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ERROR ESTIMATES FOR CELL-VERTEX SOLUTIONS OF THE
COMPRESSIBLE EULER EQUATIONS

P. L. Roe
Cranfield Institute of Technology, United Kingdom

ABSTRACT
The cell-vertex schemes due to Ni and Jameson, et al., have been
subjected to a theoretical analysis of their truncation error. The analysis
confirms the authors” claims for second-order accuracy on smooth grids, but
shows that the same accuracy cannot be obtained on arbitrary grids. It is

shown that the schemes have a unique generalization to axisymmetric flow that

preserves the second-order accuracy.

This research was supported under the National Aerounautics and Space
Administration under NASA Contract No. NAS1-18107 while the author was in
residence at the Institute for Computer Applications in Science and
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665-5225.
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1. TIntroduction

Most FEuler codes written for computing inviscid aerodynamic flows have
made use of the finite-volume formulation. An early example was described by
Rizzi and Inouye [1]. Essentially, they are generalizations of the second-
order accurate Lax-Wendroff [2] algorithm to nonrectangular mesh geometries.
Conservation (which is a necessary ingredient toward ensuring convergence to
correct weak solutions [3]) comes from regarding the numerical represeantation
of the flow as comprising average states within each computational cell. The
rules for updating these values employ interface fluxes which transfer the
mass, momentum, and energy between neighboring cells, leaving the total quan-
tities present unchanged except for boundary effects. There seems to be
little analysis to indicate how accurate these schemes are on nonuniform
grids. They are clearly second-order accurate on uaniform, rectangular grids,
and it has been generally assumed that second-order accuracy will still be
obtained on a "sufficiently smooth" irregular grid.

Finite-volume schemes based on central-differencing algorithms have
become very popular following the work of Jameson et al. [4]. Because these
schemes update the solution via a five-cell rather than nine-cell stencil,
their accuracy is easier to analyze and has been treated theoretically by
Turkel [5], whose results have 1led to modified schemes offering better
accuracy. Numerical experiments confirming this are reported by Turkel et al.
[6].

Yet another possibility is the scheme recently introduced by Ni [7].
Here the numerical values represent states found at the corners (vertices) of
the computational cells. | Ni originally described his scheme in finite-

difference terms, with the values approximating point samples of the continuum




solution. Subsequently, it has been described in finite-element terms with
the vertex values implying a bilinear interpolation function within each cell
(Davis et al. [8], Lohner et al. [9]). This latter view enables a precise
interpretation of conservation to be given. At a time when various schools of
thought are learning to use each other”s language and 1ideas, we prefer to
classify Ni“s method under the neutral term of '"cell vertex" scheme. One
attraction of Ni“s scheme (which has been very significantly refined by Hall
[10]) is that it seems to handle arbitrary, even completely umsmooth, meshes
in a very natural way. However, we will show that claims of uniformly second-
order accuracy are based on an incorrect argument. The object of this paper
is to provide a correct analysis of the accuracy of cell-vertex schemes.

This is made easier by the fact that these schemes, 1in a sense, factorize
the process of updating the solution. Each cell is examined to see 1f the
fluxes around it are in balance; if not, some changes are made. The updating
process at each vertex uses nine vertex states so that, overall, the schene is
as complex as Lax-Wendroff. However, the test for balance involves only four
vertices, making the first stage very amenable to analysis. This first stage
is the only part to be analyzed here, but this is the only analysis needed to
determine the accuracy of the steady state which is reached when all cells are

in equilibrium. That is to say, the integral

$ (F dy - G dx) (1.1)

evaluated by the trapezium rule, vanishes around every cell (Figure la). Note
that there are generally more vertices than cells so that this condition

leaves the solution undetermined. Boundary conditions need to be added, but




carefully. If too many are prescribed, then the integral cannot vanish every-
where. Paisley [11] discusses these isues, 1including the role of boundary
conditions in suppressing unwanted "checkerboard" modes in the solution. See
also Morton and Paisley [12].

For problems that avre geometrically complicated, or algorithms which
employ local mesh refinement in difficult areas, it is attractive to use
meshes composed of triangles, perhaps without any regular structure. Jameson
et al. [13] have proposed a scheme which also makes use of flow variables
located at vertices. Again, it 1s unclear whether to regard the values as
point samples or as defining a finite-element 1interpolant (this time
linear). Clearly, it 1is not now possible to require that the flux integral
vanishes around the perimeter of every cell because, in a triangular mesh,
vertices outnumber cells by roughly 2:1; so the problem would be overcon-
strained even without boundary conditions. Instead, Jameson”s procedure is
such that the solution ceases to change when the flux integral vanishes around
all control volumes such as the one shown in Figure 1b.

The analysis contained in this paper applies equally to Ni“s aund to
Jameson”s schemes because it evaluates the accuracy of the approximate flux
integral in terms of the geometry of the polygon around which it is
evaluated. The claim, wmentioned earlier, of second-order accuracy arising
from the trapezium rule is fallacious because, as we refine the grid, the con-
tour around which we integrate does not remain fixed but shrinks with the grid
and always contains just a few intervals. 1In fact, it is easy enough to make
an analysis based on a local two-dimensional Taylor expansion which demon-

strates that the integrals are only evaluated to second-order accuracy if the

polygons meet certain geometric criteria. These criteria are not met by any



triangle or by any quadrilateral except parallelograms. They are satisfied by
all regular n-gons (n > 3) and in a seemingly sporadic manner by various
irregular n—-gons (n > 4). In practice, the errors will be acceptable if the
polygons have sufficiently small error constants, the formulae for which are
given.

There are two offshoots to our analysis. One is that we derive a con-
sistent finite-element interpretation of the cell-vertex schemes. We show
that it gives results which differ from those of the finite~difference inter-
pretation by terms of the same magnitude as the truncation error inherent in
either. Finally, we consider the application of these schemes to problems
which are pseudo-two-dimensional, for example, axially symmetric. We show
that out of a family of plausible extensions, only one member is capable of

retaining second-order accuracy near the axis.

2. Description of Cell-Vertex Schemes

We consider steady inviscid two-dimensional compressible flow governed by

the Euler equations

oF G
where
pu pVv
F =|p+ pu2 G =] puv (2.2)
2
puv p t+pv
where

=42 oth - 3 @ D) (2.3)




and h 1is total specific enthalpy, assumed constant. We intend to satisfy

these equations in an approximation to their integral form
$ (Fdy-Gdx) =0 (2.4)

where the integral is around any arbitrary closed contour. To this end, the
plane is divided into cells that are either regularly arranged quadrilaterals
(Figure la) or unstructured triangles (Figure 1b). In either case, the
vertices are numbered, and a fluid state u,, where u = (p, pu, pv), is
assigned to the ith vertex. Ni“s scheme for quadrilaterals approximates (2.4)

by trapezium rule integration around each cell. This is

Doz = 1[G (Fy+Fp) g =y =7 (64 + &) Gy~ %) (2.5)
sides

where the summation is over all sides of the cells, and all differences are
taken anticlockwise. Note that D has dimensions of the time derivatives of
the actual conserved quantities (not their denmsities), so that D  1indicates
how masses, etc., associated with the points A, B, C, D are to be changed.
Different time-marching schemes result from specifying different weights with
which the changes are distributed over A, B, C, D. Ni“s original recipe [7]
reproduced a type of Lax-Wendroff algorithm, and Hall [10] has presented a
Runge-Kutta version. Here, however, we are interested ounly in the steady
state which we assume 1is characterized by the vanishing of D for ever;
cell, In practice, this will only happen if the boundary conditions are
specified carefully. (For éxample, on a grid of n x n cells there will be

n2 equations and (n+1)2 unknowns; hence 2n+l boundary conditions must be




prescribed.) Also, the residuals do not in general vanish near a captured
shock [l11]. This implies that our interest here is chiefly in the accuracy

obtained in smooth parts of the flow.

In Jameson”s triangular grid scheme [13], the average flux across each

line joining two vertices is evaluated as
E,. == (F, + F.) (3. - v,) — = (G, + G) (x, - x,)+ (2.6)
—AB 2 '-A =B B A 2 A =B B A

Then masses, etc., proportional to EABAt are added at X and sub-
tracted at Y. When this has been done for all edges in the mesh, then every
point has been changed by a net amount proportional to the flux across the
perimeter of the polygon formed by all triangles meeting at that point. At
the steady state, we again assume that all these flux integrals vanish - due
care being taken at the boundary.

It is the ability to characterize steady state solutions in this rather
simple way that makes the accuracy of cell-vertex schemes much easier to
analyze than Lax-Wendroff schemes where the statement of local equilibrium
typically involves nine fluid states and thirty-two mesh coordinates. The

statement of equilibrium for a Jameson-type scheme on quadrilaterals involves

only five fluid states, but analysis of 1its accuracy needs twenty-four mesh

coordinates.

3. Finite-Difference Analysis

We wish to know how accurately the formula

v 1
Dp =1 3(F, + Fp) (py,) (3.1)




approximates the integral

I =¢§Fuay (3.2)

taken around the same polygonal contour. At this stage, the values of F

are thought of as point samples, in the spirit of finite difference methods.
This is most easily done by assuming that F is representable by a Taylor
expansion about some arbitrary nearby origin. We consider each side of the
polygon in turn. The numerical approximation to the integral is

1 _ _ 1 1

2
+ ¥g ) Eyy

(3.3)

1
+ g (g3, + xyp) ]

+ 0 (ha).

The leading terms in the exact integral are found by introducing a local
coordinate g varying linearly from O to 1 over AB, so that a typical point

on AB is defined by

x () ExBf(l-E)xA

]

y €) =gy, +(1-8)y,

and




F@ =FE+x ) E +y ) F +3x @ F

2
(3.4)
+ x(E)y(E) E_ + %y (E) E,_ + 0(h’) .
—xy 2 -yy
Inserting these expressions into (3.2) and integrating w.r.t. £
yields
[ Brdy=(yo -y ) [F+a(x, +x)F +5(y, +y) F
A 2T U TN LT T ARy TR T2 AT YR Sy
1 2 2
+ =
5 (Fa T Eaxg v xg ) By
1
+ g Axgy, * Xyt Xy, ¥ 2gy) Foo
1 2 2 4
+ 2 (v, +yAyB+yB)£yy]+0(h). (3.5)

Subtracting (3.5) from (3.3) gives the error on AB as

578 [(x. - x )2 F _ + 2(x- x,) (g5 - y,)F_ + (yo - y)2 F__]
12 B T *al Ixx g~ Xp) g T YAy T VB T YA Zyyte

Yy
Heunce the total error may be arrived at simply by summing the contribu-

tion from all sides. Clearly we can find the error in the G integral

similarly. The final result is

[ —
|
&
]
r~1
v
>
<
[
£

+ 280 F -E, F (3.6a)
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-E, G (3.6b)




where

1 3
E, = —1—2—2 (8x)

<!
|

= —17 Y (ax)2ay
(3.7)

o]
|

= 1—2“ ] ax (ay)?
i 3
E = -]-,—2- z (Ay) .

It is pleasing that the error coustants take these simple forms and use-
ful that there are ouly four of them. Observe that the quantities we wish to
approximate are O(hz) and that, superficially, the error constants are
0(h3), making the method first-order accurate. However, some cancellation
takes place inside the summations in (3.7), which holds out the prospect of

better accuracy, depending on geometric properties of the grid which we now

investigate.,

4. Polygons with Vanishing Error Constants

It is easy to see that any polygon with central symmetry will have E,;
to E, identically zero because countributions from opposite sides will
vanish. Also, given one error—-free polygon, we can form others by permuting
the sides and forming mirror images. It is straightforward to show that an

error-free polygon remains error-free under rigid rotations. Certain other

results are also obtainable.
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Theorem 1: A quadrilateral is error—free iff it is a parallelogram.

Proof: For a quadrilateral ABCD, the error constants can be manipulated

to read

<o)
|

p =y mx) G = oxp) (xy = xp + %o - xp)

=
1]

, = 28 (xA - X+ X, - xD) + (xA - xC) (XB - xD) (yA =yt Ve~ )

Yp

(4.1)
Ey = 28(yy, ~yg + ¥y - yp) + (vy =¥ (yp = yp) (xy = xp + x5 = xp)
o= Oy 7y g myp) Oy = yg + 3 = yp)

where

= - - - - -v)
28 = (%, = %) (yp = yp) = (x5 = %) (y, = y.)

and S 1s the area of the quadrilateral. The only terms which may vanish in

these expressions are (xA-xB+xC—xD), (yA—yB+yC—yD). These quantitiles,

divided by two, are the components of the vector which joins the midpoints of
the two diagonals. Thus E; to E, vanish iff the diagonals bisect each other,

which only happens 1if the quadrilateral is a parallelogram.
Corollary: No triangle is error-free,

Proof: Since triangles are degenerate quadrilaterals, they are excluded

by Theorenm 1.




-11~-

Theorem 2: Any regular n-gon (n > 3) 1is error-free.

Proof: For n even the result is trivial by symmetry. A proof, which

includes n odd, follows by considering the polygon in the complex plane.
Without loss of generality, one side can be made parallel to the x-axis, and
each side 1s then represented by one of the nth roots of unity, say

Z, (k = 0, ...n-1) where

z, = cos 235 + 1 sin 315
k n n
then
X ; 3 _ I cos3 2nk + 31 cosz 21k sin 2rk 3 cos 2rk sin2 2rk i sin3 2nk
k n n n n n n
k k
= ) cos3 2nk 3i c052 2k sin 2k _ 3 cos 335-(1 - cos2 EIE)
k n n n n n
- i sin 215-(1 - cos2 EIE)
n n
= 4(E1 + iEz)
= (by a similar argument) - 4(E3 + iE4)-
But

k=n-1 k=n-~1

3 3k
y z = ) oz
-0 k =0 1
] z?n -1
z? -1
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The numerator vanishes because z? = 1. So the expression equals zero
unless the denominator also vanishes; that is, unless n = 3 (when the expres-

sion equals 3). So unless n =3, E.=E=E=E=0,

1 2 3 T4

For n > 4, we can find a variety of asymmetric error-free polygons. The
general procedure is to prescribe (n-2) vertices. Then requiring that E,
to E, vanish gives four equations for two unknown coordinate pairs. Unfor-
tunately, thése are simultaneous cubic equatioans for which no systematic
solution is apparent. To give a flavor of the possibilities, we consider a
pentagon with prescribed vertices at (0,0), (0,1), and (1,0). We maintain

symmetry by supposing that an error—-free pentagon exists with additional

vertices at (l+a,b), (b,l+a). Then we require

T ax)3 =7 @ay)d =1 - (ra-b)d + 3= 12 =0 (4.2)
and
7 ax)2ay = ¥ (AyP)ax = ab® - (1+a-b)> - ba® = 0. (4.3)
Condition (4.2) simplifies to
3(a-b)(a+1)(b-1) = 0; (4.4)

if (a-b) = 0, there are no solutions to (4.3). If b =1, then (4.3) yields
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whereas, if a = -1 then

b=0,=(l%/5).

N =

Although there appear to be six solutions, they actually appear 1in
pairs. 1In each pair, the sides are permutations of the same set of vectors.
The solution to the problem consists of three independent sets of vectors,
each of which, by permutation, generates 24 different pentagons, if we allow
the given vectors to permute also., However, out of a given set of vectors,
only two orderings will produce a convex polygon, that 1is, those which are
monotonically ordered by orientation. Those two are wmirror 1images of each
other, The independent convex pentagons derivable from (4.2) and (4.3) are
shown in Figure 2. The square is a degenerate case for which one side
vanishes.

Error-free polygons can also be constructed by uniting one or more error-
free polygons that have edges in common; but, though the construction of
error-free polygons has some mathematical interest, it seems unlikely that any
practical mesh could be constructed from them, except for completely regular
meshes, We turn, therefore, to the more practical question of finding

polygons for which the error constants are acceptably small.

5. Polygons with Small Error Constants
The only complete results that have been obtained relate to quadri-

laterals, for which the error constants are given by (4.1). The local trunca-
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tion error will be O(hz) provided these expressions are 0(h4). We can

clearly identify factors which are 0(h2), and the only possibility for

second-order accuracy is that

(x, - %5 + X, = xp) = 0 (h?), (5.1a)

and

(v, = 95+ ¥¢ = yp) = 0 (). (5.1b)

Although these conditions are not met by arbitrary quadrilaterals, they
are met by quadrilaterals which are produced as part of an analytic grid.

Suppose we have grid generating functions

w
[]

x (¢, n)
y (€, n)

<
1]

and the mesh points are the intersections of £ = mAf, n = nAn, for integer

values of m, n. Then, if the mesh is systematically refined, AE, An tend

to zero, and

2
a°x _ 2
(XA - xB + XC - xD) > mﬁ- AEan = 0 (h ) (5-28)
(Yy, =Yg+ Yo = ¥p) * 2%y AzAn = 0(h?) (5.2b)

provided the cross-derivatives are not large.

Note that since the error terms involve only the local intrinsic geometry

of each cell, neighboring cells may be of markedly different shape, size, or

orientation. That statement cannot be made for finite-volume schemes




~15-

[5,11]. 1Indeed, the local quality of cell-vertex schemes makes them second-
order accurate on grids generated more straightforwardly than those described
above. Suppose a coarse grid is determined arbitrarily, and fine grids are
constructed from it by repeatedly bisecting the cell edges. Within each of

the original cells, PQRS, there is a mapping defined by

b
]

(1-5)(1=n) xp + E(l-n)xQ +En xp + (1-g) nxXg (5.3a)

~<
n

(1-£)(1=n) yp t E(l—n)yQ t&nypt (1-¢) nyg (5.3b)

which meets the conditions (5.2).

Related results have been found by Paisley [11], who finds that in the
cell-vertex method, it is allowable to perturb a rectangular mesh by O(hZ)

whereas with Jameson”s [4] scheme, the allowable perturbation is only O(h3).

6. A Finite-Element Approach

As mentioned in the introduction, the schemes wunder study have been
described elsewhere as finite element schemes. Whether this is justifiable or
not, there is one objection that can be removed. This objection is that the
formula

1
[(Edy -gan) =5 ] (B + F ) Gy —vy) = (G + Ggyp) Gy = %)

is obtained by integrating over each triangular (quadrilateral) element

assuming a linear (bilinear) distribution for both F and G, which is incon-
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sistent because there is a nonlinear functional relationship between F and

G. A consistent finite-element model can be derived by assuming that the

vector w varies linearly (bilinearly) over the elements, where

1
w = pl/2 (u) . (6.2)
v

These variables were introduced by the author to facilitate the con-
struction of an approximate Riemann solver [14]. They have the property that

every component of u, F, G is bilinear in the components of w. Thus

Yi¥2
-1 Y-l 2 y+l 2 _y-1 2
Ya¥3
where h is a constant for steady flow, equal to the specific total

enthalpy. In computing a typical term of (6.1) such as

AB _ B
I - IA .If. dy
there will be subterms of the form
AB _ B
Ii,j fA Wiy dy . (6.4)

The consistent evaluation of this term is

AB

1
Ii,j = (YB = YA) IO (g Vg + (I-E)wiA] [gij + (1—g)ij] dg
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- + +
(g = vp) [20y59ip + VoW ptigWin + 295095, ]

1
7 (yg = ¥y) Diggwsg + wy,uy,l

—

~ 5 (yB - yA) (wiB - wiA) (wjB - ij)' (6.5)

The first term contributes the “naive” approximation %—(yB - yA)(E_B + EA);
the second term is part of a correction that makes the approximation self-

consistent. The leading contributions to it are due to first derivatives of

w. The correction term in (6.5) 1is, to leading order,

1 1 2
3'(yB ) w1way 3'(yB - yA) (XB - ) [wlwaX wiijy]
1 2
5 g~y Gy m X)) vy

When we sum such terms over every side of the polygon, expressions arise
proportional to the constants Ey, Ey, E3, E; given by equations (3.7).
Where these error constants are small enough, the error due to inconsistency

is negligible, and both the consistent and inconsistent formulae approximate

the flux integrals to 0(h?).

7. An Integral Formulation of Axisymmetric Flow

Flow which is identical in every plane through some axis of symmetry is

governed by differential equations that can be written in either of the forms
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v, +tE +6 = (v/ir) u (7.1)

or

() + G _+ (r &) _=p (7.2)
where u, F, G are the usual conserved quantities in two-dimensional flow,
except that r 1is now a radial coordinate, and v a radial velocity. Here
p 1is the vector (0, O, p, O)T.

As a basis for numerical work, (7.1) is tempting because it requires only
slight modification to a two-dimensional code. However, (7.2) is a better
basis for shock-capturing because it expresses conservation more exactly. To
see this, imagine that we are performing a truly three-dimensional computa-
tion, using the same grid in every axial plane, so that each 3-D cell is a 2-D
cell rotated through some angle ] with respect to the axis (Figure 3).

The exact angle does not matter, so long as we avold the extremes 0 and 27

1f we make a flux balance on such a control volume, the contributions
from the four faces which do not lie in the radial planes can be evaluated

analytically, by integrating with respect to the angle. The result is

S [fruda-, [ (xFdr-rGd) - [fpda=0 (7.3)
2 Q Q

where Q is the interior of the 2-D cell, and -9 its boundary.

In order to check that a proposed solution was conservative (and hence a

correct weak solution), we would check that all such integral equations were

satisfied. A numerical method which imposes this as a constraint will be a

correct shock-capturing method. 1In this way, we can give an interpretation to

conservation of "radial momentum" via the third equation in (7.3).
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Equation (7.3) can be the basis for extending to axisymmetric flow either
of the cell-vertex methods under discussion. In Ni“s scheme, one integrates
the quantities rF, rG  around quadrilaterals; in Jameson”s scheme, the

quantity r(FAy - GAx) is evaluated for each side and used to update the

adjoining vertices. The problem we now address is how to evaluate these

things numerically.

8. Error Analysis for the Axisymmetric Methods

In either method, the central ingredient is an expression of the form
B B
IA r Fdr or IA r G dx.

Consider the first of these. Two plausible computational formulae are

1 1 _

IAB = E—(rB rA) [rAFA + rBFB] (8.1)
2 =Y vy (r, #r)) [F, + F.] (8.2)
AB % ‘fp T Tpl 1Ty TEp/ ¥y T fple .

As in the two-dimensional case, we find what the exact value of the

integral should be in terms of a Taylor expansion about an arbitrary nearby

point. The result is
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1 1
Lyg = (rg = xp) [y (rg + rDF + gl2ryxy + ryxg + rpx, + 20pw)F
1 2 2
+§ (rA + R + Ty )_F_r
(8.3)
1 2 2 2 2
+
5% (3rAxA + ZrAxAxB + T, Xp + roX, + 2erA}\(B + 3erB )_1‘_‘xx
1 2 2 2 2
+ 17 (31'A X, + ererA +orptx, +trpx, +r, r, + ererB + 3rB xB) -Iixr
+—1—(r3+rr+rr +r " )F ]+
8 A A B A'B B rY et
If we make similar expansions for the approximations (8.1), (8.2), and
subtract from them (8.3), we find error estimates as follows.
1 1 1 2
Tap ™ Tap = (rg7mp) [Glrgr ) OF, + 2lry - 1 )°F,
- 2l Bryx, + Tp¥g ~ Tp¥a ~ 3rpxp) Fyy
(8.4)
—l—(r—r)(3rx -r,x, +r.n - 3r.x ) F
12°7°B A A”A A"B B A BB —xr
1 2 2
+ '§' (rB—rA)(rB - rA ) _F_rr] + e
12 -1, = (ror) [- Ltror Yxox ) F = 1 (ra-r )2 F
AB AB B A 12°°B "A B "AY —=x 12 B A" —
+ 3 (x,-x,) (r,%. - r.x,) F (8.5)
12 *7B A7 “TA"B T TB*A) Ixx )

1
+ 1_ (rB_rA) (rAxB - I'BXA) Exr] + e
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Combining terms for a particular polygonal control volume, we obtain the
following equations relating the exact integral to the approximations (8.1),

(8.2).

B =1 -
[, T Edr =Yp] (rg-r,) [r,Fy+ry Fol + 2E5 F + 2E, F_+ ... (8.6)

1 2 2 _ _
/o) (rp"-r,") [F, + F;] - EqF - E,F_+ ... (8.7)

wherein we again find the error constants defined in (3.7). At first sight,
this is a satisfactory result showing that the errors are 0(h4) on a smooth
grid. However, the quantity being approximated is ffrgdi, which is
O(rhz). The problem is that, near the axis, we find cells for which r is
0(h), and the error terms are O0(h) relative to the true values. On a non-—
smooth mesh, they are even 0(1).

We observe from (8.6) and (8.7) that these particular errors could be

eliminated by choosing the linear combination
= 2 - -
I = 3-1 + T I = 3'(rB rA) [er-EA + T, £B+ ry EA + 2rB EB]. (8.8)

Note that this is the combination obtained if we assume that r, F, both

vary linearly along AB, and then integrate exactly. The error analysis for a
single side now gives

I,.-1,_ =(_,~1r,) (r, +1r,) [1 (x, - x )2F + lﬂ(x -x )(r, - r,) F

A B A7 24 7B A” =xx 12°7"B "A"""B AY =

B XY
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Therefore, the total error around a particular polygon is

3 1 ~ 32 1 - 2
I 1,5 -J rFds == F T r(ax)"ar + z E 1 r (&%) (ar)

(8.10)

1 = 3
+ﬁ£rrzr(Ar) +ooo .

The analysis is now identical to the two-dimensional case except for the
appearance of the mean radii (r) in every term. These factors, however,
complicate matters considerably. For example, it 1is no longer true that a
regular polygon has vanishing error constants because contributions from
opposite sides no longer cancel in general. To put the error constants into
forms which make their order of magnitude self-evident needs considerable
manipulation, which has only been carried out for quadrilaterals. The easiest

term to analyze then is

z (ri + ri+1) (ri+1 ~ ri)3 = rB4 - 2r§rA + 2rBrA3 ~ rA4

+ r. - ngrB + 2rCrB - rB4

+ rD4 - 2rD3rC + 2rDrC - rC4

+ rA4 - 2rA3rD + ZrArD - rD4
= ZrA (rB - rD) + 2rB (rC - rA) + 2rC (rD - rB) + 2rD (rA - rC)
= 2(rA - rC) (rD3 - rB3) - 2(rD - rB) (rA3 - rCB)




-23-

]

2 2 2 2
2(rA - rc) (rD - rB) (rD + rprg torgt - LR % PR )

3 2 1 2 3 2 1
= 2(ry - 1)y - rl7 G+ xp) g oyt - (ry x0T - g (rym )
= é-(r -r) (e, ~ ) (r, +r_+r,+1r)(, -, +T1r, -1.)
2 A C B D A B C D A B C D
1
+ 5—(rA - rC) (rB - rD) (rA +rp - ore - rD) (rA R + rD). (8.11)
The first term is O(rh4) on grids which are smooth in the sense of
the previous discussion; it is 0(rh3) on non-smooth grids. The second

term appears to be 0(h4). That it shall be O(rhh) imposes a natural con~-
dition on the grid near the axis. If the cell nearest the axis has one side
on the axis, then it can be shown that one of the factors (r, + Iy - ¢ -
rp), (ry - rg - ¢ + rD) is 0(h); the other is 0(rh)--which one is which
depends on the labelling. 1t is assumed that this cell is also smooth in the
same sense as the others.

We will omit details of the calculations that show the other terms in

(8.10) to be 0(rh4), simply exhibiting the final rearrangements. We find

J T(ax)’ar

[}
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I
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Here the last two terms are 0(rh4) on any smooth grid, and the first

one is so if the axis is included. Also, with great patience, we can obtain:

) ;(Ax)(Ar)2 = %—-(rA +orp T, + rD)(rB - rD)(rA - rC)(xA - Xp+ X, - xD)

+ S (rA + Ty + e + rD)(rA - T + to - rD)
(8.13)
1
+ 7—5 (rA + N rD)(rA R S + rD)

+ —%—(rA - Ty + t. - rD)z[(rA - rc)(xB - xD) + (rB - rD)(xA - xc)]

where S is the cell area.

On smooth grids, the first three 1lines are O(rha); the fourth is
0(n%).

Now we turn to the terms involving G and p in equation (8.3). Both
of these .terms are O(hz), but near the axis they almost cancel so the
requirement for accuracy is the same as for the other terms. A straightfor-

ward evaluation of ffg dA cannot avoid errors 0(h4) so some subtlety is

needed.

Integration by parts shows that

[fpda= [rpdx-[[r gp . daA, (8.14)
Q el @ °Ff

and we can use this to rewrite the terms in G and p as

fredx-[[pdh = [r(c-p dx+[[r3Paa (8.15)
30 Q - @ °F

90
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where both terms on the RHS are of order (rhz). Now we can evaluate the

contour integral by the methods just discussed; the error terms will be

1 = 3,1 - 2
7 E P, L@+ -p) T T ar+
(8.16)
1 = 2
17 € -, Y rax (ar)“.
The summations multiplying G,., G.. have already been shown to be

O(rha)' The first summation can be evaluated as

2 ;(Ax)3 %-(rA + o + o + rD)(xA - xC)(xB - xD)(xA - X + Xo = xD)

—71; [(rA - rC)(xB - xD) + (rB - rD)(xA - xC)]

(xA + L xD) (xA - Xg <X, + xD)

1 2 2
+ 7-3[3(XA - %y + Xo = xD) + (xA - X T X, + xD)

- x)?]. (8.17)

Every term in this expression can be justified as 0(rh4) on a smooth mesh,
except for the third line. Here S 1is O(hz) and the first term inside the
bracket 1is O(h4), but of the two remaining terms, one will be 0(r2h2) and
the other O(hz). Thus, the overall order of the expression must be n4.
However, this does not destroy the second-order accuracy of the scheme near
the axis, because in that region (G - pl.y 1s 0(r) so that all contribu-

tions to (8.16) are actually O(rhA).
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Lastly, we have to evaluate

[[r3Raa. (8.18)

A formula for this can be found using finite element techniques, if the

gradient is rewritten as

-5
o
@

1 ( , 9x ap ax)
or T\ am 3%

where J 1s the Jacobian of the transformation E,n) > (x, ). Since we

also have dA =J df dy, (8.18) can be found straightforwardly. The result

is
[[ %% dA
Q
(xB— xD) )
= — g (py{ér, + 3rg + ZrC + 3rD) - pC(ZrA + 3rB + 4rc + 3rD)]
(x = %)

-—‘—Tﬂr—-[PB(3rA + 4rB + 3rC + 2rD) - pD(3rA + 2rB + 3rC + 4rD)]

(rB - rD)
g Iy g ¥ Xy =2%0) = poCxp + xp - 2x,)]
(ry = )
Ty [PB(XA + %, - 2xD) - pD(xA + X, - 2xB)]. (8.19)

The error term turns out to be

1

3 (r, + tp ot - rD)(xA - Xt ox, - xD)[(xA - xc)(xB-xD)pxx +
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(ry = 1) (g - rp) p,J
1
+ 5% [(rA Tty t rD){ZS(xA - Xg * X, - xD) +

* (kg =) Oy = %p) (ry = rp * 1y =T
(8.20)

+ (rA - rC) (rB - rD) (xA - Xp < X, + xD) (xA + x5 - X - xD)] Py

All terms in this expression are O(rhA) provided the grid is smooth and
contains the axis. The scheme which has emerged, although more cumbersome
than one would hope for, is the unique cell vertex scheme retaining second-
order accuracy in axisymmetric flow. It may be noted that it has also ome
property commonly demanded of a numerical code. It is satisfied identically
by uniform flow parallel to the axis. For such a flow, F is a constant, G -
E) vanishes, and ap/ar vanishes. Under these circumstances, all contribu-
tions to the balance equations vanish identically.

The expressions which have been found as approximations, in effect, to
9F/3x and 3G/3r have been derived by other authors from other considera-
tions. Margolin and Adams [15], in the context of a Lagrangian scheme, sought

numerical approximations that would make the equation

Lav _ 4ivu (8.21)

an identity at the discrete level. Here V is the volume of a moving parcel
of fluid, The unique solution to this problem gave the differentiation
operators derived here. Margolin and Adams report greatly improved accuracy

in their computations.
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The same operators were also obtained by Holm et al., [18] as the unique
operators to preserve in the discrete formulation certain Hamiltonian pro-
perties of the differential equations.

If the scheme were to be used in practice, it may be noted that some
simplifications of the expressions are possible, at least for quadrilateral
control volumes. The terms involving F can be made more compact by
rearrangement. The terms .involving p 1in (8.19) can be used partly to cancel
the terms in (G - p). What emerges from this is the following, which we

claim is the simplest version of the unique formula

1
-6-(rB - rD) [(rD +r, +r

1

g (rq ~ 1) Wy +ry +xe) By = (o + 1y + 1)) Fpl
. (x, = x,) [2r, G, + v G+ C, + 21 G, ]

7 (X = %4 a8 YAl t T Sy B Sp

— — .22
3-(xD xC) [ZrC EC +r ED +r G, + 2rD (8 )

+ 57 (BA - po) [(xB - xD) (rA+ rC) - (rB - rD) (xA + xC)]

- 27 (g ~ By [(xy = %) (rg + 1) = (r, - 1p) (x5 + x)] = 0 -
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A striking feature is that the approximations to [ r G dx and [[ p dA
are precisely those that would have been obtained by finite-element integra-
tions assuming bilinear variations for G and p. However, neither of those
terms individually is second-order accurate. The combination is, given suit-

able conditions on the grid.

9. Conclusions

The cell vertex schemes studied in this paper have been claimed as
second-order accurate on arbitrary grids. Certainly the results show an
impressive convergence as the grids are refined [10]. However, we have shown
that on arbitrary grids, the 1local truncation error may be first-order.
Explicit error constants associated with grid geometry have been derived.
These indicate what sort of cell shapes to avoid and could also be used as
part of a mesh refinement strategy.

The extension to axisymmetric flow has been made, and it seems harder to
achieve accuracy then. The unique formula which retains second-order accuracy
near the axis has been derived. However, the extension to fully three-
dimensional schemes 1is an extremely difficult piece of algebra which has not

yet been attempted.
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APPENDIX

Some Properties of the Jameson Formula

At convergence, Jameson’s scheme for triangles [13] satisfies

1 1 =

74 By ¥ PO =9 7 L 6+ 6yy) Gryyym %) =0 (AD)
around the perimeter of every polygon formed from the set of triangles meeting
at a common vertex. This has been presented as a set of flux balance
equations around an overlapping set of control volumes. A straightforward
rearrangement of (A.l) is

1. _ 1 _ _
7 g FOu Y41 ~ 7 § Gi(xyyy ~ Xy) = 0. (4.2)

Now z (yi+1- yi—l) = 0, because if the polygon has an odd number of sides,
we travel twice round its perimeter to réarrive at our starting vertex, and
with even sides there are two closed polygonal paths. Therefore, we can add
arbitrary constants to the Fy, Gj. Let us choose Fp, Gy which are the
values at the common vertex (Figure 1lb). Rewrite (A.2) as

z. é- (_1_?_0 + _F_‘i) %‘ (yi+1 - Yi_l) - )j:- é’ (Eo + Ei) é— (xi+l - Xi_l) = 0, (A.B)
1

The reason for the factors é. is shown in Figure 4, where P, Q are

the controids of OABS, OBC. Then

1 1 _1 _
Xp = xQ = -3-(xO + X, + xB) - (x0 + Xg + xC) = 3-(xA xB) .
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So (A.3) can be interpreted as the flux balance around non-overlapping

control volumes whose edges join the centroids. This interpretation leads to

a dual form of the algorithm as follows.

Scheme II

For all edges MN in the mesh, compute

1 1
7 By + B Gg —yp) — g (G * Gy) (kg = %)

where S, T are the other vertices of the triangles adjacent to MN, and use

this flux to update M, N.

This has an identical outcome to the standard scheme, which we repeat for

contrast.

Scheme 1

For all edges MN in the mesh, compute

7 (B *+ B (g = ) = 7 Gy * G) (g = %)

and use this flux to update S, T.

Indeed, there are two more possibilities, both of which will also yield

the same results at convergence.

Scheme III

For all edges MN in the mesh, compute




R I e
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7Fs *+ EP g = vp) - 585 + 6 (xg = xp)

and use this flux to update M, N.

Scheme 1V

For all edges MN in the mesh, compute

1

(Es * Fp) Gy = ) = 4Gg + Gy = xy)

and use this flux to update S, T,

Given the interpretation that u 1is piecewise linear within each tri-
angle, one is tempted to look for control volumes allowing a more accurate
integration. For example (Figure 5), we may consider the control volume
formed by joining the centroids of each triangle to the center of each side.
Along PI the value of F, say, varies linearly from %'(EO + EB)’ to
%—(EO +F, + EB) with average value %7 (SEO + ZEA + 5 EB). (In view of
the discussion in Section 6, we neglect the nonlinear variations of F.) Some
algebra will show that this does nothing more than reproduce equations (A.l)
or (A.3). This result is obvious if we think of integrating F, over the
area of the control volumes. Within O0AB, ¥, 1is a constant and the area of

OJPI is one—~third that of OAB.




(@)

Figure 1.

(a)
(b)
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Part of a structured quadrilateral mesh.

Part of an unstructured triangular mesh.
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Figure 2.

Examples of polygons with zero error constants.




Figure 3.
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A computational cell partly rotated about the axis.
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Figure 4,
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Alternative control volume for Jameson”s scheme.
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Figure 5. Control volume using cell bisectors.
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