unknown plant; M(s) is the open-loop 
reference model; I(s) is an integrator; C(s) is 
the adaptive controller structured as an LMS fil- 
ter; G ( s )  is an exact, current copy of the fil- 
ter Cis); and T(s) is the desired closed-loop 
reference model, obtained directly from M(s), and 
is used for comparison only. 
are u the desired input, and n which is addi- 
tive noise. It is easily verified that, with 
respect to the filter 
noise are equivalent,' and therefore one noise 
source will suffice for the simulations. Notice 
that the configuration has two different modes of 
operation. When the switches are in Position 1 ,  
C ( s )  and Cc(s) are not in loop, and therefore do 
not affect the input or output of the plant. 
state is called the "open-loop" state. With the 
switches in Position 2, C(s) and Gc(s) form the 
controller for the plant. 
referred to as the "closed-loop" state. 

Inputs to the system 

the process and measurement 

This 

This state will be 

The adaptation process has to adjust G(s) so 
that P(s)C(s) -+ M(s). Essentially, the only 
a priori information needed for the unknown plant 
is that it be stable and minimum phase. 
filter is represented in continuous time as 

The LMS 

N 
U s )  = gi(s)wi 

i=o 

where gi(s) represents a delay of i time steps. 
The choice of the number of weights N and the 
value of the time delays are determined a priori 
from the characteristics of the reference model 
M(s). 
given in Ref. 8. 

Rules for choosing these quantities are 

In the open loop state, the filter error is 
given by* 

which is linear in C ( s ) ,  and therefore in w. 
The ith error gradient component is 

= -gi(s)z(t) (i = 0, . . ., N) (10) 

The signal gi(s)z(t) is the signal z(t) 
delayed i time steps and is realizable. So, 
both the linearity and realizability conditions 
are satisfied for the open-loop configuration. 

In the closed-loop state, the filter error is 
given by** 

e = ( M  - GP)GI 
1 + CPI ( 1 1 )  

which is not linear in the weights. The error 
gradient can be shown to be 

(12) i 1 i - 
G ( l  + GPI) e ae = -g z + 

awi 

If the system has converged and PC = M, then 
Eqs. (11) and (12) become 

"Presently, it is assumed that the noise is 
zero. The effect of noise will be discussed later 
in the paper. 

**In the rest of the paper, for brevity, the 
complex frequency variable s and the dependence 
on time t will not always be explicitly written 
(i.e., P will stand for P(s) and z for 
z(t)). 
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ae i - aw = -g 
i 

.25 

.20 

5 .15 
% 
e .lo- 

.05 
Thus, t h e  error g rad ien t  assumes its c o r r e c t  open- 
loop form as determined by Eq.  (10).  

I t  is ev iden t  t h a t  t h e  system w i l l  n o t  start 
up properly i n  t h e  closed-loop state because t h e  
e r r o r  equa t ion ,  Eq. ( l l ) ,  is no t  l i n e a r  i n  t h e  
weights  as requ i r ed .  
r e so lve  t h i s  problem is t o  s tar t  the  system i n  the  
open-loop state and t o  switch t o  the  closed-loop 
s ta te  after the  f i l t e r  has converged. After t h a t ,  
if the changes i n  t h e  plant  a r e  moderate t h e  
system can reconverge because t h e  g r a d i e n t ,  
Eq. (14),  is approximately c o r r e c t .  The i s s u e  of 
whether t h e  system can be s t a r t e d  i n  t h e  closed-  
loop state w i l l  be addressed again s h o r t l y .  

The i n i t i a l  approach to 

- 

- 

- 

- 

Performance Demonstration 

Th i s  s e c t i o n  demonstrates t h e  performance o f  
t h i s  adap t ive  c o n t r o l l e r .  
be 

Let t h e  unknown p l a n t  

(15 )  25 
s2 + 0.1s + 25 

P(s) = 

P 
quency w of 5 and damping f a c t o r  c of 0.01. 
Let t h e  open-loop reference model be 

has  a p a i r  of complex poles  with n a t u r a l  fre- 

(16)  10 
s + 6.5s  + 9 

M(s)  = 2 

7.5 

5.0 
W 
v) 

E 2 2.5 
a 
W 

0 

-2.5 

- I IR 
o FIR 

10 20 30 40 50 60 
WEIGHT NUMBER 

1 1 1 1 1 1 1 6 1 1 1 1 1 1  

0 .4 .E 1.2 1.6 2.0 2.4 
TIME, sec 

Fig. 3 Estimated FIR and IIR o f  G ( s ) ,  Example 1 .  

1.2 

1 .o 

.E 
Ly 
v) z 2 .6 
v) 
W 

.4 
a 

.2 

1 

0 2 4 6 8 10 
TIME, mc 

Step  response o f  adapted system and Fig.  4. 
r e f e r e n c e  model T ( s ) ,  Example 1. 

The r e l a t i o n  between the open and closed-loop 
r e fe rence  models is given by 

The f i l t e r  G 
spacing of 0.04 sec, and F is chosen to  be 10. 
I d e a l l y ,  when t h e  system has  adapted p e r f e c t l y ,  
GP should be equal  t o  H, and t h e r e f o r e  

has  61 weights (N = 60)  wi th  a t a p  

Example 1 :  The ac tua l  r e s u l t s  of us ing  t h e  
adap t ive  c o n t r o l l e r  w i t h  t h i s  p l a n t  and r e f e r e n c e  
model are shown i n  Figs .  3 through 5. These 
f i g u r e s  were generated from a run of 1200 itera- 
t i o n s  (48 sec) with the  f irst  600 i t e r a t i o n s  being 
i n  t h e  open-loop s ta te  and the rest i n  t h e  closed-  
loop state.  The f i n a l  f i l t e r  weights  r ep resen t ing  
t h e  f i n i t e  impulse response (FIR) are shown in  
Fig.  3 along wi th  t h e  i n f i n i t e  impulse response 

.04 

.02 
c 
k 
P .01 
$ 

0 

-.01 

-.02 -;I 
0 10 20 30 40 50 

TIME, sec 

Fig .  5 Time h i s t o r y  of f i l t e r  weights ,  Example 1 .  
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(IIR) of the ideal 
Eq. (18). The shapes of the FIR and IIR are very 
similar and one can conclude that the system has 
adapted well. Figure 4, which verifies this con- 
clusion, shows the step response of the reference 
model T ( s )  and that of the adapted system (that 
is, the step response of the system with the 
weights frozen at the values obtained at the end 
of the run). Figure 5 shows the time history of 
four of the filter weights throughout the duration 
of the run. The weights had settled after about 
10 sec (250 iterations) and after 25 sec (625 
iterations) they were very steady. This overall 
settling time agrees well with our expectations 
((N + 1)F = 610 iterations). If Fig. 5 is exam- 
ined closely it appears that the weights are 
drifting at the end of the simulation, from 25 to 
50 sec, but in actuality the controller is simply 
adjusting to a very small change in the process-- 
there are slight differences in the simulation 
between the open- and closed-loop states. 
this adjustment, that is after the 50 sec mark, 
the weights are constant. 
weights will be apparent in Fig. 9 which accom- 
panies Example 2 further on in the paper. 

G ( S )  as represented by 

After 

The steadiness of the 

The system works just as well as in Example 1 
when the dampin5 of the second-order plant is 
varied from 10- to 1 and its relative degree 

in Example 1 ,  and for all the other examples of 
the paper, was white noise. Other input sequences 
such as colored noise and a series of random steps 
have also been used in simulations with good 
results. 

. . r r i n A  ern mn,. C,. *.,e .a. A L "  .. wx W l l L  .,w Y"". Thc i n p u t  signal, i, :sed 

Convergence Properties 

To understand whether the system can start up 
and converge completely in its closed-loop state, 
we again look at the expressions for the error 
gradient. As was indicated before, the imple- 
mented and theoretical gradients become equal once 
the system has converged. However, the question 
is how similar the two gradient expressions are 
before the filter has converged to the correct 
values. 
cal error gradient can be rewritten in terms of 
the input u as 

Equation (12 )  representing the theoreti- 

ae MI - G P I ( ~  + GPI) . A 
aw. g'u = -DTgiu (19 )  - -  

( 1  + CPI? 

The implemented gradient (Eq. ( 1 4 ) )  is 

or 

(20)  

(21 )  i d  g U = -D g'u - -  ae -GPI 
awi - ( 1  + CPI) I 

With these expressions, the following heuristic 
argument is offered. 
expresses the parameter updates, using Eqs. 
and ( 2 1 ) ,  can be written as 

Equation ( 4 ) ,  which 
(19 )  

The difference between the implemented and theo- 
retical gradients is the transfer function that 
filters the signal g'u. For the system to con- 
verge, the implemented error gradient must "point" 
in essentially the same direction as the theoreti- 
cal error gradient. 
corresponding elements of the two error gradients 
must have the same sign, which means that the 
transfer functions DT and DI must have similar 
phase responses. 

This fact implies that the 

We will look at an example to illustrate this 
statement. 
of Eqs. (15 )  and (16 ) .  The I, as in Eq. ( 1 9 ) ,  
stands for the integrator and is 

Let the plant and the model be those 

(23) I(s) = l/s 

As a starting condition for the filter, let the 
weights be set to 

wo = 1 

wi = 0 
G :  { 

(i = 1 9 N) 

Then the initial vaiue of G(s)  is 

(25)  C ( S )  = 1 

Note that the system must be started in closed- 
loop position with at least one nonzero filter 
weight because otherwise the input signal will not 
get past the first filter and cannot start up 
(Fig. 2 ) .  

The transfer functions DT and DI can be 
evaluated using the expressions for 
I(s), and C ( s )  in accordance with Eqs. (151, ( 1 6 ) ,  
( 2 3 ) ,  and ( 2 5 ) .  
plots are shown in Figs. 6 and 7. The phase plots 
are very similar, differing at most by 30" in a 
small-frequency range, from 0.8 to 3.5 rad/sec. 
This fact means that the elements of the imple- 
mented and theoretical gradients will have the 
same signs. Thus, the implemented gradient 
changes the weights in the correct direction so 
that they will move closer to their correct 
values, and the two gradients will match even more 
closely in future iterations. 
shows that the implemented gradient is slightly 
smaller, meaning that the system will converge 

M(s), P(s), 

The Bode phase and magnitude 

The magnitude plot 
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100 

I I I a? 
0 

h 
!i 
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.1 1 10 

FREQUENCY, rdlrec 

Phase response of theoretical error gra- Fig. 6 
dient, DT, and implemented error gradient, DI. 

.1 1 10 

FREQUENCY, r d h  

Fig. 7 
gradient, DT, and implemented error gradient, DI 

Magnitude response of theoretical error 

more slowly than predicted. 
supported by the inspection of Eq. (12) .  

This premise is 

Example 2: According to this heuristic 
argument, at least for the example of Eqs. (15)  
and ( 1 6 ) ,  the system should be able to converge 
even when started up in the closed-loop config- 
uration given the initial weights of Eq. (24). 
The simulation results confirm this assertion. 
Figure 8 shows the resulting step response and 
Fig. 9 shows the convergence of some of the filter 
weights. These figures were obtained with the 
same number of iterations (1200) as those of the 
previous example. 
not quite as good as that shown in Fig. 4, and 
that is because of the slower convergence of the 
system in the closed-loop state. Nonetheless, the 
step response of the system in the present example 
does get as good as that of the previous example 
given some more time. 

The step response of Fig. 8 is 

A practical way is to start the system in the 
open-loop state with all the weights set to zero, 
and then run it for, say, five iterations and 
switch to the closed-loop mode. Numerous 

0 2 4 6 8 10 
TIME, sec 

Fig. 8 Step response of adapted system and' 
reference model T(s), Example 2 .  

0 

w29 

w4 

-I_ 

. .  

I I I I 

0. 10 20 30 40 50 
TIME, ME 

Fig. 9 Time history of filter weights, Example 2. 

simulations have confirmed convergence by this 
method. Although the discussion presented here 
showed convergence for a specific example only, 
the idea can be extended to a more general test. 
Given an initial G and the reference model M, 
one can find the range of possible plants P for 
which the resulting phase plots are similar enough 
for the algorithm to converge. Conversely, given 
a range of 
possible reference models M that assure 
convergence. 

P, one can calculate the range of 

Changes in Plant 

The foregoing demonstrates that the con- 
troller adapts well to an unknown plant. 
equally important that an adaptive controller 
respond appropriately to plant changes that occur 
after the system has reached its steady state. 
Because the system will be in the closed-loop 
state, the previous arguments regarding the inac- 
curacies in the gradient calculation are Still 

It is 
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pertinent; that is, the allowable variations in 
plant parameters depend on the effect they have on 
the phase of DI and DT. 
scheme under such situations is demonstrated by 
the following two examples. For both examples the 
run of Example 1 was repeated for the first 
40 sec, at which point a step change in plant 
parameters was introduced. 

The performance of this 

Example 3: For this example, the damping 
ratio of P(s) was changed from < = 0.01 to 
c = 0.05, a five-fold increase. Figure 10 shows 
the time history of some of the filter weights 
during this run. We see that after the weights 
had settled the first time, they adjusted to the 
new plant, and then settled down again at the end 
of the run. The resulting step response, Fig. 11, 
is slightly different than that of Fig, 4, but is 
essentially as good. 

.02 

I- 
I 

W 
g .01 

3 
0 

-.01 

."L , I I I I I I 

0 10 20 30 40 50 60 70 
TIME, sec 

Fig. 10 Time history of filter weights, 
Example 3. 

1.2 

1 .o 

.8 
w 
WJ 
2 
2 .6 
WJ 
W 
U 

.4 

.2 

0 

SYSTEM 

I 
2 4 6 8 10 

TIME, sec 

Fig. 11 Step response of adapted system and 
reference model T(s), Example 3. 

Example 4: For this example, the numerator 

Fig- 
of 
Thus, the gain of the plant was increased. 
ure 12 shows the filter weights. 
weights after 40 sec is dramatic, but accurate, as 
shown by the resulting step response in Fig. 13. 

P(s) was increased by 50%, from 25 to 37.5. 

The change in 

.04 

.03 - 1 u -  
p,. 

W9 
t , , ._-_._,-- - -  __.__- ------, 
I 1.1 . 

. .  . .. ... " . . .  

-.02 - 
-.03 -> 

0 10 20 30 40 50 60 70 
TIME, sec 

Fig. 12 Time history of filter weights, 
Example 4. 

1.2 

1 .o 

.8 
w 
WJ 
2 
2 .6 
WJ 
W 
U 

.4 

.2 

0 2 4 6 8 10 
TIME, sec 

Fig. 13 Step response of adapted system and 
reference model T(s), Example 4. 

The Effect of Noise 

It is difficult to design a "direct" adaptive 
controller which is not biased by noise. 
reason is that the noise produces errors in the 
estimation process which then circulate through 
the system. When noise is included, the open-loop 
filter error is 

The 

and the error gradient is 
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i -gi(z + n) = -g z m awi 

8 2.5 
w E  
(r 

0 -  

- 2 . 5 ~  

(27) 

- ;gj .10 

.05 

0 
-.05 

-.lo 

Compare these with Eqs. (9) and (10).  
filter error and the error gradient are multiplied 
together t o  form the change in filter weights, 
(Eq. (4)), terms in n2 will appear, and there- 
fore the filter weights will be biased. 
filter error and the error gradient for the 
closed-loop state also include noise terms and 
similarly cause bias in the weights. Thus, bias 
in the filter weights is inevitable with this 
configuration. How seriously does the noise- 
induced bias affect the performance of the 
system? The following examples provide indi- 
cations. For both examples the noise signal is 
white noise and is uncorrelated with the input 
signal. 

Since the 

The 

Example 5: Figure 14 was produced with a 
signal-to-noise ratio of 10, and the system was 

7.5 .30 
IIR [ :E:[ I FIR 

5.0 

WEIGHT NUMBER 
1 . 1 1 1 1 1 ~ 1 1 1 1 1 1  

o .4 .a 1.2 1.6 2.0 2.4 
TIME, ow: 

Fig. 14 Estimated FIR and IIR of C ( s ) ,  
Example 5. 

started up in the closed-loop state with initial 
weights as in Eq. (24). Comparing this FIR to 
that of Fig. 3 ,  we see some distortion of the 
filter weights because of noise. However, Fig. 15 
shows that the step response of the adapted system 
is still good. 

Example 6: Even in a very noisy system, with 
a signal-to-noise ratio of 2, the step response is 
still quite close to that of the reference model 
as shown in Fig. 16. Although the system is 
biased in the presence of noise, the degradation 
in performance is minor. 

The preceding sections have demonstrated 
excellent performance of the adaptive scheme of 
Fig. 2 with regard to initial adaptation to an 
unknown plant, tolerance to noise, and response to 
changes in plant parameters. In the Following, we 

1.2 

1 .o 

.8 
w 
u) z g .6 
u) w a 

.4 

.2 

0 2 4 6 8 10 
TIME, sec 

Fig. 15 Step response of adapted system and 
reference model T(s), Example 5. 

1.2 

1 .o 

.8 
w 
v) z 2 .6 
v) 
W a 

.4 

.2 

0 2 4 6 8 10 
TIME, sec 

Fig. 16 Step response of adapted system and 
reference model T(s), Example 6. 

discuss potential extensions and applications of 
this adaptive controller. 

In-Flight Adaptation 

For the control systems that go through 
large, but knoun, changes in operating environment 
and required performance (e.g., high-performance 
aircraft), a table of filter weights defining 
controllers for the different regimes could be 
created off-line and then used in flight as neces- 
sary. 
troller of this paper for such systems are the 
same as have been shown in the examples, espe- 
cially with regard to robustness and the ability 
to respond to variations in the plant. 

The advantages of using the adaptive con- 

Unmodeled Modes 

In many cases, the plant is not completely 

As long as a reasonable assumption 
unknown; a model is available, but is in some way 
incomplete. 
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can be made as to the order of the plant, so that 
the chosen reference model produces a realizable 
controller, one can take advantage of the partial 
knowledge by designing a controller that will make 
the known plant behave as desired and then let an 
adaptive controller handle the unknown portions of 
the plant. 

One possible configuration with a controller 
with nominal and adaptive parts is shown in 
Fig. 17, where the two parts are in parallel. To 
demonstrate the use of this configuration we use 
the following example. 

Example 7: Let the actual plant be 

(28) 10 

s2 + 2s + 25 
P(s) = 

Let the known, or nominal, plant be 

Equations (28) and (29) can be thought of as a 
mass/spring/damper system where the spring is 
unknown. The reference model, M(s), is chosen as 

(30)  175 
s2 + 15s + 81 

M(s) = 

The resulting nominal controller is 

The adaptive controller, G, should adjust so that 

which results in 

437.5 
s2 + 15s + 81 

G(s) = ( 3 3 )  

Figure 18 shows the step response of the 
system with the nominal controller only, and that 
of the desired closed-loop reference model for 
comparison. The response is poor. The undesired 
oscillation originates from the unaccounted for 
spring forces. When the adaptive controller, G, 
is included, the response is much better as shown 
in Fig. 19. Thus, the adaptive controller is 
effective in compensating for the imperfections of 
the nominal controller. 

Fine Tuning 

As an extension of the concept illustrated in 
the previous example, the adaptive scheme can also 
be used to “fine tune” existing control systems. 
The plant, P(s), of Fig. 2, can actually be an 
entire system of process and local controller. 
The local controller is designed to obtain a 
desired system performance, but because of inaccu- 
racies in modeling and implementation, there is 
some degradation in system performance. The adap- 
tive controller can then be added on as an addi- 
tional loop of the system that will improve the 
performance to the desired level. 

A potential application of this idea is in 
robotics. 
are generally well known, and straightforward 
control algorithms have been designed. lo However, 
there is often uncertainty in the measurement of 
some of the physical characteristics (e.g., iner- 
tias and link lengths) that causes the performance 
to fall below expectations. The present adaptive 
scheme could be used for fine tuning of such a 
robot controller. 
the drive systems of robots need to be well mod- 
eled and these models be used in the development 
of robot controllers.” 
models are very similar to the “unknown“ plants 

The equations of motion of a robot arm 

It has also been suggested that 

Some of the proposed 

Fig. 17 A modified system configuration which includes a nominal as well as an adaptive 
controller. 
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Fig. 18 Step response of system with nominal 
controller only and that of the reference model 
T(s), Example 7. 
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Fig. 19 Step response of adapted system and 
reference model T(s), Example 7. 

used in our simulations, and the present adaptive 
scheme could be used to achieve drive system 
response that eases the development of such robot 
controllers. 

Concluding Remarks 

It has been shown that the impulse response 
modeling approach used in the development of the 
closed-loop model reference adaptive control 
scheme presented in this paper provides excellent 
overall performance. The scheme adapts well to an 
unknown plant and can converge in some cases with- 
out the need of a start-up scheme, continues to 
adapt to changes in plant behavior, and tolerates 
large amounts of noise. Since the only essential 
a priori knowledge of the plant that is needed is 

that it be stable and minimum phase, this concept 
could be extremely useful in control situations 
when it is difficult to determine an accurate 
model of the plant. The scheme may also find uses 
for the control of partially known plants, for the 
"fine tuning" of systems that already have accept- 
able control performance, and for the suppression 
of parasitic modes. 
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