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Introduction

During the past few years it has been recognized that combining passive structural

design methods with active control techniques offers the prospect of being able to find sub-

stantially improved designs (Refs. 1-3). These developments have stimulated interest in aug-

menting structural synthesis by adding active control system design variables to those usually

considered in structural optimization. An essential step in extending the approximation con-

cepts approach (Refs. 4-6) to control augmented structural synthesis (Ref. 7) is the develop-

ment of a behavior sensitivity analysis capability for determining rates of change of dynamic

response quantities with respect to changes in structural and control system design variables.

Behavior sensitivity information is also useful for man-machine interactive design as well as

in the context of system identification studies. In this work behavior sensitivity formulations

for both steady state and transient response are presented and the quality of the resulting
derivative information is evaluated.
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Augmented Equations of Motion

Consider a structural/control system that can be modeled as an assemblage of frame,

truss and axial actuator elements. When such a system is subjected to harmonic loading con-

ditions the steady state response is of primary interest. It is assumed here that: (1) direct out-

put feedback control is used; (2) actuators and sensors are collocated; and (3) the

structure/control system can be represented by a linear model. Let it also be understood that

the topology, geometric layout, structural material and actuator positions are preassigned

parameters while section properties and gains are selected as design variables.

Dynamic analysis is carried out using the finite element method and Eq. 1 represents

the equations of motion including viscous damping [C], structural damping i_K], harmonic

applied loads {P(t)} k and control forces {N(t)}k. The control forces {N(0}k are given by Eq.

2, where [Gp] k and [Gv]k denote the system level position and velocity gain matrices for the

k th load condition. Substituting Eq. 2 into Eq. 1 gives Eq. 3, the equations of motion for the

control augmented system, where [CA] k and [KA]k, respectively (Eqs. 4 and 5) are the aug-

mented damping and the augmented stiffness matrices for the _h load condition. For the case

of axial actuators used here the system level position and velocity gain matrices are easily

generated following assembly procedures similar to those commonly used in finite element

analysis.

[M]{X} k+ [C]{X}k + (I + iy)[K]{X}k= {N(t)}k+ {P(t)}k

k = 1,2,...K d

(1)

{N(t)}k= -[G,]dX}k-[GpIdX}k
(2)

'[M]{a}k+ [CA]dX}k+ [KA]dX}k+ i_Kl{X}k= {t'(t)}k

[¢A]k= [C] + [GJk

[KA]k= [K] + [Gplk

(3)

(4)

(5)
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Dynamic Response Solution

The steady state dynamic response for harmonically loaded (see Eq. 6) damped struc-

tures augmented by a linear direct output feedback control system can be obtained via a fre-

quency response analysis as follows. Substituting Eq. 6 into the control augmented equations

of motion (Eq. 3) leads to Eq. 7, where the complex displacements {X}k are represented by

Eq. 8. It is well known that the steady state solution of Eqs. 7 has the form shown in Eq. 9.

Substituting Eq. 9 into Eq. 7, eliminating e if_kt from both sides, and equating the real and ima-

ginary parts leads to a partitioned matrix equation (Eq. 10). For the general case, Eq. 10

represents a 2n x 2n set of indefinite, non-symmetric linear simultaneous algebraic equations

in the unknowns {CR} k and {Ci}k, where n equals the number of degrees of freedom in the

system model. For the special case treated here (i.e. collocated axial actuators and sensors) the

efficiency of the solution process can be improved because [KA] k and [CA] k are symmetric and

Eq. 10 can be rewritten in the symmetric form shown in Eq. 11.

{P(0}k = {P}k e_

[M]{X'-'}k+ [C/t]k{X--}k+ [KA]k{X--}k+ i_[K]{X}k = {P}keit-_

{x}k = {XR}k+ i {X_}k

(6)

(7)

(8)

{X--}k = {_-} in_t = ({CRlk + i{Cl}_eit_

(9)

nk[CAlk+ _[K] { {C_}k
(10)

k = 1,2,...K d.

35



Dynamic Response Solution (cont.)

The amplitude of the steady state dynamic displacements can be obtained as follows.

Solve Eq. 11 for the primary unknowns {CR} k and {C1}k. Note that e inkt can be expressed in

the alternate form given by Eq. 12. Then it follows from Eqs. 8 and 9 that the steady state

dynamic response is given by Eq. 13 where {XR} k and {XI} k solve Eq. 1 when the loading

function has the form of a cosine or a sine respectively. When the loading function is

sinusoidal the amplitude of the dynamic displacement for the fh degree of freedom is given

by Eq. 14. It is worth noting that Eq. 14 is a relatively simple explicit nonlinear expression

for the amplitude of the steady state dynamic response in terms of the primary unknowns of

the analysis, namely {CR} k and {Ct} k.

(11)

e it'lla = cos_kt + i sin f_kt

(12)

{/_}k = {XR}k + i{XtIk = ({CRIk cosflF- {Ct}k sint'lkt)

+ i({CR} k sin[l: + {Ct} k cos_:)

(13)

(14)
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Behavior Sensitivity Analysis

Approximate values of the amplitude for the jth degree of freedom under the k th load

condition ([X jkl) will be obtained by constructing first order Taylor series approximations for

the primary unknowns of the steady state response, namely C Rjk and C Ijk" Equations (15a)

and (15b) show the first order Taylor series approximations for the primary unknowns of the

steady state response analysis and they are linear in the design variables (i.e. element proper-

ties). Note that the subscript 0 refers to the base design for which an analysis is available.

Substituting Eqs. (15 a,b) into Eq. (14')gives the desired explicit approximation for the ampli-

tude of the jth degree of freedom under the k th load condition. It is apparent that the first par-

tial derivatives of the primary unknowns evaluated at the base design must be known in order

to evaluate approximate values of the amplitude. These behavior sensitivity derivatives are

readily found by implicit differentiation of Eq. 11' (i.e. Eq. 11 written in compact notation

where [A]k = _k[CA]k + 7[M] and [B] k = [KA] k - f_ [M]) with respect to the design variables

d r, which leads to Eq. 16.

IX jk I : (C _jk+C_,) v'
(14')

(15a)

(15b)

in] -[A] {GIk _ }
(11')

_[A...J.]

aa, aa,

oa, aa,
{{CRIk'] [[Al I [B] ]+ t --7I ;

k

a{CRIk

a{GIk

aa,
(16)
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Behavior Sensitivity Analysis (cont.)

Equation 16 is written in a more compact notation in Eq. 17 and it becomes apparent

on examining Eq. 17 that the form of this sensitivity analysis is very s_tilar that which

• KO{X}k I _K t°
arxses for the case of linear static analysis (i e _ = {V}rk =- I "U-_'_ / {X}k)" The"" _ar [ oar J

terms on the right hand side of Eq. 17 play the role of pseudo-load vectors that are easily

evaluated once the primary unknowns of the analysis have been determined for a base design

bi solving Eq. 11. The solution of Eq. 17 for the desired first derivatives

O{CR}k _{c_}k /
and _ [ require relatively little effort because the 2n x 2n matrix in Eq. 17

J
was previously decomposed into LDL r form when the primary analysis was executed by solv-

ing Eq. 11. Furthermore, the computational efficiency of the primary sensitivity analysis

(solving Eq. 17) can be enhanced by employing the well known partial inverse method to

obtain only the desired partial derivatives. (Ref. 5).

(17)

b[ah i)[Blk

{Vii,k= _a, {CRh Oa, {Gh
(18)

b[B]k b[Alk

{VRI,k= _a, {CRh+ _----_,{Gh
(19)

] b[Calk-ggtAlk= a,
(20)

_--_,tBlk= _--_, tXAlk-n - Oar
(21)
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Numerical Example - Steady-State Response

The quality of the steady state dynamic response behavior sensitivities is evaluated for

the planar grillage shown in Figure 1. The grillage consists of nine aluminum box beams and

is cantilevered at node 1. A dynamic load P(t) = 100.0 N sin (5.0 Hz)t is applied slightly off

the centerline of the grillage at node 8 so that both symmetric and anti-symmetric modes par-

ticipate in the response. Three active control elements placed at nodes 5, 6, and 7 act in the

vertical direction. Two percent structural damping is assumed.

Taylor series approximations based on direct and reciprocal element properties are

compared with the exact results for the maximum steady state vertical displacements at node 7

for various design variables (See Figures 2 through 6). One can see that the difference

between the approximations and the exact displacements is relatively small even when consid-

ering 30 to 40% changes in the primary load-carrying member (i.e., 30 to 40% changes in the

bending inertia for element 1).

In order to study the behavior of the approximations in a near-resonance condition, a

harmonic loading of frequency 20 Hz is applied at node 8. This loading will excite the

flapping - type 5th mode (]5 = 1.9.63 Hz) of the grillage.

Figures 7 and 8 bring out two major difficulties associated with resonance or near-

resonance situations: (1) the high nonlinearity of the exact response curve; and (2) the non-

convexity of the design space. Nonlinearity of the response curve results in the Taylor series

approximations being of acceptable quality in only a limited interval near the base point (i.e.

+ 10%). Nonconvexity of the design space could lead to local minima in an optimization con-

text. These difficulties lead one to use frequency constraints to avoid the near-resonance con-

ditions in optimum design problems.
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Transient Response Equations of Motion

In applications where the external loading is either not harmonic or cannot be conser-

vatively replaced with an equivalent harmonic loading, peak transient response is a primary

concern. Furthermore, nonlinear on/off controls are well suited to controlling transient

response and they are practical for space-based structures.

The dynamic equations of motion for a finite element representation of a linear struc-

ture augmented by a discrete actuator control system are given in equation 22 where {P(t)} is

the nodal load time history, {u} is a vector of actuator output forces, and [B] is a matrix of

zeroes and ones locating the discrete actuators, at nodal degrees of freedom. Vectors of

observed displacements and velocities, {Y} and {Y}, respectively, are available from the con-

trol system sensors and are given in equation 23 where [C] is a matrix of zeroes and ones

locating the discrete sensors at nodal degrees of freedom. The actuator output forces, {u}, are

chosen in a manner which reduces the system response based on the sensor measurements. In

particular, the output force for the nth actuator is given in equation 24 where _-n is the output

magnitude for the control system and en is the velocity threshold.

Transformation of equation 22 from physical space to modal space yields equation 25b

where modal damping has been introduced into the system through the _ parameter. The

uncoupled modal equations in 25b are easily solved for the modal coordinates using the

Wilson-0 time-stepping scheme and physical displacements are recovered using the modal

transformation in 25a.

The kth modal second order equation of motion can be written in the equivalent first

order form given by equation 26 where n I = q and n 2 = q.

[MI{J:}+ [KI{X}= {P(t)}+ [Bl{u}
(22)

{¥} = [c]{x}
(23)

0 if IIAnl<en
u,,= -_-nif IYnl:>e_and Y.'n>0

fi'n if IY l>  and Yn<0 (24)

{X} = [¢l{q} (25a) i/k + 2_kO__ + ¢O_q = Qk + Zk

(25b)

4O

(26)



Calculation of Behavior Sensitivities

Time dependent transient response sensitivities can be obtained by differentiating the

modal transformation given in equation 25a with respect to each design variable (beam ele-

ment section properties and actuator output force levels) to yield equation 27. The first term

in equation 27 is known from the system response solution and the eigenvector sensitivities.

The { o__.q,} quantity in the second term is the last desired quantity.
Oar

The direct way of obtaining these partial derivatives is to differentiate equation 26 (or

equation 25b) with respect to each design variable to obtain equation 28 and time step on

these equations. The computational effort needed to obtain {-_d} would be KR time step-

ping solutions where K is the number of retained modes and R is the number of independent

design variables.

A more efficient way to obtain this last desired quantity is to exploit the special form

of equation 26 by applying the Wilkie-Perkins essential parameter method (Ref. 8). Writing

equation 26 in compact notation yields equation 29a where the [A] matrix in equation 29b is

in Frobenius canonical form with 0_ I = 0) 2 and o_2 = 240) being referred to as essential param-

eters. A sensitivity matrix [_] can be defined as in equation 30. As a consequence of the [A]

matrix being in canonical form, two beneficial properties of the sensitivity matrix are: (1) the

sensitivity matrix has a total symmetry property resulting in all terms on a single anti-diagonal

being equal; and (2) the sensitivity matrix has a complete simultaneity property resulting in all

sensitivity functions for the canonical system being linear combinations of the modal
On 1 3n 1

response, n 1 and n2, and _ and _¢x"-"_" The equations shown in 31a and 31b result from

these two properties.
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(27)

O,il

oa,

Oti2

) --.

0 0

oo)_ a(2_@))
--_/ _

{h} = [A]{n}+ {b} Q + {b} Z (29a)

(28)

(29b)

OnI Onl

Ooh B%

a_ o,12 (3O)

On.....L= an2 (31a)

Bw_ c3ctI

c3_ i)n I an 2 On I (31b)
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Calculation of Behavior Sensitivities (cont.)

Evaluation of the {-_.d. } term utilizing the Wilkie-Perkins essential parameter method

is done by: (1) differentiating equation 29a with respect to oq to yield equation 32; (2) time

stepping on equation 32; (3) chain ruling from essential parameter space to design variable
0q

space via equation 33. Thus the computational effort needed to obtain {--_-} has been

reduced from KR time stepping solutions to K.

It should be noted that this method of obtaining behavior sensitivities can only be used

for the passive structural design variables since the essential parameters are independent of the

active control design variables. Sensitivities of the transient dynamic response with respect to

the active control design variables can be obtained by differentiating equation 26 with respect

to the active control design variables to yield 34. Equation 34 is time-stepped for the desired

terms.

, %

a,i_ i

{:}I1...,_[oo]. o.
a,i2] -1 o _-_

.a -SJ

o_nl
m

Ooq

o___
aoq

(32)

{aq } aq o_, Oq amoa, = o,_, o-W,+ om o-W,
(33)

p

0ht

aa,

ah2

ad,

0 1

(

G3n1

aa,
q

an2

aa,
(34)
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Numerical Example - Transient Response

The same aluminum planar grillage (see Fig. 1) used for the steady state response sen-

sitivities is used to examine the quality of the peak transient response sensitivities. The load-

ing consists of the force time history shown in Figure 9 applied at node 8. A single collocated

sensor/actuator pair is located at node 6 and acts in the vertical direction. Peak transient

response and peak transient response sensitivities were calculated by time-stepping through 1

second in 0.0005 second increments using ten retained modes (frequency content up to 100

Hz) and 2% modal damping.

Exact results for the peak positive and negative displacements at nodes 5 and 7 are

compared with both direct and reciprocal element property Taylor series approximations in

Figures 10 through 22 for a number of different design variables. For design variable changes

up to +20% the approximations are seen to be of acceptable accuracy. Furthermore, the direct

approximations for peak displacements as functions of the actuator force level agree extremely

well with the exact response curve (see Figures 19 through 22).

It should be noted that the degree of conservatism present in either the direct or the

reciprocal section property approximations is not necessarily correlated with its accuracy. For

instance, in Figure 15, the reciprocal approximation is more conservative than the direct

approximation, but is far less accurate for design variable changes greater than 20%.
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Conclusions

In this work behavior sensitivity formulations for both steady state and transient

response were developed and the quality of the resulting derivative information was assessed.

Derivatives of the steady state response with respect to both structural and control

design variables for harmonically loaded structures augmented by a linear direct output feed-

back control system were presented. The base design dynamic response was calculated using

a frequency response method which reduced the solution of the complex dynamical equations

of motion to the solution of a 2n x 2n set of linear algebraic equations. The response quantity

sensitivities were obtained directly using the psuedo-load method in its partial inverse form.

Taylor series approximations in both direct and reciprocal element properties were constructed

using this sensitivity information and shown to yield high quality approximations for 30 to

40% design variable changes provided near-resonance conditions are not encountered. When

resonance or near-resonance conditions are present, the approximations for the response quan-

tities are of acceptable quality for a relatively restricted interval around the base design.

Using a normal mode method of analysis, peak transient response and peak transient

response sensitivities were calculated for arbitrarily loaded structures augmented by nonlinear

on/off control actuators. The special form of the modal equations of motion was exploited to

reduce the computational effort needed to obtain transient response sensitivities. These sensi-

tivities were used to construct Taylor series approximations in both direct and reciprocal ele-

ment properties for peak transient response. The approximations are of acceptable quality for

structural design variable changes of up to 20%. The direct approximations in terms of the

controller variables compare very well with the exact response for up to 50% changes in the

design variables.

The results of this paper show that for control augmented structural systems, high

quality approximations for both steady state dynamic response and peak transient response can

be constructed. Therefore, the approximation concepts approach for structural synthesis can

be extended to include both steady state dynamic response (Ref. 7) and peak transient

response.
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PLANAR GRILLAGE STRUCTURE
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