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ERROR ESTENATES FOR CELL-VERTEX SOLUTIONS OF TEE 

COMPRESSIBLE EULER EQUATIONS 

P. L. Roe 

C r a n f i e l d  I n s t i t u t e  of Technology, United Kingdom 

I ABSTRACT 

I 
The c e l l - v e r t e x  schemes due t o  Ni and Jameson, e t  a l . ,  have been 

s u b j e c t e d  t o  a t h e o r e t i c a l  a n a l y s i s  of t h e i r  t r u n c a t i o n  e r r o r .  The a n a l y s i s  

confirms t h e  authors’ claims f o r  second-order accuracy on smooth g r i d s ,  bu t  

shows t h a t  t h e  same accuracy cannot be obta ined  on a r b i t r a r y  g r i d s .  It i s  

shown t h a t  t h e  schemes have a unique g e n e r a l i z a t i o n  t o  axisymmetric f low that  

I 
i 
I 
I 

I preserves  t h e  second-order accuracy. 

T h i s  r e s e a r c h  w a s  supported under t h e  Nat iona l  Aeronaut ics  and Space 
Adminis t ra t ion  under NASA Contract  No. NAS1-18107 while  t h e  a u t h o r  was i n  
r e s i d e n c e  a t  t h e  I n s t i t u t e  €or  Computer Appl ica t ions  i n  Science and 
Engineer ing (ICASE), NASA Langley Research Center ,  Hampton, VA 23665-5225. 
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I 1. I n t r o d u c t i o n  
i 
I Most Euler  codes w r i t t e n  f o r  computing i n v i s c i d  aerodynamic f lows have 

made use of t h e  f ini te-volume formulat ion.  An e a r l y  example was d e s c r i b e d  by 
I 
I R i z z i  and Inouye 111. E s s e n t i a l l y ,  they a r e  g e n e r a l i z a t i o n s  of t h e  second- 

I 

o r d e r  a c c u r a t e  Lax-Wendroff [ 2 ]  a lgor i thm t o  nonrec tangular  mesh geometr ies .  

I Conservat ion (which is a necessary i n g r e d i e n t  toward ensur ing  convergence t o  

c o r r e c t  weak s o l u t i o n s  [ 3 ] )  comes from regarding t h e  numerical  r e p r e s e n t a t i o n  
I 
I of t h e  flow as comprising average states wi th in  each computational c e l l .  The 

I r u l e s  f o r  updat ing t h e s e  va lues  employ i n t e r f a c e  f l u x e s  which t r a n s f e r  t h e  

I mass, momentum, and energy between neighboring ce l l s ,  l e a v i n g  t h e  t o t a l  quan- 

I t i t i e s  p r e s e n t  unchanged except  f o r  boundary efEects. There seems t o  be 

, l i t t l e  a n a l y s i s  t o  i n d i c a t e  how accura te  t h e s e  schemes are on nonuniform 
I 

I 
g r i d s .  They are c l e a r l y  second-order a c c u r a t e  on uniform, r e c t a n g u l a r  g r i d s ,  

I 

l and i t  has been g e n e r a l l y  assumed t h a t  second-order accuracy w i l l .  s t i l l  be 

I obta ined  on a " s u f f i c i e n t l y  smooth" i r r e g u l a r  g r i d .  

I Finite-volume schemes based on c e n t r a l - d i f f e r e n c i n g  a lgor i thms have 

become very popular fo l lowing  t h e  work of Jameson e t  a l .  [ 4 1 .  Because t h e s e  

schemes update t h e  s o l u t i o n  v i a  a f i v e - c e l l  r a t h e r  than  n i n e - c e l l  s t e n c i l ,  
I 

1 

I t h e i r  accuracy is easier t o  analyze and has  been t r e a t e d  t h e o r e t i c a l l y  by 

I Turkel  [51, whose r e s u l t s  have l ed  t o  modified schemes o f f e r i n g  b e t t e r  
I 

accuracy.  Numerical experiments confirming t h i s  are repor ted  by Turkel  e t  a l .  

[61 

Y e t  another  p o s s i b i l i t y  i s  t h e  scheme r e c e n t l y  introduced by N i  [7]. 

Here t h e  numerical  v a l u e s  r e p r e s e n t  s t a t e s  found a t  t h e  corners  ( v e r t i c e s )  of 

t h e  computat ional  ce l l s .  N i  o r i g i n a l l y  descr ibed  h i s  scheme i n  f i n i t e -  

d i f f e r e n c e  terms, wi th  t h e  va lues  approximating p o i n t  samples of t h e  continuum 
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s o l u t i o n .  Subsequently,  i t  has  been descr ibed  i n  f in i te -e lement  terms wi th  

t h e  v e r t e x  values  implying a b i l i n e a r  i n t e r p o l a t i o n  f u n c t i o n  w i t h i n  each c e l l  I 

(Davis e t  a l .  [8], Lohner e t  a l .  [ 9 1 ) .  This l a t t e r  view enables  a p r e c i s e  

I 

I 

i n t e r p r e t a t i o n  of conserva t ion  t o  be given. A t  a t i m e  when var ious  s c h o o l s  of 1 

thought are l e a r n i n g  t o  use  each other 's  language and i d e a s ,  we p r e f e r  t o  

I classify N i ' s  method under t h e  n e u t r a l  term of "cell  vertex' '  scheme. One 

a t t r a c t i o n  of N i ' s  scheme (which has been very s i g n i f i c a n t l y  r e f i n e d  by Hal l  

[ l o ] )  i s  t h a t  i t  seems t o  handle  a r b i t r a r y ,  even completely unsmooth, meshes 
I 

i n  a very n a t u r a l  way. However, w e  w i l l  show t h a t  claims of uniformly second- 

o r d e r  accuracy are based on an i n c o r r e c t  argument. The o b j e c t  of t h i s  paper 

i s  t o  provide a c o r r e c t  a n a l y s i s  of t h e  accuracy of c e l l - v e r t e x  schemes. 

This  is made easier  by t h e  fact t h a t  t h e s e  schemes, i n  a sense ,  f a c t o r i z e  

t h e  process of updat ing t h e  s o l u t i o n .  Each c e l l  i s  examined t o  see i f  t h e  

f l u x e s  around i t  are i n  balance;  i f  n o t ,  some changes are made. The updat ing 

process  a t  each v e r t e x  uses  nine v e r t e x  states so  t h a t ,  o v e r a l l ,  t h e  scheme is  

as complex as Lax-Wendroff. However, t h e  test f o r  balance involves  only fou r  

v e r t i c e s ,  making t h e  f i r s t  s t a g e  very amenable t o  a n a l y s i s .  This  f i r s t  s t a g e  

i s  t h e  only p a r t  t o  be analyzed h e r e ,  but t h i s  i s  t h e  only a n a l y s i s  needed t o  

determine t h e  accuracy of t h e  s teady  s ta te  which is  reached when a l l  ce l l s  are 

i n  equi l ibr ium. That i s  t o  s a y ,  t h e  i n t e g r a l  

eva lua ted  by t h e  t rapezium r u l e ,  vanishes  around every  c e l l  (F igure  l a ) .  Note 

t h a t  t he re  a r e  g e n e r a l l y  more v e r t i c e s  than ce l l s  so  t h a t  t h i s  c o n d i t i o n  

l e a v e s  the s o l u t i o n  undetermined. Boundary c o n d i t i o n s  need t o  be added, but 
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~ 

c a r e f u l l y .  I f  t oo  many are p resc r ibed ,  then t h e  i n t e g r a l  cannot van i sh  every- 

e t  a l .  [13] have proposed a scheme which a l s o  makes use of flow v a r i a b l e s  

v e r t i c e s  outnumber ce l l s  by roughly 2:l; so  t h e  problem would be overcon- 

s t r a i n e d  even without boundary condi t ions .  I n s t e a d ,  Jameson's procedure is  

1 such  t h a t  t h e  s o l u t i o n  ceases t o  change when t h e  f l u x  i n t e g r a l  vanishes  around 

I a l l  c o n t r o l  volumes such as the  one shown i n  F igure  lb .  
I 

The a n a l y s i s  conta ined  i n  t h i s  paper a p p l i e s  equa l ly  t o  N i ' s  and t o  

Jameson's schemes because i t  e v a l u a t e s  the accuracy of t h e  approximate f l u x  

i n t e g r a l  i n  terms of the  geometry o€ t h e  polygon around which i t  is 

I eva lua ted .  The claim, mentioned e a r l i e r ,  of second-order accuracy a r i s i n g  

, from t h e  trapezium r u l e  i s  f a l l a c i o u s  because, as we r e f i n e  t h e  g r i d ,  t h e  con- 

I t o u r  around which w e  i n t e g r a t e  does not remain f i x e d  but  s h r i n k s  wi th  t h e  g r i d  
I 
l and always con ta ins  j u s t  a few i n t e r v a l s .  In f a c t ,  i t  i s  easy enough t o  make 

I 

1 
I 

an  a n a l y s i s  based on a l o c a l  two-dimensional Taylor  expansion which demon- 

s t ra tes  t h a t  t h e  i n t e g r a l s  a r e  only eva lua ted  t o  second-order accuracy if t h e  

polygons meet c e r t a i n  geometric c r i t e r i a .  These c r i t e r i a  are not  m e t  by any 
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triangle or by any quadrilateral except parallelograms. They are satisfied by 

all regular n-gons (n > 3 )  and in a seemingly sporadic manner by various 

irregular n-gons (n > 4 ) .  I n  practice, the errors will be acceptable .if the 
I polygons have sufficiently small error constants, the formulae €or which are I 

I 

given. 

There are two offshoots to our analysis. One is that we derive a con- I 

sistent finite-element interpretation of the cell-vertex schemes. We show 

that it gives results which differ from those of the finite-difference inter- 
I 

pretation by terms of the same magnitude as the truncation error inherent in I 

I 
either. Finally, we consider the application of these schemes to problems 

which are pseudo-two-dimensional, €or example, axially symmetric. We show I 

that out of a family of plausible extensions, only one member is capable of 

retaining second-order accuracy near the axis. 

2. Description of Cell-Vertex Schemes 

We consider steady inviscid two-dimensional compressible flow governed by 

the Euler equations 

where 

where 

aG aF 
- + + -  - 0  - - 
ax aY 

P =-  (y-l) p [ h  - 1 (u2 + v 2 11 
Y 
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and h is total specific enthalpy, assumed constant. We intend to satisfy 

these equations in an approximation to their integral form 

where the integral is around any arbitrary closed contour. To this end, the 

plane is divided into cells that are either regularly arranged quadrilaterals 

(Figure la) or unstructured triangles (Figure lb). In either case, the 

vertices are numbered, and a fluid state xi, where u = ( p ,  pu, pv), is 

assigned to the ith vertex. Ni’s scheme for quadrilaterals approximates (2.4) 

by trapezium rule integration around each cell. This is 

- 

where the summation is over all sides of the cells, and all differences are 

taken anticlockwise. Note that D has dimensions of the time derivatives of 

the actual conserved quantities (not their densities), so that indicates 

how masses, etc., associated with the points A, B, C, D are to be changed. 

Different time-marching schemes result from specifying different weights with 

which the changes are distributed over A ,  B, C, D. Ni’s original recipe [7] 

reproduced a type of Lax-Wendroff algorithm, and Hall [ l o ]  has presented a 

Runge-Kutta version. Here, however, we are interested only in the steady 

- D 

state which we assume is characterized by the vanishing of D for every 

cell. In practice, this will only happen if the boundary conditions are 

specified carefully. (For example, on a grid of n x n cells there will be 

n2 equations and (n+1)2 unknowns; hence 2n+l boundary conditions must be 

- 
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presc r ibed . )  Also, t h e  r e s i d u a l s  do not i n  g e n e r a l  van i sh  near a cap tu red  

shock i l l ] .  This  i m p l i e s  t h a t  our i n t e r e s t  h e r e  is c h i e f l y  i n  t h e  accuracy 

obta ined  i n  smooth p a r t s  of t h e  flow. 

I n  Jameson’s t r i a n g u l a r  g r i d  scheme [13 ] ,  t h e  average  f l u x  a c r o s s  each 

l i n e  j o i n i n g  two v e r t i c e s  i s  eva lua ted  as 

1 1 E = -  ( F  + EB) (J’, - yA> - - (G cB) (xB - XA)* -AB 2 -A 2 -A 

Then masses, e t c . ,  p r o p o r t i o n a l  t o  E A t  are added a t  X -AB and sub- 

t r a c t e d  a t  Y. When t h i s  has been done f o r  a l l  edges i n  t h e  mesh, t.ien eve ry  

p o i n t  has been changed by a n e t  amount p r o p o r t i o n a l  t o  the  f l u x  a c r o s s  the  

per imeter  of t h e  polygon Formed by a l l  t r i a n g l e s  meeting a t  t h a t  po in t .  A t  

t h e  s t e a d y  s t a t e ,  we  a g a i n  assume t h a t  a l l  t h e s e  f l u x  i n t e g r a l s  van i sh  - due 

care being taken  a t  t h e  boundary. 

It is the  a b i l i t y  t o  c h a r a c t e r i z e  s t eady  s t a t e  s o l u t i o n s  i n  t h i s  r a t h e r  

s imple  way t h a t  makes t h e  accuracy of c e l l - v e r t e x  schemes much e a s i e r  t o  

ana lyze  than Lax-Wendroff schemes where t h e  s t a t emen t  of l o c a l  e q u i l i b r i u m  

t y p i c a l l y  involves  n ine  f l u i d  states and th i r ty - two  mesh coord ina te s .  The 

s t a t emen t  of equ i l ib r ium f o r  a Jameson-type scheme on q u a d r i l a t e r a l s  i nvo lves  

only f i v e  f l u i d  s ta tes ,  but a n a l y s i s  of i t s  accuracy needs twenty-four mesh 

coord ina te s .  

3. F in i te -Dif fe rence  Analys is  

We wish t o  know how a c c u r a t e l y  t h e  formula 
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approximates t h e  i n t e g r a l  

-F I = $ F d y  - ( 3 . 2 )  

t aken  around t h e  same polygonal contour. A t  t h i s  s t a g e ,  t he  va lues  of F 

are thought of as p o i n t  samples, i n  t h e  s p i r i t  of f i n i t e  d i f f e r e n c e  methods. 

Th i s  is most e a s i l y  done by assuming t h a t  - F is r e p r e s e n t a b l e  by a Taylor  

expansion about some a r b i t r a r y  nearby o r i g i n .  We cons ide r  each s i d e  of t h e  

polygon i n  turn .  The numerical  approximation t o  t h e  i n t e g r a l  is 

- 

( 3 . 3 )  

4 + 0 (h  1. 

The l e a d i n g  terms i n  t h e  exac t  i n t e g r a l  are found by in t roduc ing  a l o c a l  

c o o r d i n a t e  5 vary ing  l i n e a r l y  from 0 t o  1 over  AB, so  t h a t  a t y p i c a l  po in t  

on AB i s  de f ined  by 

and 
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F 
-XY 

) F ] + O(h’) . 1 2 2 
+ (YA + YAYB + YB -yy 

Sub t rac t ing  (3.5) from (3.3) g i v e s  t h e  e r r o r  on AB as 

I 

5 I 
I 

(3.5) 

Hence the  t o t a l  e r r o r  may be a r r i v e d  a t  simply by summing t h e  con t r ibu -  

t i o n  from a l l  s i d e s .  C l e a r l y  we can f i n d  t h e  e r r o r  i n  t h e  - G i n t e g r a l  

s i m i l a r l y .  The f i n a l  r e s u l t  is  

/ F d y = l F A y - E  F + 2 E  F - E  F 
2 -xx 3 -xy 4 -yy - - 

/ G ~ X = ~ G A X - E ~ ~ ~ + ~ E  - G - E  G 

- - 2 -xy  3 -YY 

(3.6a) 

(3.6b) 
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I 

where i E l  = iij- 1 1 (Ax) 3 

= - 1 1 ( A X )  2 Ay E2 12 

= - 1 1 AX (Ay) 2 E3 12 

E4 = iij- 1 1 ( A Y l 3 -  

( 3 . 7 )  

It is p leas ing  t h a t  t h e  e r r o r  cons t an t s  t a k e  t h e s e  s i m p l e  forms and use- 

f u l  t h a t  t h e r e  are only fou r  of them. Observe t h a t  t h e  q u a n t i t i e s  w e  wish t o  

I approximate are O(h2) and t h a t ,  s u p e r f i c i a l l y ,  t h e  e r r o r  c o n s t a n t s  are 

O(h 1, making the  method f i r s t - o r d e r  accu ra t e .  However, some c a n c e l l a t i o n  

I 
I 

I 
I 3 

I t a k e s  p l ace  i n s i d e  t h e  summations i n  ( 3 . 7 ) ,  which holds  out  t h e  prospec t  of 

I b e t t e r  accuracy ,  depending on geometric p r o p e r t i e s  of t he  g r i d  which we now 

I i n v e s t i g a t e .  

I 4. Polygons wi th  Vanishing Er ro r  Constants 

i It is easy t o  see t h a t  any polygon wi th  c e n t r a l  symmetry w i l l  have El  

I 
t o  E4 i d e n t i c a l l y  zero  because c o n t r i b u t i o n s  from oppos i t e  s i d e s  w i l l  

van ish .  Also, g iven  one e r r o r - f r e e  polygon, we can form o t h e r s  by permuting 

t h e  s i d e s  and forming mi r ro r  images. It is s t r a i g h t f o r w a r d  t o  show that an  

e r r o r - f r e e  polygon remains e r r o r - f r e e  under r i g i d  r o t a t i o n s .  C e r t a i n  o t h e r  

r e s u l t s  are a l s o  o b t a i n a b l e .  
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Theorem I : A q u a d r i l a t e r a l  i s  e r r o r - f r e e  i f f  i t  ,s a para l le logram.  

Proof: For a q u a d r i l a t e r a l  ABCD, t h e  e r r o r  c o n s t a n t s  can be manipulated I 

where 

and S i s  t he  a r e a  of t h e  q u a d r i l a t e r a l .  The only terms which may vanish  i n  

’X +x ’X >, (y -y +y -y >. These q u a n t i t i e s ,  t h e s e  express ions  are 

d i v i d e d  by two, are t h e  components of t h e  vec to r  which j o i n s  t h e  midpoints of 

t he  two diagonals.  Thus E l  t o  E4 van i sh  i f f  t h e  d i agona l s  b i s e c t  each o t h e r ,  

which only happens i f  t h e  q u a d r i l a t e r a l  i s  a para l le logram.  

(xA B C D A B C D  

Corol la ry :  No t r i a n g l e  i s  e r r o r - f r e e .  

Proof :  S ince  t r i a n g l e s  are degene ra t e  q u a d r i l a t e r a l s ,  they are excluded 

by Theorem 1. 
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Theorem 2: Any r e g u l a r  n-gon (n  > 3)  is e r r o r - f r e e .  
I 

Proof:  For n even t h e  r e s u l t  is t r i v i a l  by symmetry. A proof ,  which 

i n c l u d e s  n odd, fo l lows  by cons ide r ing  t h e  polygon i n  t h e  complex p lane .  I 
I 

Without loss  of g e n e r a l i t y ,  one s i d e  can be made para l le l  t o  t h e  x-axis, and 

each  s i d e  is then  r ep resen ted  by one of the  nth r o o t s  of u n i t y ,  s ay  

zk (k = 0 ,  ... n-1) where 

2nk 2n k z = COS - + i s i n  - 
k n n 

then  

2sk sin2 2ak 3 2.nk 3 cos - - -  i s i n  - s-n - - 2nk 3 2nk 2 2nk = 1 cos - + 3- cos - 3 

k k n n n n n n 1 'k 

2nk 2 2nk - 3 cos - (1 - cos -) 2nk s i n  - 2 2nk = 1 cos3 = + 31 cos  - 
n n n n n k 

- i sin - 2nk (1 - cos 2 -) 2nk 
n n 

= 4(E1 + i E 2 )  

= (by a similar argument) - 4(E t iE4) - 3 

But 

3k k=n- 1 3 

k=O k=O 

k=n- 1 

1 1 z =  

2;" - 1 

= 3  z -1 1 
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The numerator van i shes  because zn = 1. So t h e  expres s ion  equa l s  z e r o  1 

u n l e s s  the denominator a l s o  vanishes ;  t h a t  is, u n l e s s  n = 3 (when t h e  expres- 

s i o n  equals  3 ) .  So u n l e s s  n = 3,  E = E = E = E = 0. 1 2 3 4  

For n > 4,  we can f i n d  a v a r i e t y  of asymmetr ic  e r r o r - f r e e  polygons. The 

g e n e r a l  procedure i s  t o  p r e s c r i b e  (n-2) v e r t i c e s .  Then r e q u l r i n g  t h a t  E l  

t o  E4 vanish  g ives  fou r  equa t ions  f o r  two unknown coord ina te  pairs.  Unfor- 

t u n a t e l y ,  t h e s e  are simultaneous cub ic  equa t ions  f o r  which no s y s t e m a t i c  

s o l u t i o n  is apparent.  To g ive  a f l a v o r  of t h e  p o s s i b i l i t i e s ,  we cons ide r  a 

pentagon with p re sc r ibed  v e r t i c e s  a t  (O,O), ( O , l ) ,  and (1,O). We main ta in  

symmetry by supposing t h a t  an e r ror - f  ree pentagon e x i s t s  wi th  a d d i t i o n a l  

v e r t i c e s  a t  ( l + a , b ) ,  ( b , l + a ) .  Then we  r e q u i r e  

3 3 3  1   AX)^ = 1 ( A Y ) ~  = 1 - (l+a-b) + a - b = 0 

and 

2 1 ( A x ) ~ A ~  = 1 (Ay2)Ax = ab2 - (l+a-bI3 - ba = 0.  

Condition (4.2) s i m p l i f i e s  t o  

3 (a -b ) (a+ l ) (b - l )  = 0;  (4.4) 

i f  (a-b) = 0 ,  t h e r e  are no s o l u t i o n s  t o  (4.3). I f  b = 1, then  (4.3) y i e l d s  

2 a 3 + a  - a = ~  
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whereas, i f  a = -1 then  

2 b 3 - b  - b = O  

1 
2 b = 0,  - (1 i 47). 

Alt..ough t h e r e  appear t o  be s ix  s o l u t i o n s ,  L e y  a c t u a l l y  appea r  i n  

p a i r s .  In each p a i r ,  t h e  s i d e s  are permutations of t h e  same set  of vec to r s .  

The s o l u t i o n  t o  t h e  problem c o n s i s t s  of t h r e e  independent sets of v e c t o r s ,  

each of which, by permuta t ion ,  gene ra t e s  24 d i f f e r e n t  pentagons, i f  we a l l o w  

t h e  g tven  v e c t o r s  t o  permute a l s o .  However, ou t  of a g iven  s e t  of v e c t o r s ,  

only two o rde r ings  w i l l  produce a convex polygon, t h a t  i s ,  those  which are 

monotonically ordered  by o r i e n t a t i o n .  Those two are mi r ro r  images of each 

o t h e r .  The independent convex pentagons d e r i v a b l e  from (4.2) and (4.3) are 

shown i n  F igure  2. The square  i s  a degenera te  case f o r  which one s i d e  

vanishes .  

E r ro r - f r ee  polygons can a l s o  be cons t ruc t ed  by u n i t i n g  one o r  more e r r o r -  

f r e e  polygons t h a t  have edges i n  common; bu t ,  though t h e  c o n s t r u c t i o n  of 

e r ro r - f  ree polygons has some mathematical i n t e r e s t ,  i t  seems u n l i k e l y  t h a t  any 

p r a c t i c a l  mesh could be cons t ruc t ed  from them, except f o r  completely r e g u l a r  

meshes. We t u r n ,  t h e r e f o r e ,  t o  t h e  more practical  q u e s t i o n  of f i n d i n g  

polygons f o r  which t h e  e r r o r  c o n s t a n t s  are accep tab ly  small. 

5. Polygons with Small E r r o r  Constants 

The only complete resu l t s  t h a t  have been obta ined  relate t o  quadr i -  

laterals,  f o r  which t h e  e r r o r  c o n s t a n t s  are g iven  by (4.1). The l o c a l  t runca-  
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tion error will be O(h2) provided these expressions are O(h4). We can I 
clearly identify factors which are O(h2), and the only possibility for I 
second-order accuracy i s  that 

1 (5.la) 2 - XB + xc - XD) = 0 (h 1, 
(xA 

and 

(5.lb) I 

Although these conditions are not met by arbitrary quadrilaterals, they 

are met by quadrilaterals which are produced as part of an analytic grid. 

Suppose we have grid generating functions I 

and the mesh points are the intersections of for integer 

values of m, n. Then, if the mesh is systematically refined, AS, A n  tend 

to zero, and 

5 = mAS, n = nAn, 

provided the cross-derivat ives are not large. 

Note that since the error terms involve only the local intrinsic geometry 

of each cell, neighboring cells may be of markedly different shape, size, or 

orientation. That statement cannot be made for finite-volume schemes 
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[5 ,11 ] .  Indeed, t h e  l o c a l  q u a l i t y  of c e l l - v e r t e x  schemes makes them second- 

o r d e r  a c c u r a t e  on g r i d s  genera ted  more s t r a i g h t f o r w a r d l y  than  those  desc r ibed  

above. Suppose a c o a r s e  g r i d  i s  determined a r b i t r a r i l y ,  and f i n e  g r i d s  are 

c o n s t r u c t e d  from i t  by r epea ted ly  b i s e c t i n g  t h e  ce l l  edges. Within each of 

t h e  o r i g l n a l  c e l l s ,  PQRS, t h e r e  is a mapping de f ined  by 

(5.3a) 

(5.3b) 

which meets t h e  c o n d i t i o n s  (5.2). 

Rela ted  r e s u l t s  have been found by Pa i s l ey  [ l l ] ,  who f i n d s  t h a t  i n  t h e  

c e l l - v e r t e x  method, i t  i s  a l lowable  to p e r t u r b  a r e c t a n g u l a r  mesh by O(h2) 

3 whereas wi th  Jameson's [ 4 ]  scheme, t h e  a l lowable  p e r t u r b a t i o n  is only  O(h ). 

6 .  A Finite-Element Approach 

A s  mentioned i n  t h e  i n t r o d u c t i o n ,  t h e  schemes under s tudy  have been 

desc r ibed  elsewhere as f i n i t e  element schemes. Whether t h i s  is  j u s t i f i a b l e  o r  

n o t ,  t h e r e  is one o b j e c t i o n  t h a t  can be removed. Th i s  o b j e c t i o n  i s  that  the 

formula 

i s  obta ined  by i n t e g r a t i n g  over each t r i a n g u l a r  ( q u a d r i l a t e r a l )  element 

assuming a l i n e a r  ( b i l i n e a r )  d i s t r i b u t i o n  €or both  - F and - G, which is incon- 
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sistent because there is a nonlinear functional relationship between - F and 

G. A consistent finite-element model can be derived by assuming that the 

vector w varies linearly (bilinearly) over the elements, where 

- 

- w = p  "2 (i) . 
These variables were introduced by the author to facilitate the con- 

They have the property that struction of an approximate Riemann solver [14]. 

every component of 2, - F, - G is bilinear in the components of - W. Thus 

F =  
c 

"lW2 

'+ hw 2 + - y+l 2 y-1 2 
1 2y w2 - 7g w3 

w2w3 

where h is a constant for steady flow, equal to the specific total 

enthalpy. In computing a typical term of (6.1) such as 

IAB = I, B dy 

there will be subterms of the form 

IAB i,j JA Bw i w j dy . 

The consistent evaluation of this term is 
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+ w  w + w , w  + 2 w  w 1 
= (yB 'A) [2WiBWjB iA jB iB jA iA jA 

1 - (yB - y )(F 2 A -B The first term contributes the 'naive' approximation +EA); 
the second term is part of a correction that makes the approximation self- 

consistent. The leading contributions to it are due to first derivatives of 

- W. The correction term in ( 6 . 5 )  is, to leading order, 

When we sum such terms over every side of the polygon, expressions arise 

proportional to the constants E l ,  E*, E3, E4 given by equations (3.7). 

Where these error constants are small enough, the error due to inconsistency 

is negligible, and both the consistent and inconsistent formulae approximate 

the flux integrals to O(h2). 

7. An Integral Formulation of Axisymmetric Flow 

Flow which is identical in every plane through some axis of symmetry is 

governed by differential equations that can be written in either of the forms 
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u + F + G = (v/r) u - t -x -r - (7.1) 

or 

(r2lt + (rFIx - + (r - GIr = - p (7.2) 
I 

where E, - F, - G are the usual conserved quantities in two-dimensional flow, 

except that r is now a radial coordinate, and v a radial velocity. Here 

- p is the vector (0, 0, p ,  O)T. 

A s  a basis for numerical work, (7.1) is tempting because it requires only 

slight modification to a two-dimensional code. However, ( 7 . 2 )  is a better 
I 

basis for shock-capturing because it expresses conservation more exactly. To 

see this, imagine that we are performing a truly three-dimensional computa- I 

tion, using the same grid in every axial plane, so that each 3-D cell is a 2-D 

cell rotated through some angle 9 with respect to the axis (Figure 3 ) .  

The exact angle does not matter, so long as we avoid the extremes Q scd 27. 

If we make a flux balance on such a control volume, the contributions 

from the four faces which do not lie in the radial planes can be evaluated 

analytically, by integrating with respect to the angle. The result is 

a - / {  r u dA - { (rx dr - r Gdx) - I/ p dA = 0 - - an n 
- 

at n 
( 7 . 3 )  

where n is the interior of the 2-D cell, and an its boundary. 

In order to check that a proposed solution was conservative (and hence a 

correct weak solution), we would check that all such integral equations were 

satisfied. A numerical method which imposes this as a constraint will be a 

correct shock-capturing method. In this way, we can give an interpretation to 

conservation of "radial momentum" via the third equation in (7.3). 
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Equation ( 7 . 3 )  can be t h e  b a s i s  f o r  extending t o  axisymmetric flow e i t h e r  

of t h e  c e l l - v e r t e x  methods under d iscuss ion .  I n  N i ‘ s  scheme, one i n t e g r a t e s  

t h e  q u a n t i t i e s  r F ,  - -  r G  around q u a d r i l a t e r a l s ;  i n  Jameson’s scheme, t h e  

q u a n t i t y  r(FAy - - ~ A X )  is  eva lua ted  for  each s i d e  and used t o  update t h e  

a d j o i n i n g  v e r t i c e s .  The problem we now addres s  is how t o  e v a l u a t e  t h e s e  

t h i n g s  numerically.  

8. E r r o r  Analvsis f o r  t h e  Axisvmmetric Methods 

In e i t h e r  method, t h e  c e n t r a l  i ng red ien t  is an  expres s ion  of t h e  form 

Br F d r  o r  lABr - G dx. L - 
Consider t h e  f i r s t  of these .  Two p l a u s i b l e  computa t iona l  formulae are 

1 
I AB 

= - 1 (rB - r A )  (rA +rB) [ F ~  + 
‘AB 4 

A s  i n  t h e  two-dimensional case, we f i n d  what t he  exact va lue  of t h e  

i n t e g r a l  should be i n  terms of a Taylor expansion about an  a r b i t r a r y  nearby 

p o i n t .  The r e s u l t  i s  
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+ 3 ( r : + r  1 r + r  2 )F A B  B -r 

1 
24 A A A A B  B A  B A B  

+ r x 2+ 2 r  x x + - ( 3 r  x + 2r x x + rA% 

+ - 1 ( 3 r A  2 xA + 2rArBxA + rB 2 xA + r g  2 XA + r A  2 r B  
12  

2 3 ) F ] + ... . 1 3  2 + (rA + rA rB + r r + rB -rr 
A B  

(8.3) 

+ 3r x 2 ) ~  B B -XX 

2 r  r x + 3 r B  2 xB) xxr 
A B B  

I I f  we  make similar expansions f o r  t he  approximations (8.11, (8.21, and I 

s u b t r a c t  from them (8 .3) ,  we f i n d  e r r o r  e s t i m a t e s  as fo l lows .  

1 - 1  1 3 IAi - IAB = (rB-rA) L#rB-rA)(x -x )F + :(r - rA) -F-  B A -X 6 R -L 

- z ( ~ B - ~ A ) ( 3 r A ~ A  1 + r x - r x - 3rBxB) F A B  B A  -xx 

- -(r 1 -1- ) (3rAxA - r x + r n - 3rBxB) F -xr 12 B A A B  B A  

+ 1 ( r B - r A ) ( r B  2 2  - r ) F ] + ... 
A -rr 

xAB 2 - = ( rB- rA> [ -  -(r 1 -r >(x -x F - - 1 ( rB- rAl2  F -r 12 B A B A -X 12 

+ - 1 (xB-xA> ( rAxB - r x ) F 
12 B A -XX 

1 
12 B A -xr + - (rB-rA) (rAXB - r X ) F ] + 
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Comb€ning terms f o r  a p a r t i c u l a r  polygonal c o n t r o l  volume, w e  o b t a i n  t h e  

fo l lowing  equa t ions  r e l a t i n g  t h e  exact i n t e g r a l  t o  t h e  approximations (8.1),  

(8 .2) .  

wherein we a g a i n  € ind  t h e  e r r o r  cons t an t s  de f ined  i n  (3.7). A t  f i r s t  s i g h t ,  

t h i s  i s  a s a t i s f a c t o r y  r e s u l t  showing t h a t  t h e  e r r o r s  are O(h ) on a smooth 

g r i d .  However, t h e  q u a n t i t y  being approximated is I,rr%dA, which is 

O(rh ). The problem is t h a t ,  near t h e  a x i s ,  w e  f i n d  cel ls  f o r  which r i s  

O(h), and t h e  e r r o r  terms are O(h) r e l a t i v e  t o  t h e  t r u e  values.  On a non- 

smooth mesh, they are even O(1). 

4 

2 

We observe from (8.6) and (8.7) t h a t  t h e s e  p a r t i c u l a r  e r r o r s  could be 

e l imina ted  by choosing t h e  l i n e a r  combination 

Note t h a t  t h i s  i s  t h e  combination obta ined  i f  w e  assume t h a t  K ,  - F,  both 

vary l i n e a r l y  a long  AB, and then i n t e g r a t e  e x a c t l y .  The e r r o r  a n a l y s i s  € o r  a 

s i n g l e  s i d e  now g i v e s  

1 L + - (rB - rA) F 1 .  
24 -r r 
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Therefore ,  t h e  t o t a l  e r r o r  around a p a r t i c u l a r  polygon i s  i 
I 

3 1 2 1 2 
~ 

I 

1 IAB - I r Fds = - F 1 ;(Ax) A r  + - F 1 r (Ax) (Ar) 12 -xx 6 -xr - 
(8.10) 

1 3 
12 -rr + - F 1 r (Ar) + ... . 

The a n a l y s i s  i s  now i d e n t i c a l  t o  t h e  two-dimensional ca se  except f o r  t h e  

appearance of t h e  mean r a d i i  (r) i n  every term. These € a c t o r s ,  however, 

compl ica te  ma t t e r s  cons iderably .  For example, i t  is no longer  t r u e  t h a t  a 

r e g u l a r  polygon has van i sh ing  e r r o r  c o n s t a n t s  because c o n t r i b u t i o n s  from 

o p p o s i t e  s i d e s  no longer  cance l  i n  gene ra l .  To put t h e  e r r o r  c o n s t a n t s  i n t o  

forms which make t h e i r  o r d e r  of magnitude se l f - ev iden t  needs cons ide rab le  

manipulation, which has only been c a r r i e d  ou t  f o r  q u a d r i l a t e r a l s .  The easiest 

term t o  analyze then i s  

3 4 3 3 4 
A 

- ri) = r - 2r r + 2rBrA - r c ( r i  + r.1+1) ( r i + 1  B B A  

3 4 4 3  
B 

+ r - 2r r + 2rCrB - r 
C B  C 

4 3 3 4 
C 

+ r - 2r r + 2rDrC - r 
D D C  

4 3 3 4 
D 

+ r - 2r r + 2rArD - r 
A D  A 

= 2rA 3 ( r B  - r ) + 2rg 3 ( r C  - r + 2rC 3 ( r D  - r ) + 2rD 3 ( r A  - rc) D A B 
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2 2 - r r  - r  2 ) 
A A C  C + rDrB + rB - r = 2 ( r A  - rc) ( r D  - r B )  ( r D  2 

3 
2 B = - ( r A  - rc) ( r B  - r D )  ( r A  + r + rC + r D )  ( r A  - rB + rC - rD) 

(8.11) + - 1 ( r  - r c )  (rB - rD> ( r A  + rB - r - rD> (rA - rB - rC + rD>- 
2 A  C 

The f i r s t  term i s  O(rh4) on g r i d s  which are smooth i n  the  sense  of 

t h e  previous d i scuss ion ;  i t  is O(rh3) on non-smooth g r i d s .  The second 

term appears  t o  be O(h4). That i t  s h a l l  be O(rh 4 ) imposes a n a t u r a l  con- 

d i t i o n  on the  g r i d  near  t h e  a x i s .  If the c e l l  n e a r e s t  t he  a x i s  has one s i d e  

on the  a x i s ,  then  i t  can be shown t h a t  one of t h e  f a c t o r s  ( r A  + rB - rC - 

rD),  ( r A  - rB - rC + r,) i s  O(h); the o t h e r  is O(rh)--which one i s  which 

depends on the  l a b e l l i n g .  It i s  assumed t h a t  t h i s  ce l l  is  a l s o  smooth i n  t h e  

same sense  as t h e  o the r s .  

We w i l l  omit d e t a i l s  of t he  c a l c u l a t i o n s  t h a t  show the  o t h e r  terms i n  

(8.10) t o  be O(rh 4 ), s i m p l y  e x h i b i t i n g  the f i n a l  rearrangements.  We f i n d  

1 ;(AxI2Ar = (xB- x,,) (xA - xc> ( r A  2 - r + r 2 - r 2, 
B C D 

(8.12) 

2 2 + (xB - xD> ( r A  - rc (xA - x + xc -xD). B 
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1 
Here the  l as t  two terms are O(rh4) on any smooth g r i d ,  and t h e  f i r s t  I 

I 
one i s  s o  i f  t h e  a x i s  i s  included.  Also, with  g r e a t  pa t i ence ,  we can ob ta in :  ~ 

2 1  1 r(Ax)(Ar) = ( rA + r + rc + r D ) ( r B  - r D > ( r A  - rC>(XA - xB+ xc - xD) B 

+ s (rA + rB + rc + r D > ( r A  - rB + rC - rD)  

1 
2 A + - s ( r  + rB - rc - r D ) ( r A  - rB - rc + rD> 

(8.13) 

where S is the c e l l  a r ea .  

On smooth g r i d s ,  t h e  f i r s t  th ree  l i n e s  a r e  O(rh4) ;  t h e  f o u r t h  is 

O(h6). 

Now we t u r n  t o  the  terms involv ing  - G and - p i n  equat ion  (8.3).  Both 

of t h e s e  . terms a r e  O(h2),  but near  t he  a x i s  they almost cance l  so  t h e  

requirement f o r  accuracy i s  the  same a s  f o r  t he  o the r  terms. A s t r a i g h t f o r -  

ward eva lua t ion  of /Ip dA cannot avoid e r r o r s  O(h4) s o  some s u b t l e t y  i s  

needed. 

I n t e g r a t i o n  by p a r t s  shows t h a t  

(8.14) 

and we can use t h i s  t o  r e w r i t e  t he  terms i n  G and 2 as - 

I r - G dx - - P dA = I r (E - p) dx + r 2 dA (8.15) ar an n an n 
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I 

where both terms on t h e  RHS are of order  ( rh2 ) .  Now w e  can e v a l u a t e  t h e  

contour  i n t e g r a l  by t h e  methods j u s t  d i scussed;  t h e  e r r o r  terms w i l l  be 

(8.16) 

The summations mul t tp ly ing  Sr, --rr G have a l r eady  been shown t o  be 

O(rh4). The f i r s t  summation can be eva lua ted  as 

1 2 + (XA - x - x + XD> 2 + -2 S[3(XA - XB + xc - XD> B C  

+ (x* + XB - xc - XD) 2 3 (8.17) 

Every term i n  t h i s  expres s ion  can be j u s t i f i e d  as on a smooth mesh, 

except  f o r  t h e  t h i r d  l i n e .  Here S is  O(h2) and t h e  f i r s t  term i n s i d e  t h e  

b racke t  is and 

t h e  o t h e r  O(h2). Thus, t h e  o v e r a l l  o rde r  of t h e  expres s ion  must be h4. 

O(rh4) 

O(h 4 ), but  of t h e  two remaining terms, one w i l l  be O(r2h2) 

However, t h i s  does no t  des t roy  the  second-order accuracy of t h e  scheme nea r  

the axis ,  because i n  t h a t  reg ion  (2 - p>xx is O(r) so t h a t  a l l  con t r ibu -  

t i o n s  t o  (8.16) are a c t u a l l y  O(rh4). 
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Lastly, we have to evaluate 

r d ~ .  
n 

(8.18) 
, 

A formula for this can be found using finite element techniques, if the I 
gradient is rewritten as 

where J is the Jacobian of the transformation (E ,TI) + (x, y). Since we 

also have dA = J dS dy, (8.18) can be found straightforwardly. The result 

i s  

The error term turns out to be 

(8.19) 
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I 

+ - 1 [(rA + r + r + rD)IZs(xA - xB + xC - + 24 B C  

+ (XB - X J  (XA - xc> (rA - rB + r - rD)l C 

(8.20) 

All terms in this expression are O(rh4) provided the grid is smooth and 

contains the axis. The scheme which has emerged, although more cumbersome 

than one would hope for, is the unique cell vertex scheme retaining second- 

order accuracy in axisymmetric flow. It may be noted that it has also one 

property commonly demanded of a numerical code. It is satisfied identically 

by uniform flow parallel to the axis. For such a flow, - F is a constant, (2 - 
- p) vanishes , and ap/a r vanishes. Under these circumstances, all contribu- 

tions to the balance equations vanish identically. 

The expressions which have been found as approximations, in effect, to 

aF/ax - and aG/ar - have been derived by other authors from other considera- 

tions. Margolin and Adams [ 1 5 ] ,  in the context of a Lagrangian scheme, sought 

I 

numerical approximations that would make the equation 

--- dV - - div u (8.21) V dt - 

an identity at the discrete level. Here V is the volume of a moving parcel 

of fluid. The unique solution to this problem gave the differentiation 

operators derived here. Margolin and Adams report greatly improved accuracy 

in their computations. 
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The same o p e r a t o r s  were a l s o  obta ined  by Holm e t  a l .  [18] as t h e  unique 

o p e r a t o r s  t o  preserve  i n  t h e  d i s c r e t e  formula t ion  c e r t a i n  Hamiltonian pro- 

p e r t i e s  of t he  d i f f e r e n t i a l  equat ions .  

I f  t h e  scheme were t o  be used i n  practice, i t  may be noted t h a t  some 

s i m p l i f i c a t i o n s  of t h e  expres s ions  are p o s s i b l e ,  a t  least f o r  q u a d r i l a t e r a l  

c o n t r o l  volumes. The terms invo lv ing  F can be made more compact by 

rearrangement. The t e rms . invo lv ing  p in (8.19) can be used p a r t l y  t o  c a n c e l  

t h e  terms i n  (2 - p).  What emerges from t h i s  is t h e  fo l lowing ,  which we  

claim is t h e  s i m p l e s t  v e r s i o n  of t h e  unique formula 

- 

- 

(8.22) 
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A s t r i k i n g  Eeature i s  t h a t  t h e  approximations t o  I r - G dx and ll 2 dA 

are p r e c i s e l y  those  t h a t  would have been obta ined  by f in i te -e lement  i n t e g r a -  

t i o n s  assuming b i l i n e a r  v a r i a t i o n s  f o r  G and p. However, n e i t h e r  of those  

terms i n d i v i d u a l l y  is second-order accu ra t e .  The combination i s ,  g iven  s u i t -  

a b l e  cond i t ions  on t h e  g r i d .  

- - 

9. Conclusions 

The c e l l  v e r t e x  schemes s t u d i e d  i n  t h i s  paper have been claimed as 

second-order a c c u r a t e  on a r b i t r a r y  g r i d s .  C e r t a i n l y  t h e  r e s u l t s  show an  

impress ive  convergence as t h e  g r i d s  are r e f i n e d  [ l o ] .  However, w e  have shown 

t h a t  on a r b i t r a r y  g r i d s ,  t h e  l o c a l  t r u n c a t i o n  e r r o r  may be f i r s t - o r d e r .  

E x p l i c i t  e r r o r  c o n s t a n t s  a s s o c i a t e d  with g r i d  geometry have been der ived .  

These i n d i c a t e  what s o r t  of ce l l  shapes t o  avoid  and could a l s o  be used as 

p a r t  of a mesh refinement s t r a t e g y .  

The ex tens ion  t o  axisymmetric flow has been made, and i t  seems ha rde r  t o  

ach ieve  accuracy then. The unique formula which r e t a i n s  second-order accuracy  

n e a r  t h e  a x i s  has been derived. However, t h e  ex tens ion  t o  f u l l y  three-  

dimensional schemes is a n  extremely d i f f i c u l t  piece of a l g e b r a  which has  no t  

y e t  been attempted. 
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APPENDIX 

Some ProDerties of the Jameson Formula 

At convergence, Jameson’s scheme for triangles [13] satisfies 

around the perimeter of every polygon formed from the set of triangles meeting 

at a common vertex. This has been presented as a set of flux balance 

equations around an overlapping set of control volumes. A straightforward 

rearrangement of (A.l) is 

G(x - X  ) = o .  yi-1) - 7 -i i+l i-1 

Now because if the polygon has an odd number of sides, 

we travel twice round its perimeter to rearrive at our starting vertex, and 

with even sides there are two closed polygonal paths. Therefore, we can add 

arbitrary constants to the 3, 5.  Let us choose 3, GJ) which are the 

values at the common vertex (Figure lb). 

c (Yi+1- Yi-1 ) = 0 ,  

Rewrite ( A . 2 )  as 

I 

I The reason for the factors is shown in Figure 4 ,  where P, Q are 

the controids of OABS, OBC. Then I 
I 
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So ( A . 3 )  can be i n t e r p r e t e d  as t h e  f l u x  balance around non-overlapping 

c o n t r o l  volumes whose edges j o i n  t h e  c e n t r o i d s .  This  i n t e r p r e t a t i o n  l e a d s  t o  

a d u a l  form of t he  a lgo r i thm as fo l lows .  

Scheme II 

For a l l  edges MN i n  t h e  mesh, compute 

where S, T are t h e  o t h e r  v e r t i c e s  of t h e  t r i a n g l e s  ad jacen t  t o  MN, and use 

t h i s  f l u x  t o  update M,  N. 

Th i s  has  an i d e n t i c a l  outcome t o  t h e  s t anda rd  scheme, which w e  r epea t  f o r  

c o n t r a s t .  

Scheme I 

For a l l  edges MN i n  t h e  mesh, compute 

and use  t h i s  f l u x  t o  update S ,  T. 

Indeed, t h e r e  are two more p o s s i b i l i t i e s ,  both of which w i l l  also y i e l d  

t h e  same r e s u l t s  a t  convergence. 

1 
I 
I 
i 
I 

I 

I 
i 
! I 
1 
I 
I 

I 

I 
I 
I 

1 

Scheme 1x1 

For a l l  edges MN i n  t h e  mesh, compute 
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and use t h i s  f l u x  t o  update M y  N. 

Scheme IV 

For a l l  edges MN in t h e  mesh, compute 

and use  t h i s  f l u x  t o  update  S,  T. 

Given t h e  i n t e r p r e t a t i o n  t h a t  u is  piecewise l i n e a r  w i th in  each t r i -  

a n g l e ,  one i s  tempted t o  look f o r  con t ro l  volumes a l lowing  a more a c c u r a t e  

i n t e g r a t i o n .  For example (F igu re  5 ) ,  we may cons ider  t h e  c o n t r o l  volume 

formed by j o i n i n g  t h e  c e n t r o i d s  of each t r i a n g l e  t o  the  c e n t e r  of each s i d e .  

Along P I  t h e  va lue  of F, s a y ,  v a r i e s  l i n e a r l y  from - ( F  + EB) t o  

( I n  view of 1 - (F  + EA + xB) wi th  average va lue  3 4  

t h e  d i s c u s s i o n  i n  S e c t i o n  6 ,  we n e g l e c t  the non l inea r  v a r i a t i o n s  of Some 

a l g e b r a  w i l l  show t h a t  t h i s  does nothing more than  reproduce equa t ions  ( A . l )  

o r  (A.3). This r e s u l t  i s  obvious i f  we t h i n k  of i n t e g r a t i n g  over t h e  

area of t h e  c o n t r o l  volumes. Within OAB, is  a cons t an t  and t h e  area of 

O J P I  i s  one-third t h a t  of OAB. 

- 

1 
- 2 - 0  

1'5% + 2F + 5 F ). 1 2  -A -B 

- F.) 
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" (b) 

Figure 1. (a) Part of a structured quadrilateral mesh. 

Part of an unstructured triangular mesh. ( b )  
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Figure 2. Examples of polygons with zero error constants. 
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Figure 3. A computational cell partly rotated about the axis. 
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C 

Figure 4 .  Alternative control volume for Jameson’s scheme. 
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C 

Figure 5 .  Control volume using c e l l  bisec tors .  
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