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ABSTRACT

Repeated or closely packed modal frequencies are common physical

occurrences for vibrating structures which are complex or possess

multi-planes of symmetry. The computation of the sensitivity to

structural modifications for these frequencies and mode shapes is

made difficult by the fact that the mode shapes are not unique, since

any linear combination of eigenvectors corresponding to a repeated
eigenvalue is also an eigenvector.

This paper extends the work of Chen and Pan [i], who used modal

expansion techniques for accommodating the sensitivity analysis of

structures with repeated eigenvalues. Starting with a discussion of

the physical significance of sensitivity analysis for repeated

frequency modes, the paper presents a derivation of the governing

equations for the derivatives of a repeated eigenvalue. This is

followed with a small example to illustrate the results. An efficient

computation procedure, based upon an expansion of Nelson's ideas [2]

for large banded systems, is then proposed for systems with repeated
or closely spaced eigenvalues.
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IMPORTANCEOF THE PROBLEM

The importance of obtaining gradients for eigenvalue problems
stems from the fact that gradients, or derivatives with respect to
system parameters, represent solution sensitivities. A knowledge of
these sensitivities permits efficient design modifications, yields
insight into the reasons for discrepancies between structural analyses
and dynamic tests, and suggests model changes to improve correlations.

KNOWLEDGE OF GRADIENTS:

YIELDS INSIGHT RE, PARAMETER SENSITIVITIES

PERMITS EFFICIENT DESIGN MODIFICATIONS

UNDERSTAND TEST/ANALYSIS DISCREPANCIES

SUGGESTS MODEL CHANGES TO IMPROVE CORRELATION
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WHEN DO REPEATED FREQUENCIES OCCUR?

While a procedure for obtaining gradients efficiently was

presented a decade ago by Nelson [2], the problems associated with

repeated roots have not been adequately addressed.

The problem of repeated frequencies, or identical frequencies

with different mode shapes, occurs in many physical situations. The

most common circumstances under which multiple eigenvalues occur in

engineering are cases where system symmetry exists, such as structures

with two or more planes of reflective or cyclic symmetry (see Figure

i) or axis symmetry (see Figure 2).

It is also possible for repeated or closely spaced eigenvalues

to occur when physical symmetry is not present, such as with classical

wing flutter when the first bending and twisting frequencies coalesce.

COINCIDENTAL PARAMETERS (E,G, WING TWIST/BENDING FLUTTER)

SYMMETRY: REFLECTIVE, CYCLIC, AXISYMMETRY
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SYMMETRICALLY SUPPORTED MASS
RIGHT CIRCULAR CYLINDRICAL SHELL
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TECHNICAL BACKGROUND

Assume [A] and [B] are symmetric n x n matrices and A[
repeated eigenvalue with m+l distinct orthogonal eigenvectors.
[Z _ ] is also an eigenvector corresponding to _ where_n

and l I

[X] - I x. x
L I

is a

Then

SYMMETRIC EIGENVALUE PROBLEM

ORTHONORMALI ZATI ON

MULTIPLE EIGENVALUE _i REPEATS M + i TIMES

CORRESPONDING EIGENVECTORS

NONUNIQUENESS OF EIGENVECTORS

I×,.},{×_+,},....,I×_+MI
M

{z,}:j_
i=0

=-- £ _+I ..... X l+ M
I
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FRICTIONLESS PARTICLE IN A SHALLOWELLIPTIC DISH
PHYSICAL INTERPRETATION

A simple physical interpretation of repeated eigenvalues was
presented by Crandall [3 ] in which he considered a shallow elliptical
bowl in which a frictionless mass particle is allowed to slide in the
bottom of the bowl (left figure). The eigenvalue problem for this
system consists in determining the paths and frequencies of
back-and-forth motion in which each motion is repeated on the same
path. The natural mode solution is obviously along the major and
minor axes of the ellipse.

Next imagine that the elliptical bowl is gradually transformed
into a spherical bowl (right figure). The eigenvalues will approach
one another and any straight path, through the bottom of the bowl, is
equally a natural mode. Thus, when m+l eigenvalues coalesce, there is
an infinity of mode shapes composed of a linear combination of the m+l
dependent, but somewhat arbitrary, basis modes.

Minor Axis

Mode Path

Elliptic Dish - Unique Modes

Any Diametral Path Is A
N atural Mode

@
Spherical Dish - N on un ique Modes

Natural Frequencies Coalesce A s D ish Becomes Spherical

Distinct Mode Shapes V an ish A s Ellipticity D isappears

Crandall (ref. 3)
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MODALGRADIENT EQUATIONSPRESENTAN ENIGMA

The modal sensitivity equations for a small change in a typical
parameter, R, upon which certain matrix elements of [A] and [B] depend,
are well known and summarized below. The problems are that they
cannot be easily interpreted for the repeated eigenvalue problem since
Ix _ ] is not unique, and matrix ([A] - _ [B]) is not of order n-I
but lower (i.e., n-(m+l)) depending on the multiplicity, m, of
eigenva]ue _ •

!

( )_ 3( )

_R

Xi {}= XZ T ( [A] - I_[B] ) x(.

([A]- ,_E[B])

= b
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INTERPRETATION PROBLEMS

There are ambiguities associated with the gradient equations
since{XL I is not unique and _i depends upon which{XE] is chosen. In
addition, the rank of ( [A] _- A; [B] ) is not n-l, but lower.
Therefore, inclusion of the derivative of the normalization condition
alone is not sufficient to uniquely determine_X'{.

WHICH {XL} SHOULD BE USED? Is{X-_DIFFERENTIABLEIN R?

USE OF DIFFERENT{Xz}WILL YIELD DIFFERENT RESULTS,

'}RANK OF ([A] A:[B])IS Too Low TO UNIQUELY DETERMINE IXz ,

WHICH ADDITIONAL EQUATIONS SHOULD BE USED?

203



REPEATEDFREQUENCYSENSITIVITY EQUATION

To determine how the eigenvectors are perturbed by the
infinitesimal change in R, we postulate an aribtrary vector IZ- _
which is linearly composed of eli the [xF] (_ = _", _" +i, •.t ,

L'+m) and premultiply the eigenvector gradient equations by the

transpose of all the eigenvectors corresponding to At •

This yields an auxiliary matrix eigenvalue equation in __ ,
which is of order m+l, the solution of which defines the specltic

eigenvectors, through the eigenvectors [ _ ( 4 ) _, affected by the

change in parameter R.

M

LET{Z_}Z _.,{
J=0

x,+,l_JI-I

t

[x]T <[A] - A_.[B] > - [o]

I_IT IF__z,1 -/o I <->_;/o_l- >,;/o,/

[D] =-[3_'1 T ( [A]

(M÷I) _(M*I)

'-X,:[B] ' >[::=:]
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PHYSICAL INTERPRETATION

Solution of the (m+l) eigenvalues and eigenvectors of the[D]

matrix will yield the m+l gradients of AS as well as the eigenvectors

{Z_ to which they correspond. The figure below displays how the
ezgenvalues coalesce for a particular value of the parameter R and

also shows how they correspond to different gradients. In general,

there will be as many derivatives as there are curves intersecting at

a particular parameter value R.

M+I

SOLUTIONS

A

A •

L.

i

!

NOTE: THERE ARE Two >,E.

I
I

P,,
WHERE A Z COALESCES WITH '_z÷i

!

DETERMINATION OF I_ AND CORRESPONDING I<x_

UNIQUELY DETERMINES MODE FOR GRADIENT SOUGHT
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PROPOSED SOLUTION PROCEDURE: OVERVIEW

The solution procedure proposed is an extended version of

Nelson's method for non-repeated roots. The method maintains the

original matrix bandwidth while eliminating m+l equation redundancies

in the original eigenvalue system.

The equations to be eliminated are determined by examining each

eigenvector which corresponds to the eigenvalue whose gradients are

desired, and establishing which elements are the maximum for each

vector. These then correspond to which m+l rows of ([A] - Ai [B])

should be considered as redundant. If the maximum elements of any two

eigenvectors correspond to the same row, then it is necessary to go to

the next smaller element until a set of m+l equations for removal is

obtained.

Rather than eliminate these rows and upset the system

bandedness, we propose to extend Nelson's ideas by zeroing out the

corresponding element of IFj I and then solve for IV_ ].

BASED UPON MAXIMUM ELEMENTS oF{Z_.}j{Z L+I}'""{Z L+M}

ZERO-OUTM+I RowsAND COLUMNSOF ( [A] - A_[B] )

ZERO-OUT M+Z ELEMENTS FROM {Fj} , j = _, Z+i ,,,,,_+M

SOLVE', ( [A]- ALIBI ) {Vi } = { F;}

NOTE: ( [A] - X_[B]) HAS SAME BANDWIDTH AS ( [A] - A_[B])
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SOLUTION PROCEDURE: AUGMENTATIONOF EQUATION

The process described on the previous page yields a solution
vector [Vj I with m+l zeroes. To this we append the m+l eigenvectors
[Z_ ] with appropriate constants C 3_. This combination is then
substituted into the derivatives of the m+l orthonormalization
equations and the (m) additional optional equations to uniquely
determine the m+l constants Cj_ .

INTRODUCE M+I ADDITIONAL EQUATIONS:

!

<{Z_ }T[B] {ZE}- Q_E]) = 0

L ,] =L- Z+l, E+2,..., Z+m

L'+rl_

LET {Z; '} ={Vi} +_ Cj,_ {Zx}
/= Z

AND {zjIT [ B] {ZI_ } = {ZKFEB] {Zj'} I,,,j (OPTIONAL)

THEN
CI,,j =-½ {ZF,}T[ B]{Z3} -{Z.I}T[ B ] {VK}
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SIMPLE EXAMPLE: BASIC DESCRIPTION

As a very simple application of this procedure consider a

weightless straight bar of length L with end masses supported by

linear springs. As the spring stiffnesses and masses approach one

another, so do the two system frequencies. Thus, depending upon the

method by which the normal modes are obtained, the mode shapes may

vary. For the mode shapes presented below, either both masses vibrate

simultaneously up and down together [Xl_, or in opposition, Ix2].

Ilkk]
k2 k 2 eL

FOR k I : k 2 - k ,

i-//f'/ / // /.- - rl

_I, _ [ ml + m2 -m2

-m m2

m I : m2 -- m

X1

I Yl

= k2 = k
m

):I
,_=-

Ix21L02 2

2O8



SIMPLE EXAMPLE: NORMAL MODES

If we follow the procedure outlined earlier, and compute the

system frequency gradients with respect to changes in mg, we obtain

normal modes [Z I] and [Z ]. These modes are associated _ith motions
for which only m I moves, _nd motions for which only m 2 moves.

, _C )
( ) =

M2
In]{:'}: _'{=_1

2Mz 11_I-11  111:
k

AND ------'2---" _) MM

,1,1} 1,ll 1 t1_
= c_ (z)

1 xl _2,11t×2} ,_ 1 Hz
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SIMPLE EXAMPLE: EIGENVECTORGRADIENTS

Following the computation procedure outlined
eigenvector gradients, [Z' ] and IZ' ], for changes in1 2

vector and the value of [Z2] / _ m 2 shown below.

earlier, the

m 2 are the null

ZI '_ I += Ci IZi} Ci2 (Z21 {o} I= ,, I,E, El} NOT AFFECTED BY M 2 CHANGE
0

/Z2'} = C211ZI}+ C221Z2} = I-
2M 12

M2 O
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USE CAUTION WHENWORKINGWITH THE TOTAL DIFFERENTIAL

d i%

THE TOTAL DIFFERENTIAL MAY NOT EXIST EVEN THOUGH THE PARTIAL DERIVATIVES Do,
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CONCLUSIONS

The coordinate system and mode shapes initially selected for

this example gave little physical insight regarding how the initial

system would decompose due to a change in m Yet, this example

yields a simple demonstration of the insight to_e gained by following

the proposed procedure. Thus, it is seen that the proposed

mathematical procedure automatically yields m+l distinct gradients for

repeated frequencies and m+l distinct modes, without requiring user

dependence.

The computational efficiencies suggested by Nelson 3 have been

expanded. These include: maintaining system bandwidth and

consideration of only the m+l repeated root frequencies.

EIGENVALUE GRADIENTS FOR REPEATED FREQUENCIES

GENERALLY YIELD MULTIPLE DISTINCT VALUES

EFFICIENT COMPUTATION OF EIGENVECTOR GRADIENTS

FOR REPEATED FREQUENCIES IS POSSIBLE

I,E, BANDWIDTH MAY BE MAINTAINED

MODAL EXPANSION IS NOT NECESSARY

BUT, MUST INTRODUCE MODAL ORTHOGONALITY CONDITIONS IN

ADDITION TO NORMALIZATION CONDITION

EXERCISE CAUTION WHEN USING A TOTAL DIFFERENTIAL WHICH IS A COMBINATION OF

PARTIAL DERIVATIVES FOR REPEATED FREQUENCIES,
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