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Abstract 

Two potential coefficient fields that a re  complete to degree and order 360 
have been computed. One field (OSU86E) excludes geophysically predicted 
anomalies while the other (OSU86F) includes such anomalies. These fields were 
computed using a set of 30’ mean gravity anomalies derived from satellite 
altimetry in the ocean areas and from land measurements in North Amer ica ,  
Europe, Australia, Japan and a few other areas. Where no 30’ data existed, 
l*xl* mean anomaly estimates were used if available. No rigorous combination 
of satellite and terrestrial data was carried out. Instead w e  took advantage of 
the adjusted anomalies and potential coefficients from a rigerous combination 
of the GEMLZ’ potential coefficient set and l*xl* mean gravity anomalies. 

The two new fields were computed using a quadrature procedure with 
de-smoothing factors suggested by Colombo. The spectra of the new fields 
agree well with the spectra of the fields with l*xl* data out to degree 180. 
Above degree 180 the new fields have more power. The fields have been 
tested through comparison of Doppler station geoid undulations with 
undulations from various geopotential models. The agreement between the two 
types of undulations is approximately *1.6 m. The use of a 360 field over a 
180 field does not significantly improve the compariosn. Instead it allows the 
comparison to be done at some stations where high frequency effects are 
important. In addition maps made in areas of high frequency information 
(such as trench areas) clearly reveal the signal in the new fields from degree 
181 to 360. 
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1. Introduction 

This report describes our first attempt at carrying out a spherical 
harmonic expansion of the earth's gravity field to degree and order 360. The 
procedure followed is built on an  adjustment of satellite derived potential 
coefficients and l 'xl ' .  mean gravity anomalies that is described by Rapp and 
Cruz (1986). This combination solution yielded a set of potential coefficients 
corresponding to those values with a priori information, and a set of adjusted 
l-xl- anomalies. These anomalies were then used in a least squares collocation 
estimation procedure to determine a set of potential coefficient to degree 250. 
Examination of the spectrum of this field led to the suggestion that smoothing 
was taking place a t  the higher degrees due to the averaging in the l 'xl '  
cells. 

In order to estimate more reliable high degree fields we decided to use 
anomalies in smaller block sizes--specifically 30'x30' anomalies. A rigorous 
repeat of the prior adjustment was not possible so that an alternate procedure 
w a s  developed to obtain an expansion to degree 360. The following sections 
describe the methods used and the results obtained. 

2. The Previous Combination Solution 

In this section we briefly review the procedures that were followed by 
Rapp and Cruz (1986). The starting equation is the expression for the 
gravitational potential written in the following form: 

where: 

r , + , A  geocentric coordinates 

kM geocentric gravitational constant 

a 

CQm, Sam 

Pem 

equatorial radius of the reference ell ipsoid 

fu l ly  normalized potential coefficients 

fu l ly  normalized Legendre function of degree 1 and order m. 

- 
- 

The disturbing potential can be written as: 
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where: 

The gravity anomaly, in the Molodensky surface free-air anomaly sense is 
given as: 

where  P is a t  the surface and Q is on the telluroid. The boundary condition 
that relates Ag and T is as  follows: 

where h is the plumbline direction. Neglecting deflections of the vertical 
equation (2)  can be substituted into (5) to obtain: 

-d, i where Cam (i=h,7) are ellipsoidal corrections. If we assume that we have the 
anomalies (Ag) given on the surface of the reference ellipsoid equation ( 6 )  can 
be inverted to solve for potential coefficients (Cruz, 1986). W e  have: 

I n  (7) w e  have: 
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The other terms in (7) are  ellipsoidal correction terms defined in Rapp and 
Cruz (ibid, pp. 16-17). 

The gravity anomaly on the ellipsoid must be determined by downward 
continuing the surface anomaly to the ellipsoid and adding an atmospheric 
correction (SgA) .  W e  have used the following: 

This downward continuation is an approximation. For our work the derivatives 
were calculated from an expansion to degree 300 which was  developed as part 
of a previous solution (Rapp, 1981). 

The combination solution was carried out through the adjustment of the 
potential coefficients derived from satellite analysis and the coefficients 
implied by gravity data. Specifically the mathematical model, F, was taken as 

F = Lxa - L c a  = 0 

where L,a. is the adjusted potential coefficient set derived from satellite data 
and Lxca is the  potential coefficient set implied by the adjusted gravity 
anomalies given in cells on the earth. The linearization of (10) is written: 

where VQ are  corrections to the approximate anomalies, arid Vx are corrections 
to the a priori known potential coefficients. The W vector is: 

w = h o  - h o c  

where &o is the approximate potential coefficient s e t  and L, c is t h e  
potential coefficient set implied by "observed" anomalies. The model is 
formulated taking into account ellipsoidal corrections and downward 

continuation effects. 

given potential coefficient using (7). W e  have: 

0 

-d, 0 We s t a r t  t h i s  by computing the  Cjm values from the  

-d 0 where AC& 
equation (8) the  values of h o c  are computed. 

are a l l  but the  f i r s t  terms on the right side of (7). Using 
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The adjustment is now carried out to obtain V, and VQ. Specifically: 

v, = - ((Be Pjjl Be')-' + PX)-' (Bg PI1 B1)W (14) 

PQ is the weight m a t r i x  of the observations and Px is the weight m a t r i x  of the 
a priori potential coefficients. The elements in BQ are given by the 
coefficients of AgE in equation (8). The adjusted potential coefficients, 
compatible with satellite derived estimates, would be: 

The adjusted anomalies on the ellipsoid would be: 

LQa = LQO + VQ (17) 

while the adjusted anomalies a t  the surface of the  earth would be found from 
equation (9). 

In our combination solution we used the GEMLZ' potential coefficients that 
are very s i m i l a r  to the GEMLZ coefficients described by Lerch et  al. (1982). 
In addition we used a few additional coefficients to degree and order 30. The 
total number of coefficients estimated was 582. 

The loxlo gravity anomaly data was based on the merger of terrestrial 
anomaly estimates with altimeter derived gravity anomalies. In this merger we 
considered two forms. One form excluded most geophysically predicted 
anomalies while the second form included such anomalies. In the first case we 
had a total of 50,562 l * x l *  anomalies while in the second case there were 
56,109 values. Figures 3 and 4 of Rapp and Cruz (ibid) show the location of 
these anomalies. In order to fill in the "empty" areas we computed the 
anomalies from the a priori potential coefficient set. 

The higher degree potential coefficient fields were made by applying an 
optimal estimation procedure to the adjusted anomalies on the ellipsoid. This 
would correspond to a least squares collocation estimation using appropriate 
covariance functions, anomaly degree variance models, and anomaly accuracy 
estimates. The process of the optimal estimation as  developed by Colombo 
(1981) with implementation for l *x l*  data described by Hajela (1984) requires, 
for a complete solution, extensive computations. The solution we estimated was 
to degree'250. 

Acem corrections introduced i n  equation (13). 

After the coefficients are  estimated it is necessary to add the 
-d ,O  
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It  is possible to approximate the optrmal estimate through the use of a 
modified orthogonality procedure. 

complete surface of the ellipsoid w e  could use (8) to  compute C& . Since 
data are actually given in discrete cells an implementation of(8) ,  to 
approximate an optimum estimation, w a s  suggested by Colombo (1981). If the 
data is given in blocks of 8' let N = 180'/8'. 

If the anomalies were given on the 
--d 0 

Then we  have: 

where: y = kM/az; 

A Z i  j = the mean anomaly corresponding t o  AgE; 

Be is the Pellinen smoothing operator that depends on a circular cap radius 
which in turn depends on the size of the mean anomaly cell (Rapp and Cruz 
(ibid, p. 22)). 

Using the adjusted l'xl- mean anomalies of our combination solution we 
computed a set of potential coefficients from equation (18) which we have 
compared to the values from the optimal estimation solution. Table 1 (taken 
from Rapp and Cruz (ibid, Table 11) shows t h e  differences in t e r m s  of 
undulations, anomalies, and percentage d3ferelices. 

Table 1. Comparison of the Potential Coefficient Solution from Equation (18) 
with the Opt imal  Estimate Using l -x l -  Mean Anomalies. 

B 6N (a) Ibg(mga1s)l P(%) 
2 0.0 0.00 0.0 

10 0.0 0.00 0.0 
20 0.0 0.00 0.0 
30 0.2 0.01 0.5 
50 0.2 0.02 1.1 
75 0.8 0.09 6.2 

100 1.0 0.15 10.6 
120 1.0 0.18 13.2 
150 0.6 0.14 13.0 
180 0 . 8  0'. 22 22.3 

t o  180 8.9 1.53 7 . 6  
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W e  see from this table tha t  there is good agreement between the two solutions. 
The percentage differences are negligible at the lower degrees increasing to 
22% at degree 180. The results from this test will be used later to justify the 
use of equation (18) with 30’ mean anomalies instead of using the complicated 
optimal estimation results. 

This section has been written to describe our potential coefficient 
solution using l’xl’ anomaly data and the GEMLB’ potential coefficients. The 
results of these computations were two potential coefficient sets computed 
using an optimal estimation procedure with a uniform data noise of one mgal 
for the anomalies. The solution that excludes geophysically predicted 
anomalies was  designated OSU86C; the solution that included such anomalies 
w a s  called OSU86D. Both solutions w e r e  complete to degree and order 250. 

3. The 30’x30’ Mean Anomaly Data Set 

In order to extend the OSU36C/D solutions to a higher degree we  f i rs t  
needed to put together a set of smaller anomaly cells in order to get the 
higher frequencies into our solution. The cell size chosen was  30’x30’ 
although other sizes could be chosen. However this size is convenient to 
work with as four 30’x30’ cells fi l l  a l*x lo  cell. 

The 30’x30’ mean anomalies for the ocean areas had been computed by 
Rapp (1986) from Geos-3/Seasat altimeter data. Specifically computed were  
point anomalies on a 1/8’ grid which w e r e  meaned to compute both 30’ and 1’ 
mean anomalies (and sea surface heights). The total number of predicted 30’ 
anomalies was  149, 670 although about 1000 w e r e  considered unreliable because 
they were on land or in areas in which the altimeter data was sparse. 

In order to obtain data f r o m  terrestrial ’ e s t i m a t e s  it was necessary to 
collect gravity anomaly data as point values or s m a l l  (lO’xlO’, 6’xlO’) mean 
values. Such values were then formed into 30’x30’ values with individuai 
accuracy estimates where possible. The development of this 30’ terrestrial 
anomaly data base is described by Despotakis (1936). Figure 1 shows the 
location of the 30’ mean anomalies in the August 1986 field. 

W e  next created a merger of the altimeter derived anomalies and the 
terrestrial values. In the ocean areas we  used the altimeter derived anomaly 
unless its standard deviation was greater than 30 mgals or if the anomaly was 
in a l’xl. block whose elevation was greater than or equal to zero. For the 
remaining areas the 30’ terrestrial values were used if they were  available. 
The atmospheric correction (6gA) was added to the terrestrial anomalies (see 
equation 9) and a gravity formula correction of -0.6 mgal was  added to 
convert to our reference system of constants. If neither an altimeter derived 
anomaly nor terrestrial anomaly was available the adjusted l’xl’ anomaly from 
the combination solution was  used as fill-in values. 
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In order to take advantage of the least squares adjustment that led to the 
OSU86C/D solutions w e  took the adjusted l’xl’  values of these solutions and 
forced the mean of the  four 30’ values within the blocks to be the same by 
applying a bias term to each of the non-fill-in 30’ values. Specifically we 
write: 

In (20) the A stands for adjusted and UA stands for unadjusted and n is the 
number (usually 4) of non-fill-in 30’ values in the 1’ blocks. The B term 
would consist of three effects: the downward continuation of the surface 
anomalies to the ellipsoid (see equation 9); the inconsistencies of the 30’ and 
1’ values; and differences caused by the adjustment process. The B value for 
each 1’ block was then added to the non-fill-in 30’ value to obtain a value 
that we consider to be on the ellipsoid (AgE) and is consistent with the 
adjusted anomalies of our earlier solutions. 

In summary the merger process used 139,946 values derived from altimeter 
data; 21,739 values from the terrestrial data, and 97,515 “fill-in” values from 
the adjusted l - x l -  data. The total number of 30’ anomalies is 259,200. Figure 
2 shows the location of 40700 1-x l ’  blocks in which a t  least one 30’ value from 
either the altimeter derived or terrestrial data set w a s  used. 

4. The Estimation of the Potential Coefficients 

If we were  to start the combination process from our 30’ data we would 
need to evaluate equations (14) and (15). This process is feasible with a 
vector processing machine. iiowever we did noi feel that the effort far such 
a solution was worthwhile a t  this time. Since the actual adjustment is done 
with the coefficients of the satellite solution, which was complete only to 
degree and order 20, we felt that  whether this adjustment was made wi th  1’ 
data o r  30’ data would be irrelevant. W e  consequently adopted the adjusted 
coefficients of the OSU86C/D solutions. For the other coefficients to degree 
360 we used equation (18) through the HARMIN program of Colombo (1981) 
where the A Z i  values were taken as  the bias corrected 30’ values. This 
computation required an evaluation of the integrals of the fully normalized 
associated Legendre functions up to degree and order 360 a t  30’ intervals. 
This was done using program F428AV1 which implements the Paul (1978) 
subroutine with changes suggested by Gleason (1985). 

The HARMIN program (OSU program F419B) was used with the qa factors 
given by equation (19). Two solutions to degree 360 were carried out. The 
OSU86E solution basically excluded geophysically predicted anomalies while the 
OSU86F solution included such anomalies. 

from equation (18) were found, the ellipsoidal corrections given by Acem of 
equation (13) were applied. These corrected coefficients were then merged 
with the adjusted and corrected coefficients of the OSU86C or D solution to 
form the final potential coefficient sets. 

After the potential coefficients 
-&, 0 
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5. Potential Coefficient Accuracy 

One disadvantage of using the HARMIN approach to the  potential 
coefficient estimation is the lack of estimated coefficient accuracies. In fact, 
the use of the more rigorous optimal estimation procedure does not ensure 
realistic accuracies because of the smoothing of the field that takes place a t  
the higher degrees when realistic anomaly standard deviations are used. To 
avoid this problem Rapp and Cruz (ibid) combined the sampling error (from , 

the optimal estimation procedure) with a propagated noise assuming 
uncorrelated anomaly errors of 10 rngal. This procedure led to a noise 
magnitude that was equal to t h e  signal near degree 175 (see Figure 3) .  Since 
we  do not have a formal sampling error estimate for the 30' solution, and 
since the  assumption of uncorrelated 30' anomaly errors is even more 
unrealistic than the 1' case we have not computed the potential coefficient 
errors for the OSU86E a n d '  F solutions. If there are  requirements t h a t  
demand coefficient accuracy estimates for the 86E/F fields, we suggest the use 
of the 86C/D standard derivation to degree 175 followed by a 100% uncertainty 
in the coefficients above that degree. 

6. Anomaly Degree Variances 

W e  first define the spectrum or power at degree 1 as  follows: 

The anomaly degree variances, CQ are given as: 

where 7 = kM/a'. The anomaly degree variances are  formally given on a 
sphere of radius a. Figure 3 shows the anomaly degree variances for the  
OSU86C and the OSU86E solution. Also shown is the accuracy e s t i m a t e  of the 
OSU86C solution based on the optimal estimation procedure with an anomaly 
standard deviation of one mgal and a propagated standard deviation of 10 
mgal for the l ' x l*  anomalies (Rapp and Cruz, ibid, equation (6.11)). W e  see 
that the power is almost identical in the two solutions out to degree 200 
although OSU86C solution shows slightly less power between degrees 120 and 
160. Beyond degree 204, out to degree 250, the 86C solution has power that 
falls off much more rapidly than the solution (OSU86E) with the 30' anomalies. 
This seems to reflect the loss of information, not recovered by the optimal 
estimation procedure, in the 1' averaging process. This might imply that the 
rough rule of thumb (180'/0', 9' = block size) for how high a degree should a 
spherical harmonic expansion be taken may not be unreasonable. 
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Figure 3 also shows the anomaly degree variance implied by the h u l a  rule 
for the decay of potential coefficients (i.e. the 10-s/12 rule). The anomaly 
degree variance implied by this rule has been computed on a sphere of radius 
a assuming the original rule was based on data referred to the mean surface 
of the earth. Specifically plotted was: 

cl(a) = - l+1.5 

where RE = 6371 km and a = 6378 km. The rule has too much power between 
degrees 10 to 50 and too little power between degrees 80 to 200. Beyond 200 
the estimates f r o m  the model and from OSU86E are within 50% of each.other. 

Figure 4 shows the anomaly degree variances for the OSU86D (1') and the 
OSU86F (30') solutions. Both these solutions used the geophysically predicted 
anomalies. Also shown is the accuracy of the OSU86C/D solutions. The 
comments made with respect to the anomaly degree variances shown in Figure 
3 are also applicable here. 

Specific values of the anomaly degree variances, a t  selected degrees, for 
the four solutions discussed here are given in Table 2. 

Table 2. Anomaly Degree Variances. (Units are mgall). 

Degree 
1 

50 
100 
150 
180 
200 
250 
300 
350 

From this table we see that there is no substantial difference, a t  the higher 
degrees, in the power of the OSU86E and F solutions. 

7.  Doppler Undulation Comparisons 

Solution 
OSU86C OSU86E OSU86D OSU86F 

2.66 2-5? 2.94 2.83 
2.23 2.13 2.35 2.23 
1.36 1 .28  1.48 1.33 
0.96 0.97 1.02 1.01 
0.57 0.60 0.56 0 .61  
0.14 0 .41  0.16 0.43 

0.22 0.22 
0 .18  0.18 

. A s  discussed by Rapp and Cruz (ibid, section 8.3) the accuracy of a 
.potential coefficient model m a y  be judged by comparing the geoid undulation 
derived from the model and the value implied by the ellipsoidal and 
orthometric heights a t  a station. This can only be done after the station 
coordinates have been converted to  a geocentric, true scale system, and the 
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best estimate of the equatiorial radius is used. 

Mean S t d  Dev 
Model 4(max) Difference Difference 

OSU8 1 180 -1.18 m 11.57 m 
GPM2 180 -0.96 1.51 

OSU86C 180 -1.13 1.60 
osU86D 180 -1.12 1.60 
OSU86E 180 -1.13 1.58 
OSU86E 360 -1.10 1.57 
OSU86F 180 -1.12 1.58 
OSU86F 360 -1.09 1.57 

W e  carried out these computations with the new models for a global 
Doppler station set, and data sets in North America, Australia and in Europe. 
In these tests an equatorial radius of 6378136 m was  used. the mean 
difference (Doppler minus model) and the standard deviation of the difference 
is given in Table 3 for Europe, and Table 4 for Australia for a fixed number 
of stations. 

I 

Table 3. Comparison of Doppler Derived Undulations in Europe With Values 
From Models. 173 Stations Used. 

Mean S t d  Dev 
Model 4(max) Difference Difference 

OSU81 180 -.04 m e1.51 m 
GPM2 180 -. 28 1.47 

OSU86C 180 -. 47 1.38 
OSU86D 180 -. 39 1.42 
OSU86E 180 -.48 1.35 
OSU86E 360 -.50 1.33 
OSU86F 180 -.40 1.38 
OSU86F 360 - .42 1.36 

Table 4. Comparison of Doppler Derived Undulations in Australia With Values 
From Models. 114 Stations Used. 

From these two tables we  see that in Europe, of the degree 180 solutions the 
OSU86E is best, while in Australia GPM2 is the best. The degree 360 fields in 
Europe show a slight improvement over their 180 counterparts. In Australia 
the 360 fields are slightly better than the 180 fields with the exception of 
GPM2 which f i t s  the best for this area. 

For North America and the global data set we carried out the comparisons 
rejecting stations where the residual was greater than 4 m. Therefore in 
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judging the results of these comparisons we consider the standard deviation 
- and the  number of stations accepted for the comparison. These results are 
shown in Table 5 ,  for North America, and in Table 6, globally. 

Table 5. Comparison of Doppler Derived Undulations in North 
Values from Models 

Mean Std Dev Num of 
Model e(max) Difference Difference Stations 

OSU81 180 0.22 11.72 m 683 
GPMZ 180 0.18 1.58 695 

OSU86C 180 0.20 1.54 687 
OSU86D 180 0.26 1.55 687 
OSU86E 180 0.21 1.52 689 
OSU86E 360 0.26 1.45 695 
OSU86F 180 0.28 1.52 688 
OSU86F 360 0.31 1.47 696 

America With 

Table 6. Comparison of Doppler Derived Undulations Globally With Values From 
Models. 

Mean Std Dev Num of 
Model 1 (max) Difference Difference Stations 

OSU81 180 0.18 m *1.76 m 1721 
G?M2 180 0.13 1.64 1735 

OSU86C 180 0.17 1.66 1741 
OSU86D 180 0.21 i.66 i743 
OSU86E 180 0.16 1.67 1752 
OSU86E 360 0.17 1.66 1777 
OSU86F 180 0.21 1.66 1754 
OSU86F 360 0.21 1.66 1780 

From Table 5 we see, of the 180 solutions, both the OSU86E/F solutions 
give essentially the s a m e  results. Improved results are found with the 360 
solutions with a small decrease in the standard deviation of f i t  and a small 
increase in the number of stations accepted. 

From Table 6 we see all the solutions except the OSU81 solution give about 
the same standard deviation of fit. Of the 180 solutions, the OSU86F solution 
accepts the most stations. Of t h e  two 360 solutions tested the OSU86F solution 
accepts the most stations. 

In  judging these results we must  recall that t he  accuracy of the Doppler 
derived undulations may not be sufficient to distinguish the accuracy of 
various models a t  or below the t1.5 m level. More accurate results might be 
obtained using laser station coordinates. Unfortunately such stations are  
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much fewer than the Doppler stations and they are located at difficult 
locations (e.g. mountain tops). 

Rapp and Cruz (ibid, Section 8.4) discussed the undulation residual 
correlation with topography. Such correlation continues for these 360 fields. 
For example for the OSU86F field to degree 360, with the global station set, 
the slope is (0.411.14) m/km with 1780 stations accepted. The value for the 
OSU86D field to degree 180 is (0.412.12) m/km with 1741 stations accepted. 

8. High Degree Geoid Maps 

It would be possible, but not really meaningful, to compute a global geoid 
undulation m a p  using the two new potential coefficient models to degree 360, . 
Such maps would not be meaningful because the high degree contributions to 
the undulation, for the most part, ake quite small. To first estimate the 
magnitude of the high degree t e r m s  we computed, for selected degrees, the 
undulation contribution from degrees i + 1  to degree i m m .  Values for selected 
degrees are given in Table 7. 

Table 7. Geoid Undulation Magnitudes for Selected Degree Ranges in the 
OSU86F Model 

Undulation Cont r ibu t ion  

180 t o  250 120.2 Qn 

181 t o  360 23.2 cm 
251 to 300 

The values given in Table 7 represent global averages. To see specific 
estimates of the contribution made by the higher degree terms, we prepared 
two m a p s  showing the geoid undulations computed from the coefficients from 
degree 181 to 360. Figure 5 shows this m a p  for a region in the United States 
covering a portion of the Rocky Mountains. Figure 6 shows these effects for 
a region over the Tonga Trench. 

In the Rockies test we can see effects that reach 1.8 m. In the Tonga 
Trench area the  high frequency signal over the trench is clearly visible in 
the  lineated pattern. The largest values are on the order of 2 m e t e r s .  The 
latter case shows how the high degree fields can play a role where high 
frequency information is present in the gravity field. Note from Figure 6 
that, outside the trench the contributions of the higher frequencies are quite 
small, approaching, it is speculated, the *23 cm computed for Table 7. 

Forsberg (1986) has computed the geoid undulation information above 
degree 180 based on power spectral analysis of gravity anomalies in Norway, 
Sweden, Finland and Denmark. Averaging over 37 2 . ~ 4 '  areas the information 
above degree 180 is *32 cm with uncorrected anomaly data and *28 c m  with 
terrain corrected anomaly data. These values compare well wi th  the 123 c m  
value given in Table 7 when the summation is taken just to degree 360. 
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Figure 5. Geoid Undulations in a Rccky Mountain Region from Degrees 181 to 
360 of the OSU86E Solution. The contour interval is 0.5 m. The 
data grid was 0.'25. 
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Figure 6. Geoid Undulations in the Tongs Trench Area from Degrees 181 to 
360 of the OSV86E Solution. The contour interval is 0.5 m. The 
data grid was  0.'25. 
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9. Coefficient CornDarisons 

It is of interest to compare the potential coefficients of the C/D solution 
with coefficients of the E/F solution up  to degree 180. The C vs  E comparison 
is given in Table 8 while the D/F comparison is given in Table 9. 

Table 8. A Comparison of the OSU86C and E Models a t  Selected Degrees 

1 6X( m) Gg(mga1s 1 Percent D i f f .  

50 0.7 0.05 3.3 
75 0.9 0.11 6.9 
100 1.2 0.18 11.9 
120 1.4 0.26 17.2 
150 1.7 0.38 33.0 
180 1.8 0.49 50.2 

2 to 180 15.7 3.18 14.6 

Table 9. A Comparison of the OSU86D and F Models a t  Selected Degrees 

a 6N3(cx1) Gg(mgals1 Percent D i f f .  

50 0.8 0.06 3.5 
75 1.0 0.11 6.9 
100 1.2 0.18 11.7 
120 1.5 0.27 17.9 
150 1.7 0.40 32.8 
180 1.8 0.49 48.9 

2 t o  180 16.1 3.25 14.6 

The main thing that we see from these two tables is that the differences 
between the 1' and 30' data solutions a re  s m a l l  up  to degree 180. The 
differences are a function of degree, with the largest differences occuring at 
the higher degrees. This gives us some confidence in the 1' solutions but it 
also shows us  the coefficients a t  the higher degrees may change by 50% from 
a 1' solution to a 30' solution. It would not be unreasonable to expect the 
coefficients a t  the high degrees of the E/F fields to change by this amount if 
0.'25 anomalies were used instead of 0.'5 values. 

As a last comparison we show in Figure 6 the undulation differences 
between the OSU86F and the  OSU81 solutions up to degree 180. The contour 
m a p  has been created from data given on a 2 . ~ 2 '  grid so that some high 
frequency differences may be missing. The maximum difference is 9.7 m which 
occurs in the southwest part of Africa. Most of the large .undulation changes 
are  due to substantial anomaly differences in the solutions. 
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10. Conclusions 

This report has described the estimation of an expansion of the earth's 
gravitational potential to degree 360. The method used, did not rigorously 
combine, satellite and terrestrial gravity data. Instead, we built on solutions 
that were formed using l'xl' anomalies. W e  used a 30' data base formed from 
the merger of the anomalies derived from satellite altimetry in the oceans and 
terrestrial data for some land areas. Many land areas have no coverage or 
coverage only in t e r m s  of l 'x l -  anomaly es t imates .  In such areas the field 
will not represent the high frequency variations that may actually exist in the 
area. 

An important part of the anomaly reduction process is the downward 
continuation of the surface anomalies to the ellipsoid. In dealing with the 1' 
data we used a two t e r m  Taylor series involving a preliminary high degree 
field. We did not compute the downward continuation effects for the 30' cells. 
Instead we effectively used for each 30' cell the value used in the 1' 
reductions. Future solutions should examine improved techniques to carry out 
this downward continuation process. 

W e  did not compute accuracy es t ima tes  for the coefficients. Such 
estimates would require a number of assumptions that would be unrealistic in 
practice. More work needs to be done in this area. 

The next generation of the 360 field could involve the formal adjustment 
of the 30' mean anomalies and satellite data. More complete downward 
continuation procedures could be attempted. Accuracy evaluation should be of 
high importance. 

Although there are a number of improvements that could be made for the 
next solution, the current solution appears to represent the given data and 
e x t e r ~ a l  data (e.g. Doppler unbult?tinr?s) =Trite well. We must. remember, that 
just because we have a high degree field, it does not mean we have a highly 
accurate high degree field. The latter type of field will only be available 
when more precise data, such as  would come from the Geopotential Research 
Mission of NASA (1986) would become available. Until then our solutions to 360 
can be used for a number of purposes including realistic simulations for the 
GRM mission. . 
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