
Inference Corporation

Automated Software Development
Wor ketation

Phase I - Final Report

(N AS A -CB- 180 2 L 0) A UTC E A !l E Ii 2 C E 3 k Ir 3 E Nd7- 7 8956
C E V E L G E B E N I WCBKSIATXCI €in61 lieport
(In fereace corp-) 5 9 F CSCL 09B

Unclas
C3/61 43608

https://ntrs.nasa.gov/search.jsp?R=19870009563 2020-03-20T11:32:01+00:00Z

1 I r
I
I
t
I
i
I
t
I
I
t.
!
L
1
1
!
1
I

i
--

.- I , .

Inference Corporation

Automated Software Development
Workstation

4 December 1986

Phase I = Final Report

A Report Prepared for:
NASA - Johnson Space Center

in response to
NASA Contract No. NAS 017515

Submitted by:
Inference Corporation

5300 Century Boulevard
Los Angeles, CA 90045

213-417-7967

Table of Contcnta

I
I

I-

-

1. Introduction and Purpose
2. Workstation Overview - Phase I

2.1 Design Data Structures
2.2 Mode 1: Building an Application Workstation
2.3 Mode 2: IJsing an Application Workstation

3.1 Mode 1 - BuiIding a Workstation
3.1.1 Design Data Structure Library Initialization - Program Library
3.1.2 DDS Library Browsing
3.1.3 Icon Library Initialization
3.1.4 Icon Library Browsing
3.1.5 Application Expertise Library
3.1.6 Expertise Library Browsing

3.2 Mode 2 - Using a Workstation
3.2.1 DDS Specifications

3.2.1.1 Introduction
3.2.1.2 Hierarchy.
3.2.1.3 Specification Pages

3. Workstation Design

Specification Page A: Common Elements on Every Page
Specification Page B: Project Management Page
Specification Page C: Purpose and Keywords Page
Specification Page D: Functional Description Page
Specification Page E: Variables Page - Graphically Specified DDS OLYLY
Specification Page F: Mathematical Specification and Variables Page

3.2.1.4 Graphical Design System
3.2.1.5 Mathematical Design Level
3.2.1.6 Implementation

3.2.2 DDS Operations
3.2.3 DDS Librarian

3.2.3.1 Cataloguing
3.2.3.2 Browsing
3.2.3.3 Selection
3.2.3.4 Implementation

3.2.4 Automated Programming
3.2.4.1 Graphical Program Generation
3.2.4.2 Mat hemat ical Program Generat ion

3.2.5 Results Presentation
3.2.8 Execution
3.2.7 Debugging Designs
3.2.5 Automated Documentation

3.3.1 IEst allation
3.3 Tutorials

1
3
3
4
5
6
6
7
7
7
8
8
8
8
9
9
10
10
11
13
16
16
16
20
22
24
24
28
29
29
30
31
31
36
36
37
37
39
39
39
39
39

I

I

t
I

3.3.2 Usage
3.3.2.1 Logging In
3.3.2.2 Library Browsing
3.3.2.3 Editing Facility
3.3.2.4 Graphical Spec
3.3.2.5 Mathematical Spec
3.3.2.6 Code Generation
3.3.2.7 Domain Expertise Rule Use
3.3.2.8 Simulation Capability

3.4 Conclusion
3.5 Documentation

3.5.1 File Documentation
3.5.2 Rule Documentation
3.5.3 Relation Documentation
3.5.4 Initial Schemata Documentation
3.5.5 Initial Facts Documentation
3.5.6 LISP Function Documentation
3.5.7 SMP Code Documentation
3.5.8 C Code Documentation
3.5.0 VAX-Vh4S Code Documentation

4. Phase If Recommendations
A. Phase I Source Code Listing

41
41
41
42
44
46
48
49
49
49
50
50
51
52
52
52
53
53
5.3
53
54
65

1

I

I

1

1. Introduction and Purpose
This document describes the final status of the Automated Software Development

Workstation at the end of Phase I, and as such, provides the Final Report, one of the

contract deliverables.

This project automates engineering software development using an expert system (rule-

based) approach. The use of this new technology offers benefits not available from

current software development and maintenance methodologies. The bekf that current

methodologies will be capable of producing needed prodactivity increases is constrained

by limitations in

0 the flexibility of informat,ion representation in a dynamic development
environment,

0 the ability to incorporate engineering domain expertise for construction of
new designs, and

0 the recording methods of design histories to support maintmance.

The approach taken in this project does endeavor to overcome these limitations,

although not all in Phase I. This project is viewed in the light of a multiphase effort with

Phase I just concluded. It produced a basic workstation capability with which t(3 prove

the advantages of an expert system approach to software development in Phase Il. The

workstation now stands as a framework for incorporation of engineering design expertise

and recording of design histories. The current capabilities assist the engineer in software

development to bring about an improvement in software life cycle costs - development

and maintenance costs particularly. Yet, the real benefits to be achieved require a,

continued project. It is assumed that Phase II will begin in the near future.

As proposed for Phase I and required by the SOW, tasks have been completed that

built a workstation with

e a library or program data base with methods for browsing the designs stored
there,

0 a system for graphical specification of designs including a capability for
hierarchical refinement and definition in a graphical design system,

.-

I ’
I
I

I

0 a n automated code generation capability in Fortran.

This workstation was then used in a demonstration at NASA with examples from nn

attitude control subsystem design for the space station. - .. Subsequently, a fifteen minute

videotape presentation was provided to NASA.

The list of dcliversbles as a result of Phase I include:

0 Final Report (this document),

0 Spmbolics 3600 Release 6.1 and ART 2.0 compatihle 1/4 inch cartridge tape
of the source and binary code,

0 Documentation of the code in hardcopy (and on the tape),

0 Brief tutorials on Phase I workstation use and instaliation.

The results of the Phase I effort are documented here in a manner that allows quick

cross-reference with the oriejnal proposal. After an overview of Phase I accomplishments

in Chapter 2, Chapter 3, presents the main technical body. It corresponds closely with

Chapter 3 of the proposal. In conclusion, Chapter 4 recommends Phase II activities and

goals, 2s well as points towards a possible integration of effort between the Automated

Software Development Workstation and the Trajectory Control Environment projects.

2. Workstation

3

Overview - Phase I
The current workstation automates engineering software design at a fundamental Icvel.

An electronic card catalog system connects the user to any stored designs (softwire).

A n y user-selected design is loaded for editing, copying, etc. A loaded design or

specification encompasses information regarding purpose, functional description, author,

creation and update dates, subroutine name, graphical block diagran or engineering

mathematical description (in SMP), etc. User manipulation of these designs and their

interconnection in an automated environment allows basic design construction - software

development.

The workstation functionality is accomplished though use of the latest in software and

hardware technology. It employs ART as a rule-based programming paradigm to

facilitate storage of expert knowledge regarding design construction, ShlP as a computer

mathematical paradigm for allowing engineering expressions and automated Fortran

code generation, and the Symbolics 3600 series computer with menus, windows? and

mousable areas to automate the man-machine interaction. The use of these technologies

is believed esssentisl to achieving the goal of automated software development, due to

limitations of other technologies as pointed out in the introduction.

2.1 Design Data Structures

The workstation conceptually considers all software developed within its environment

to be a 'design data structure' or DDS. This simply implies that any library software

module is itself an engineering design. This design or module may be tied in at a t any

conceptual level of abstraction in another design, thus the t.erm - design data structure.

These DDS's make up the workstation library and are addressed by the card catalog

system. Any design stored in the library has been saved by a previous user and is

intended to be fully documented as a 'formal' specification for that design. Thus

reloaded or 'reused. library DDS's can be edited or copied for new development, end a

subsequent 'formally specified' design can again be saved. With this approach, the

software maintenance problems should be eased. This method assumes the user has

entered appropriate information that is not automatically supplied by the workstation.

/
/

I

4

!

I

c
I .

The ‘workstation’ encompasses two modes of operation - 1) building, and 2) usirig a

domain-specific incarnation of the workstation. The first mode is one primarily of

initialization, since all users can add knowledge to the workstation. The secocd more

heavily emphasizes the construction of new designs using existing domain design

expertise. In either case the domain-specific knowledge refers to an engineering area of

application. The next two sections present overviews of the progress made during Phase

I in these two modes.

2.2 Mode 1: Building an Application Workstation

M’hen a new engineering domain is to be supported, a new workstation incarnation

must be initialized. This is accomplished by:

0 building an initially catalogued library of available designs,

0 building an initially supported graphical equivalence vocabulary (graphical
icons -> software designs in library),

0 building initial domain specific rule sets for use in automat.ic code generation
or design assistance.

During Phase I, an ability to add and catalog designs was completed; an initial set of

designs for an attitude control system was produced that was adequate for

demonstration of concept. Automatic coupling of graphical vocabulary elements (specific

icons) with the attitude control library was supported by presenting the user with the list

of library options after the user entered the desired design name. Little effort was placed

on allowing user d e h e d vocabulary additions to the graphical design palette for qqicker

reference. Finally, a small rule set was established for the attitude control to aid in

automated programming. These rules automatically transform coordinate systems for

variables as required between designs. All the rules were written in ART. There was not

an intention to supply an overlayed capability on top of ART to support capture and

storage of domain expertise, i.e. a knowledge acquisition aid.

1

I
!
!

1.
!

It is possible to perform all the proposed building operations at the end of Phase

I. Limitations remaining to be overcome involve allowing user additions to the palette

depicted vocabulary and easier access to pertinent design information via domain specific

rules. A possible drawback of the rulebased approach is that the users are required to

know ART in order toadd domain specific expertise. Phase II might attempt to overcome

this limitation.

2.3 Mode 2: Using an Application Workstation

Phase I progress in supporting use of an attitude control workstation was significant.

The only desired goal not achieved was an exectuable simulation. Time ran out prior to

its completion. A graphical design system was built for use in all application

workstations: with scrolling, layout, deletion, linking, etc. available to users. An ability

to link designs together, whether new or from the library, at various levels of abstraction

was incorporated. The leaf elements of the designs were considered to be engheering

mathematics written in the computer mathematics language Sm. At all levels of design

abstraction a set of specification information was captured that described the purpose,

function, author, variables, etc. to support maintenance and reuse. Once the design was

completed, automatic generation of Fortran code was possible. For the leaf elments, sw
was used to automatically generate the Fortran code for the subroutine body and

variable declarations. The specification information supplied by the user was then stored

in a catalogued file of the library, as well as in a card catalog system and documented

Fortran source file. At the higher level block diagrams, ART was used to generate the

subroutine and variable declarations. The attitude control .expertise. was used to aid

in automating this operation. Finally, access to a capability for results presentation was

added. However, since plotting, formatting, etc. are typically available and familiar at

each location, no effort was expended at actually producing results features.

I-
!

I

3. Workstation Design
The Automated Software Development Workstation is itself designed so that several

domain specific incarnations may be supported. There are therefore two modes of

operation - building new incarnations and using those that exist. The tools supplied from

Phase I allow a developer to initially build and catalog utility designs and to incorporate

domain specific utility knowledge, that is, Mode 1 of the workstation. This initial

prototype evolves as the workstation is used - additional designs me catalogued and

reused, additional rules are added to the knowledge base, etc., that is, Mode 2 of the

workstation.

The detailed description of actual workstation operation is f0ur.d in the Mode 2

discussion, since, that portion of the Mode 1 functionality is nearly identical. Mode 1

simply initializes the libraries with generally useful designs, icons (or language elements),

and domain rules and follows the same procedures as in Mode 2 to accomplish its goals.

Prior to either usage, a login procedure is encount,ered. This procedure is ancillary to

the main workstation description and is therefore left for description in the usage

tutorial.

3.1 Mode 1 - Building a Workstation

This mode primarily consists of constructing libraries of utility designs, icons, and rules

for use in the specific domain - attitude control system. Three very limited libraries were

created in Phase I.

0 Program library: DDS's catalogued for reuse

0 Icon Library: Icons - only generic icons actually entered in Library in Phase I

0 Application Expertise Library: ART rules for use in attitude control system
demonstration

I

f
f
1
1

7

3.1.1 Desiga Data Structure Library Initialization - Program Library

The workstation supports building the DDS library through the graphical and

mathematical specification systems. All pertinent information is acquired from the user

to allow the DDS's t,o be reused. A small set. of attitude control system designs and

utility DDS's were catalogued into the program library for Phase I demonstration.

The initialization of the library requires only standard functionality use to build and

catalogue needed domain utility designs. The detailed description of the standard

workstation DDS building activities is found in Section 3.2.

9.1.2 DDS Library Browsing

The -4FtT schema browser is used while ART is running to browse the DDS library.

The program or design library is referenced by an .electronic card catalog. system that

is based on ART schemata. The library is then browsed for viewing the purpose of

designs and for loading the designs for editing. A facility allows the user to pick from

the catagories of designer, project, design, or keyword much like the author. subject,

title system of common public libraries (no Dewey Decimal or Library of Congress

System yet!). A graphical network of all designs referenced by any combination of the

above categories is displayed just as in the normal schema browser. The mouse is used to

scroll the network, select viewing a purpose for some design, or for loading it.

Again, the details of library usage and operation are found in Section 3.2.

3.1.3 Icon Library Initialization

A generic set of icons was established for use in design efforts. They allow building

designs and inserting the design name. The typed name references all existing designs of

that name. A facility as described in the proposal that parallels the specification of

designs has not been completed and remains for Phase II.

8

I
I

I

I

I

!
L
!

3.1.4 Icon Library Browsing

This facility has not been completed but conceptually parallels the card catalog system

Loading of the desired icon(s) but for graphical icons (domain specific vocabulary).

would then be accomplished via mousing on a graphically displayed hierarchy.

3.1.6 Application Expertise Library

This data base is totally domain specific and consists of rule sets. It is the intent that

these domain rule sets be available as "design assistance modules. and that they may be

loaded as desired (an initally specified set would typically be loaded).

An initial rule set for automatic attitude control system cooordinate system

transformations was written. This rule set automates code generation when library

designs are reused by automatically inserting the necessary variable transformations

between DDSs.

It is the intent of Phase XI to focus on enhancing the rule sets, providing additional

took to capture them, and generally provide the ezpe t t for the software deveb-.?er with

design assistance.

3.1.6 Expertise Library Browsing

This facility was not mentioned in the proposal, but some similar facility is

recommended for Phase II that conceptually parallels the card catalog system but for

domain rule sets or design assistance modules.

Loading of the desired rule set(s) would then be accomplished via mousing on a

graphically displayed hierarchy.

3.2 Mode 2 - Using a Workstation

The design engineer now has a basic capability to enhance the domain design library.

The engineer uses functionality presented using the latest in hardware and software on

the Symbolics 3600 series computer. The menu, mouse, and window system embodies

the essential ingredients to support the DDS system. The DDS system embraces all the

I 9

I

I
i

t
t

1

mechanisms necessary to allow linking designs of mixed levels of abstraction, from high

level block diagrams to low level leaf elements. Recall that a DDS is the data structure

element that exists at each level, as well as a reference to all the lower level DDS's that

it may contain. Each DDS level consists of several m p a g e ~ m of specification information.

These pages allow entry of the specificaiton information in a formatted manner for reuse

and maintenance. The most obvious pages of an individual DDS level are either the

graphical specification page for a control flow graph (block diagram like) or the

mathematical specification page, i.e. the guts of the design. There are, however, about

four other pages to be filled-in for a relatively formal specification. A graphical design

system provides for the control-flow representation for higher level abstraction

information. -4 mathematical language (SMP) page presents the capability for definition

of leaf elements of the design hierarchy. Once the mformalm specification of a DDS level

is completed, Fortran code may be generated automatically. SMP transforms the

mathematical specifications for the leaf elements, ART for the control flow of higher

level elements. This code could then be used in a simulation. An executable simulation

capability was not finished during Phase I as hoped.

3.2.1 DDS Specifications '

3.2.1.1 Introduction

A major activity of the workstation is the creation or editing of DDS specifications at

any level of abstraction or refinement. There are two types of DDS specifications -
graphical and mathematical. Graphical DDS specifications describe control flow between

DDSs a t lower levels of abtraction @e. like a block diagram). The DDSs at the next

lower level are represented 8s mouse sensitive icons on the terminal screen and are

refered to ac inferior DDSs. The mathematical DDS specifications entail engineering

mathematics for a leaf design element. They are atomic units and cannot be decomposed

into inferior elements. Both types of specification are used to generate source code to

implement the DDS specified.

10

I
i
I
I
I
t

I
t
1

3.2.1.2 Hierarchy

DDSs may be organized in a hierarchical fashion by linking graphical DDSs to lower

The DDS concept alloivs for linkages between all level abstractions or leaf elements.

DDSs (other than the same DDS).

3.2.1.3 Specification Pages

To fully describe a DDS the user must specify the following items:

0 Functional Description

0 ,bsumptions and Limitations

0 Special Comments

0 References (to published documents, etx.)

0 Purpose

0 Keywords

0 Project

0 Current Development Comments and Status

0 Variables (input, output and local)

0 Subroutine Name (for automatically generated source code subroutine)

0 Control flow or Mathematical Specification

The workstation itself also maintains a history of which user edited each version of the

DDS, and this history is part of the DDS description.

The following material describes the screen layout for specifying DE%, with added

figures for easier visualization. Seperatc sections describe the imylementntiou.

User interaction consists of mousing sensitive areas on the screen for choice selection,

and entering textual information from the keyboard.

r

11

At a given point in time a particular DDS will be in the editing buffer and may be

presented on the terminal screen. Since the full description of a DDS does not fit on one

screen, various items are shown on seperate pages. The user can toggle between these

pages via mouse sensitive text icons. Many of these items are potentially too big to be

displayed on the screen, so scrollable viewports are used. Particularly, graphical

specifications and input, output, and local variables, author history, etc. support

scrolling.

All the pages are divided into several parts. They are implemented using two ART
windows and divide the screen into three sections. The upper part of the page contains

the Design Data Structure name. The large area in the middle section is the editable

area of the page. The lower part of the page lists non-editing operations that may be

per formed .

Since the upper and lower section are relatively static this discussion will focus on the

The description is in terms of user interaction. Sect,ion 3.2.2 middle section here.

discusses the bottom section in some detail.

Specification Page A: Common Elements on Every Page

Each middle section contains a bottom area of mouse sensitive text icons used for

toggling between pages (see Figure 3-1). Clicking the mouse on a text icon will cause the

corresponding screen to be presented. The .Exit Current DDS' icon causes the editing

of the current DDS to cease. The previously edited DDS is brought into the editing

buffer. In effect this causes a swap of the two most current DDSs on the editor buffer

list, which is maintained by recency of editing. It does not save the DDS or cause any

other side effect.

Text fields consist of underlined areas of the screen. A field is selected for editing by

clicking left on the mouse sensitive text field. Clicking on the title of a text field will also

cause it to be selected. The text field editor incorporates most of the control commands

of the Sgmbolics EhL4CS editor such as c-A. In addition, the mouse may be used to

position the cursor in any location by clicking on the mouse within the text field while

12

ORIGINAL PAGE 1s
OFPOOR QUALrrY

1 I

I L

U c v)

U
C
C

b b
- 2

E
-

v)
I W

a
' E

W

W
U.
ul
p:

v)
W

0 a
a a
I

3

Y
v)
0 a a a a

v)
0
P
0

*
w
Y

a

L
:LI
. C

!O

' 0

:v)
' U
'0

? o

c
r

' W

' W :u

'C
I

I:

.. ..
>-I

13

editing the text field. Pressing the <END> key or clicking the mouse outside the test

field causes the editing to cease. In general the text field title is placed in reverse video

while the field is edited.

The triangles to the right of a text field indicate that it is a scrollable field. Only the

portion shown on the screen may be edited while the field is selected. However, at other

timcs the triangles are used to scroll the field, in order to peruse it or edit it. A left click

causes the continuous scrolling, a middle click scrolls one page (one line at a time), and a

right click scrolls one line. The user may scroll from the first line of the text field until

the last line entered. They can grow indefinitely. Continuous scrolling is terminated by

clicking again on the triangle.

Specification Page B: Project Management Page

The Project Management page consists of three scrollable text fields used for project

management: Project, Vereion Hietoy, and Current Development Commen!s and

Statu8 (see Figure 3-2 below).

The Project field is a scrollable text field used to describe the project and role of this

DDS within the project.

The Version History is maintained by the system and displayed only. It is not entered

by the user and cannot be edited by the user. It gives the author, organization and

phone number of the logged in user who saved the version, as well as the date it "3s
saved. The list is displayed by recency. The first line represent.s the DDS in tbe buffer,

and is not assigned a version number.

The Current Development Comments and Status field is a scrollable field for

comments on the current state of DDS design. It is used by the user to indicate what h a s

been done and needs to be done to complete work on a partially developed DDS.

4 b

c
0

n
L

2

.c

a

a
L)
Q
0

u c
0 z
IL

c
0

Y
8
N

E
Q cn
0

.c

c

L
C
.e
4J

s a

4J

I /

I

n
J
4J
8
L)
u)

0
c
0

n

SJ
S
c
0
u
Y
c
u
c
U
0

0 >
u
0

c
a
L
7
0

2

c

Y

4

C
V
Y
n

- ' $
L)

a
L
L)
n
C

c
U

w
II

a
a,

-
a z
- 0

> I
.. ..

L a- :-=: - - 2 x 3 '

L i
U J w
u .- C O G

, C I d W

BRiGiifdL PAGE i$
OF POOR QUALrW I 15

c
C .-
c

a
L
U

-2

I

16

Specification Page C: Purpose and Keywords Page

The Purpose and Keywords page contains the Purpose and Keywords text fields. These

fields are important for both documentation and the browsing facility (see Figure 3-3).

The Purpose field is a scrollable field used to describe the purpose of the DDS. This

field can be viewed from the library browser and is also used for generating

docurnentat ion.

The Keywords field is a scrollable field used to specify the keywords for this DDS to be

used in the cataloguing facility and for documentation purposes.

Specification Page D: Functional Description Page

The Functional Description page contains four scrollable text fields: Functional

Description, Assumptions and Limitations, Special Comments, and References (see

Figure 3-4).

The Functional Description field is documents the functional description of the DDS.

The Assumptions and Limitations field is for documents any assumptions or

limitations of the design specification.

The Special Comrnente field documents any special comments about the DDS that will

of interest for the user when the DDS is completed. A separate field is provided for

development comments (Current Development Comments and Status)

The References field documents any reference to other documents (books, papers,

memos) that may be relevant to the DDS.

Specificstion Page E: Variables Page - Graphically Specified DDS ONLY
The Variables page for a graphically specified DDS consists of a Subroutine Name field

and three scrollable regions for describing input, output and local variables (see Figure

3-5). Local variables are used within the DDS but do not serve as either inputs or

out pu t.s.

17

The Svbrouline Name field specifies the name to be used by the automatic code

generator when generating the source code subroutine that corresponds to the DDS. The

DDS name may be longer and more descriptive.

The information about variables is used for code gencrat.ion, and automatic generation

of coordinate system transformations.

Scrolling in a scrollable region scrolls the variables lines so that an indefinite number of

variables may he used.

Each variable line has the following fields: Name, Description, Units, Variable Type,

Dimension, Coordinate System, and Data Type.

Several of these fields are choice fields. When the user selects these fields, a menu of

allowable choices is presented. The user selects the appropriate choice from the menu by

clicking the mouse on it. If the mouse leaves the choice menu no change is made.

The Name is a text field to specify the variable name.

The Description is a text field to provide a short description what the variable

represents.

The Units field is a text field to indicate t,he physical units associat,ed wit.h the variable

e.g. grams

The Variable Type ficld is a choice field that specifies the variable as one of the

following mathematical types: scalar, vect.or, matrix or quaternion.

The Dimension field specifies the dimensions of a vector or matrix. The dimension of a

scalar is 1. The dimension of a quaternion is 4. The dimension of a vector must he a

positive integer. The dimension of a matrix must be two positive integers sepnratxi by

spaces. The dimension of a 3 x 3 matrk is entered as '3 3..

i

I
1
I
I
I
I
I
I
I
I
1
1
I
1
!
i

~

I

i

18

n
E
0

Y
0
0

L
-4

0
C
O

C
0

Y

L
3

t

t

t

n

'c

a

n
n a

n
U
E
0
L
0 u

Q

0
u
G
v)

r

c

c

- - -

19

O C SH j

0

n
2

0
c

a
n u o n
c

r X
L C
0

v 1 3
c a a r
Y

n
Y

C
3

r

C
0
U
R

L
V

u

r

.F

n
n

u
c
Q
E

b

/ I / / / I /

I I I I I I I I I

v)

3
0
c

c

b

I1

l / / / / l I / /

I

Q

L
0
U l l l l l l l l l 5
LI

I L O 0
e
0
3 s
w
Y

I
u u u
c c c
U V L .

- L L L
O L L L
u 3 3 3
O V V O

- 1 b
L U

v a u > 0 . -
a - u m v n

The Coordinate System field is a

The current acceptable systems are:

N/,4. The user selects this field with

with the Variable Type field.

20

choice field thatt specifies the

inertial, LVLH, body centered,

coordinate system.

principal auk, and I

the mouse and is presented with a choice menu, as

The Data Type field is a choice field that specifies the data type to be DObTELE or

INTEGER.

The variable lines are provided with default values and constaints.

When a variable is first defined by entering the name, the following defaults are

assumed: scalar, dimension 1, coordinate system N/A, and data type DOLBLE.

The default dimensions are: scalar 1, vector 3, matrix 3 3, quaternion 4.

Scalars are constrained to be of dimension 1 and quaternions cf dimension 4, no matter

what the user may enter.

Specification Page F: Mathematical Specification and Variables Page

The hlat hematical Specification and Variables page for a mathematically specified DDS
consists of a Subroutine A’ume field, a Mathematical Specification field and three

scrollable regions for describing input, output and local variables (see Figure 3-61.

Section 3.2.1.5 discusses the use of the mathematical specification field in more depth. .-

This screen is similar to the Variables page for a graphically specified DDS. It consists

of the Subroutine Name field, the Mathematical Specification field, and t bree scrollzhle

variable regions for input, output and local variables.

The Subroutine Name a i d variable regions are used as in the Vzriables page above.

The hlathernatical Specification field is a scrollable text field used for eritering

equations that Fpecify the DDS. These equations are written in S M P syntax and allow

vnriables to represent vectors aud matrixes. This high level mathematical language is

4 4 b

I l l

n
Y

c
3

IC

u
u)
0
R
K

R
a

- -

22

appropriate for indicating the specification of a DDS at a mathematical level withoct

having to write DO loops and programming constructs, although such constructs are

available in the SMP syntax.

The high level mnthematical specification together with the variable description are

used to generat e source code automatically.

3.2.1.4 Graphical Design System

The graphical design syst,em allows a designer to build or edit control flow diagrams.

The diagrams are built by mousing on a 'v0c3bulary~ element from a palette of choices

and positioning them within an editable region, the design area (see Figure 3-7). The

Phase I palette icons represent generic design elements. No specialization was

attempted. When a design is located in the control flow and given a name, that naine is

tied to all library designs matching it by name. Several coices may be available for

linkage of the control block to a lower level, more descriptive DDS. These are all
presented when the user begins the linkage operation.

The graphical design system supports most of the basicly desired operations for editing

- deletion, scrolling through a 'file', clearing the 'file' of buffer, and graphic-specific

ports on design blocks and connections amongst them. Deletions allow removal of single

elements from the design area (or buffer); scrolling allows flow diagrams larger than

design area size to be viewed, built, and stored; and clearing removes all elements from

the buffer. Ports are positioned after a menu selection that arises via mouse click on a

specific design block. Connections are then added between blocks by mousing the

respective port mouse sensitive areas. Each connector is given its own mouse sensitive

are for use in obtaining a menu of observation or results options.

Certain operations (displayed a t the bottom right of the screen) relate to default

settings for the graphical design system. These may be adjusted as the user desires for

such things as scrolling increments and alignment cf control blocks.

The general intent is to mzke the graphical editing area similar in nature to an

EhWCS buffer, but with graphic-specifc operations.

j

c
d c:
c c
ed

.C

24

I
1

t
I
L

The implementation of the graphical design system is accomplished by dividing the

middle section of the screen into two scrolling areas, one, a palette, for the generic or

specific graphical design vocabulary, and the other, a design are for laying out or editing

control flow diagrams. Scrolling is available via mouse sensitive g ~ c r ~ l l markers.. The
design layout is accomplished via mousing a palette icon, positioning the replica in the

design area, and, if the icon is generic, filling in the design name. Additional graphical

operations are reachable via a mouse click on the design .iconm, or via the bottom

section operations (such as delete, etc.). Ports and degin flow connections are

accomplished by selecting the input or output po:t operation from the design icon menu,

locating the port on the design icon, then connecting ports by clicking on the port mouse

sensitive areas, input to output or vice versa.

3.2.1.5 Mathematical Design Level

The mathematical design level or leaf allows a designer to build or edit engineering

mathematical specifications. The mathematics is written in SMP using engineering

terminology and syntax, including dealing with vector manipulation such as dot and

cross products. The SMP code written is later used as input to the Fortran code

generation process. The specifications written in Phase I were for the attitude control

system.

3.2.1.8 Implementation

This section describes the implementation of the DDS description screens, with the

except ion of the graphical specification.

Each DDS is implemented as an ART schema together with some associated facts. The

schema name is internally generated so that various DDSs c3n have the same textual

name. This is possible because the name is actually a slot of the DDS schema.

Inferior DDSs within a graphical DDS are represented by a model fact which describes

inferior DDS in relation to its superior. The actual icon on the screen is represented by a

model-icon-description fact. The model fact ties the unique icon name to an inferior DDS

schema. Thus the actual inferior schema may be changed within the model fact without

affecting the model-icon-descriptor fact.

25

A pushdown list of DDSs are maintained in

variable length sequence and the current schema

the design-process-buffer-list fact as a

is at the top of this list.

The current DDS is also maintained in the wksta-current-dds-type fact.

The presentation and editing of the all screens, except for the graphical specification

screea, is performed by a set of general rules, facts and schema for handling a multiple

scree3 form in an ART graphics window. The form associated with the DDS nlso uses

some specific rules and uses variants of the general rules. Each form has a specific name

that is not seen by the user. The form used for the DDS screens is called .model-

dscriptor..

The form rules are driven by certain facts and schema.

The form-window-schema fact identifies the form name, the windows involved, the

schema that the form represents (in this case the particular DDS schema), the particular

scrdl schema, and slots corrosponding to scrollable fields.

The scroll schema uses its slots to maintain the scroll position of all scrollable textual

fie!ds and regions (authors and variables).

Most fields are represented as form-value-field-run facts. These facts describe each

form. They tie together information necessary to identify the field (the form name,

window, and field tag), the corresponding slot name in the underlying schema, the

position of the field in the window, and the field type. The field type specifies whether

the user interacts with the form via the keyboard or a choice menu.

There is also a facility for handling related related fields such as the component fields

of a vsrisb!e or version history line.

These fields are represented in the DDS as subsequence elements in a DDS slot. The

slot is a multiplevalue slot to allow for several lines or blocks of related fields - and e x h

slot icstance has a number associated with it as part of its value.

I

26

Each type of block has an associated name. Each window region where the blocks may

occur is given a region name.

The scroll schema contains a form-complex-field-region slot that describes the window

region containing repeating blocks to be scrolled simultaneously. It defines the window

coordinates of the region, how many blocks are displayed, and the first block actually

displayed. A form-complex-field-subfield slot describes the block - i.e. the relation of the

subfields to the subsequence values and acts as a form-value-field-run fact.

Form rules exist to display form pages (screens), to update individual fields, and to

perform scrolling.

The display rules draw the form on a background form window, and then bitblt it to

the foreground window, create the mouseable areas and expose the foreground window.

This allows an clean visual transition from one form page to another. The rules access

the current values of the DDS via the ART get-schema-value function. They also use this

function to get values from the scroll schema to determine what parts of the DDS
schema values and slots should be displayed on the limited window area.

Whenever the form-window-schema fact specifies a DDS which is different from the

current DDS as specified by the wksta-currentdds-type fact, the form-window-schema

fact is updated to tie the form to the current DDS and the scroll schema is reset.

The utterances asserted from mouse clicks on the mouse sensitive area of the form

indicate the form name, the window, the field tag and some indication of the field type.

One rule responds to utterances with associated form-value-field-run facts that specify

input from the keyboard. They pass current slot value to a lisp function which accepts

input from the keyboard and provides m a y of the normal editor commands. This
function returns the new value. The slot value is then changed via retract-schema-value

and assert.

A similar rules handles utterances with an associated form-value-field-run fact thrrt

i

i
27

f
i

I
I
I
!

indicates a choice menu. The choice menu is constructed and exposed and returns the

appropriate choice. The form-value-field-run specifies the allowable choices (or

enumerated vnlucs as they are refered to in the ART source code). In addition to

modifying the schema value, this rule prints the new value on the form window.

T h e associated fields described by form-complex-field-subfield slots are hnndled

differently. In this case the utterance specifies the field tag that describes the field on the

window. Two rules pick up this utterance and calculates the corresponding slot in the

DDS schema, based upon the scroll schema’s information as to which slot is the first slot

displayed in the window region and either calls the lisp function or constructs a choice

function as above. There is one rule for keyboard entry and one for choice menus. These

rules differ from the above rules in that they are of high salience, and assert that the

corresponding window block should be redrawn by using a form-region-display fact.

In the case of variable lines, which have associated rules to implement defaults and

constraints, this allows these medium salience rules to fire and modify other subsequence

elements in the modified slot value.

Finally a normal salience display rule fires to display the block. There are two such

rules. One for variable blocks and one for version history blocks. These rules actually call

special lisp functions to draw on the window. This is so the page display rules can call

the same lisp functions directly, without going through the overhead of asserting

multiple form-region-display facts and causing multiple rule firings.

Scrolling is handled by a set of rules which modifies the scroll schema, bitblts the

portion of the form window that remains visible to an offset position in the same window

and displays the new part of the screen produced by scrolling.

There are general rules for doing this. One set handles normal fields, the other complex

fields that use form-region-display facts to redraw the new block.

i 6
I
I
I
I
i
I
I
I
I
1
c
L
I
I
I
I
I-
\

28

3.2.2 DDS Operations

As any DDS is edited there are a set of possible operations that are supported outside

the actual editing environment. These are all rather straight forward. The conimands

are reached via text and mousable regions a t the lower portion of the screen (see several

of the previous Figures, e.g. Figure 3-7, p.23). Each is recorded below with a brief

descriptor. They are implemented via a LISP function that sets up the text and mouse

areas, and utterances arrive into ART where rules respond appropriately.

Local Operations:

0 Save Current DDS - catalog the design in the card catalog system and enter
it in the library

0 Clear Current DDS - remove all designs and connections from the current
DDS, clear the design area

0 Delete Current DDS - delete this design from the buffer

Global Operations:

0 Create New DDS - create new design buffer

0 Generate Code - generate Fortran code for DDS

0 Generate Doc - not implemented in Phase I

0 List All DDSs - bring up the buffer list

0 List Inferiors - not implemented (l i t of inferior DDSs)

0 List Superiors - not implemented (list of possible superior DUSs)

0 Browse Library - enter the browsing facility

0 Print Screen - not implemented (hardcopy facility - site specific)

0 Experience Mode - not implemented (Usage of Help facility)

Graphics Settings:

0 Scroll Increments - x and y default scroll increments

29

I
I
I
i

I

1
I

0 Model Alignment - vertical and horizontal alignment of design icons

0 Model Connections - not fully implemented (free drawn connectors between
DDSs or rectangular line connectors)

3.2.3 DDS Librarian

Design Data Structures within the Automated Software Development Workstation are

persistent objects which are managed by the DDS librarian. The librarian is a service

that organizes information about the DDSs in a conceptual manner that is approprizte

for the user of the workstation, and uses the underlying file system to actually store and

retrieve information. This relieves the user of the burden of managing the file system

manually and keeping track of which files are related to others, and allows the user to

browse the library according to meaningful categories such as DDS names or keywords,

rather than file names. This is especially useful because a single conceptual DPS may

have several files associated with it.

The library is maintained as schemata within the ART database, which point to all

files associated with a DDS. It is also maintained in the file system as 3 system file.

The librarian performs the basic operations of cataloguing and browsing. It is also used

in the selection of inferior DDSs in a design hierarchy.

3.2.3.1 Cataloguing

The catalogue operation, is invoked when the users mouse selects the Save DDS field

whiled editing a DDS. It saves the information associated with a DDS in file(s) and

catalogues the DDS in the library. Other modules, such as source and data files may

eventually be catalogued with the DDS entry. The librarian maintains its own version

system to distinguish various versions of a design or separate designs with an identical

name.

30

i
I
I
I
I
I
I
t
I
1
1
I-
t
1
I -
I
I

3.2.3.2 Browsing

The browse operation of the Librarian is the Electronic Card Catalogue System which

is organized in a fashion similar to manual card catalogue systems in traditional public

libraries. DDSs may be browsed by Design (title), Desiper (euthor) or keyword (subject),

as in a traditional library. Additionally designs may be browsed by Froject. Unlike
traditional systems, several topics may be browsed at once such as designs for a Space

Station hiamenturn Manager, or designs having to do with 'momentumm or designs

authored by John Smith. This allows the user to specify sufficient information in a single

query.

In keeping with the graphical presentation style used throughout the workstation, the

librarian represents the DDSs graphically using the the terminal screen as a scrollable

viewport on the graph of DDSs and the user can interact with the librarian via mouse

selection. This is implemented by the use of the 'ART graphical schema browser'.

Individual designs are represented in the browser by appending a parenthetic

expression of the form: (design-number . version-number) The design number indicates

differentiates between various DDSs which have identical names. The version number

identifies different versions of the same DDS.

Figure 3-8 shows the screen which represents a user query to browse the library.

Figure 3-9 shows the resulting graphical presentation of the associated DDSs.

Figure 3-10 shows viewing the purpose of a library design from the browser for

purposes of possible editing or inclusion, i.e. reuse.

\VhiIe browsing the library, the user may mouse select a particular DDS to either yiew

its purpose or to load it into a workstation editing buffer. Viewing the purpose produces

a scrollable wixdow, showing the purpose associated with the DDS.

It is important to note th3t the DDS is not actuslly part of the running database, ocly

its library schema is present.

I
I '

I

!

31

4 c
c,

L)
0 u
u
n
a
3
0
C

0
C
Q

%

Q
L

c

e
c

a
r
L)

e b .
c c
- 0
n -
a c ,
0 0
L Q
P m
L Y
0 0
L I

L n o
a 0
e L ~a o a m Q
0
Y
Q
u
0)
C

s
0

0
L

a z
Y

c

-
c
c

c

c
c
c
L

n
0
E
0

a

c

r O1

n
0
C
0

n
0

e

a

c
c
a

M N Q)

L L L

C C C

n n n
0 0 0

a a m
m o m

u a u
e - -

M N
Y Y
u u
m a
9 3

P O
e e

0
Y
0
Q
7
0
L
0

L OI

n
C a
n
c

0
0
c
P c

1

a
C

L

c
U
C

C
0
F

r(

C m
n
e

0
0

N O
c c m m
c c
n n
a u
P O

c a
m a
0

c
w

0
0

..
n
C
0

Y
0

c

a

t%
i c
0
2
..

a3
(3

I

I

I
I
I
I
I
I
1
I
I
i
I
L
1

!
I
L

I

I

I
I
t
I
i.
L
I

33

U
3
0
U
0

u c
Y

L
0 c
E
0

.

w
d
U
LL
0

0
d

a

3 w
s m

c
U x w

f
I
I

I
t
t

L
!

34

The load operation, actually loads the associated file(s) into the database, 2nd places

the DDS into an editing buffer which is then selected to be edited.

For Phase II the browser should be enhanced to present the design hierarchy. Conlext

sensitive synonym tables should also be introduced to allow reference to design with

similar purposes but different names.

3.2.3.3 Selection

The third use of the librarian is for the construction of hierarchical designs. When a

user is working on a DDS in any level he represents inferior embedded DDSs as graphical

icons. At any time during the editing process he may obtain a list of DDSs which same

name as the graphical icon by clicking on the mouse sensitive icon. All DDSs in the

library and in any graphical bu€€er (which may not have been saved into the library)

with the same name are listed.

The user may elect to view any of these DDSs or to link the graphical icon to one of

them. Linking the icon implies that that particular DDS is selected t.o be the inferior

DDS. The librarian is used both to view and link an inferior DDS when it resides in the

library and is not currently in a graphical editing buffer.

3.2.3.4 Implementation

The library is maintained as a collection of ART design instance schemata representing

the various DDSs. A schema that represents a DDS has slots that point to the files that

contain its definition, its design number, version number, textual name, purpose and

other associated information.

A schema is created for each design name, designer, project and keyword. These are

linked to schema that represent designs appropriately, and also to the special schema all-

designs, all-designers and all-projects.

We will first describe browsing.

The Electronic Card Catalogue System window is handled by the same forin rules that

35

I

I

I

I

i

implement most of the DDS screen windows. These

in a fixed known schema.

collect the users specification as slots

When the user activates a browse two groups of rules are invoked.

Thc first groups uses the rued schema to collect a11 initial schemata and relations to be

browsed. It then traces out the schema subnetwork to be browsed and mshadouysm the

relations by temporary relations which are logically dependent on a wksta-library-

shadow fact. This prevents many unwanted schemata tlo be browsed. TLis is because the

schema browser browses by both primary and inverse relations.

The second group actually calls the schema browse function. This function must be

called with a unique initial schema. If several initial schemata are needed they are

temporarily joined to a unique initial schema by asserting relations which depend

logically on the temporary-join-in-progress fact.

The ART interface browse function is called to display the library subnet graphically.

In addition, the rules will first retract the wksta-library-shadow and t,emporary-join-in-

prog-ress facts if present, to clean up any temporary relations created by previous

browses.

There are rules to respond to mouse clicks in the browser window in the appropriate

fashion - Le. either loading the file or displaying the purpose. A file is not loaded if the

DDS is already in 3 buffer list - to avoid merging two versions. The rule to actually load

the file, uses the dds-name slot in the library design instance schema and a not pattern

for finding this dds schema on a buffer list. -

Catalopeing schema ccnsists of creating the design schema and also m y missing

keyword, project, designer or design name schemata and writing out dds schema and

associated facts as well as lisp file which is also compiled.

The catarogueing rule fist asserts the most of the necessary schema slots, and also

36

I
I

I

f

!

!

appends their definition to the library file. It uses a wksta-dds-descriptor to pass the

design instance schema and library file stream to the actual save rules. These save the

ART and lisp files, assert the pointers to these files, aDd write out the slots to library

schema.

The librarian supports the linking of a DDS inferior icon to a DDS by providing a rule

that will load the most recent version of a dds schema file when a wksta-load-most-

recent-dds fact is asserted. It locates the most recent version and essentially asserts a

fake load utterance from the schema browser.

The rules associated with the schema browser also maintain the appropriate icon in the

bottom operations window at all times.

3.2.4 Automated Programming

A facility for automated generation of Fortran code was produced. Fortran

subroutines can be written that represent each DDS level from high level graphical to

the leaf mathematical specifications. Thus the graphical specifications consist of a

subroutine which itself contains a set of variable declarations and other subroutine calls.

The mathematical specifications lead, via ShP, to Fortran subroutines that contab

engineering mathematics and appr0priat.e calls to accomplish required lower level

mathematical functionality.

3.2.4.1 Graphical Program Generation

ART rules write Fortran subroutine calls and do variable declarations for graphical

program generation. The subroutine calls get written in sequence simply by having rules

that wait until all inputs are knowD, then propogate this to the outputs, on to the next

inputs, etc. The process is begun at the 'START' DDS found at each graphical level.

All the inputs to this DDS reside here. The outputs of START are propogated forward

to become known inputs for the next designs, code is written, and END is reached. This

closes the subroutine with the normal 'RETURN/END' lines.

37

8.2.4.2 Mathematical Program Generation

ShlP code is written on the leaf element mathematical specification page. This code is

translated into Fortran with variable declarations as specified on that same page for

input, output, and local varaiables. A Fortran subroutine results with most of the

several pages of specification added as in-line documentation.

To accomplish program generation, S A P is put in a loop running on the VAX (via a

VMS command routine) so that ShP is awaiting arrival of a specific file over the

network. When this file arrives, the S I P processing begins. The result of this

processing is the Fortran code generation. T o accomodate the appropriate variable

declarations and code generation several S h P utility functions are utilized on the VAS.
These functions deal with the vector mathematics required in most engineering

disciplines, the variable specifications from the specification page, and standardization of

mathematical syntax from that which typically exists in the field. The processing is

primarily done by the SMP function .Wkstaprog. which uses Ship functionality

appropriately to accomplish the code generation via .Pro&., a standard S h P function

for code generation from analytic expressions. Sh4P does not fully support all necessary

variable declarations as desired, so a brief C program does a final editing of S I P

generated code before passing the code Lack to the Symbolics for final file (module)

construction and storage.

3.2.5 Results Presentation

A presentation of results facility is necessary for both batch and interactive simulation.

This facility hay not been produced in Phase I since it relies heavily on extant plotting

facilities and is of limited interest to the demonstration of AI’S usefulness. A menu can
be chosen on all graphical links that introduce a form and/or plot specification package,

see Figure 3-11. These packages should allow full specification of the plot DDS similar

to those of the design DDSs. Thus, for example, solar array occlusion of the sun by the

earth could be plotted versus orbit location and/or time, and could be reused just as a

design could. The results facility is intended to be an integrated DDS !ype capability.

cDL
-0

>I
.. ..

39

3.2.6 Execution

Phase I did not complete an executable simulation due to time limitations. Code was

generated for various DDSs that could be incorporated into a program, but no specific

facilities were made available for establishing linking and compilation of these DDS
software modules, nor was an effort made to provide the more sophisticated interactive

simulat,ion capability.

3.2.7 Debugging Designs

Debugging designs is a topic for executable simulations. Since no execution facility was

completed this is left to Phase II.

3.2.8 Automated Documentation

As called out in the SOW, no Phase I effort was to be spent a t this effort and none

W a s .

3.3 Tutorials

There are two cursory tutorials on current workstation functionality - installation 2nd

usage. The installation briefly describes the necessities in setting up the workstation; the

usage tutorial leads a user through an example of starting an attitude control subsystem

design and cataloguing.

3.3.1 Installation

An automated installation procedure has been provided with the workstation.

The workstatioa software is combined to run under ART 2.0 on a SYMBOLJCS
computer which is networked to a Digital Equipment Corporation VAX computer which

runs S A P under the VhlS operating system.

The workstation requires the use of a Symbolics - Phi!ip terminal.

To install a workstation the system manager must c;eate an ShlP account on the \'AS,
a workstation login on the SYMBOLICS, and create a workstation band. E x h

40

I
I

I
I
I
I
I
I
I
I
I
t
I
I-
I-
I -
1 -
I

SYMBOLICS running a workstation should have its own associated VAX account. The

SYMBOLICS host is part of the ART database, so each SYMBOLICS must currently

have its own band. More specifically:

0 Set up a SYMBOLICS top-level directory to be used to hold the workstation
source library and perform a .(tape:carry-load (&key :host))' to load the
source files onto the SYMBOLICS directory. This directory is referred to
below as the mArt-Source-Directorym and is typically hoat:>wksta). The
user should have this as his default SYMBOLICS directory when he logs into
the SYMl3OLICS as the workstation.

0 Set up an account on the VAX VMS to be used by the workstation (each
workstation copy must have its own account). This account must have a
U)GIN.COM file that allows it to run the S M P program (see S M P
Inst allat ion Notes).

0 Setup a subdirectory of that account for use by the workstation - this
subdirectory is usually /tranefer] that is typically
m y$d i s k:[u e er. wke tu. t ra n e fer]

0 Logon to the Symbolics as the workstation.

0 Load the f i e initialize-workstation.6in from the mArtSource-Directorym.

0 Invoke the function (initialize-rorketation) '.
Thio requertr the folloring information:

1

SYMBOLICS Hort Name- (typically 'hoot: >wketa>')
SYMBOLICS Torketation Logon Name (mer name or nickname)
SYMBOLICS Default Directory After Logon (mho8t:>rksta>o)
SYXBOLICS Path From Logon Directory

W A X Hor t Weme (example ' ~ 3 ')
VAX Logon Name (example 'dap')
VAX Logon Parsrord (example .recretm)
VAX Full Pathname To Tranrfer Diroctol.~

To Torkrtation Directory (make it -

(mmJSdiek: [ursr.dap. tranefer]')
Thio function rill tranrfer the appropriate filer
to the VAX, and compile 8 version of the Torkrtation
with the necer~ary information declared a8 an ART fact
t o control networking between the SYABOLICS and tho VAX.

oCreate workrtation band. From the LISP Lirtener
a) Perf om (gc-innasdi8tely)
b) Perform dirk-rave

41

I
I
I
I
I
f
I
f
I
I
t
I
!
L
!
!.
i

0 Create a boot file for loading the workstation band.

The workstation stores its program libraries in the workstztion .logon' directory. If
you wish to use the initial library provided with the workstation you should copy the

'library' subdirectory of the 'Workstation-Directory. up to the workstation logon

directory. In addition you must edit the file 'dds-browser-1ibrary.art ' in the worksta.tion

logon directory. This file contains the full pathname to the actual files. Please use

ZhlACS to replace the string 'CHANGEME' with the actual workstation directory

(e.g. 'host:>wksta> ').

3.3.2 Usage

Usage consists of logging in, obtaining the desired designs from the library, editing or

establishing new designs, and generating Fortran code from the graphical or

mathematical specifications.

3.3.2.1 Logging In

With the workstation band loaded, you should go to ART via select-A, as usual. The

'RUN' menu option should be selected from the ART command window. Some

initialization of windows, etc. will occur and a login form will appear. If you are known

to the system when you enter your name on the top line, your stored vitiae will be

presented. If any adjustment is to be made, each region is mouse sensitive, and may be

selected for modification. If you are new, the information should all be filled in, as this

data is used to automatically finish design specifications regarding author, etc. When

this procedure is completed, the card catalog system is loaded, and the library is

available for browsing, loading designs, or starting new ones.

3.3.2.2 Library Browsing

After login, you are presented with an option to enter the library browsing facility, via

a mouse sensitive region at the bottom of the screen, or to choose a current project. The
project organization is intended to allow a user quick access to a list of current project

designs. This facility is not fully implemented and just leads you currently to starting

new designs. More interesting is the facility for browsing the library. Select this at the

bottom of the screeii.

r

I 42

1
t

I
1

A form appears for th? user to fill out. The options parallel those of a normal card

catalog system such zs autbor, title, subject (project i3 added). The options are designer,

design, project,, and keyword (subject). You may fill in any of the slots and a complete

hierarchy of all included information will be presented. A more sophisticated

presentation format awaits Phase Il, as ART internab will have to be adapted and more

pruning of the browse information would be needed. However, the Phase I browser

presents the library through use of the graphical ART schema browser and its mouse

sensitive icons. Mousing left on one of the leaf icons loads that design. Mousing middle

allows you to view the purpose of the catalogued design. While viewing the purpose, you

will find a selectable option to load the design or to return to the browser.

Toggle the 'NO' for ALL DESIGNS to 'YES' and mowc DO IT.

Currently each catalcgued design must be individually selected from the browser. No
facility for loading multiple designs simultaneously exists. As each design is selected it is

loaded and it is entered in the buffer list similar to an EhlACS file buffer list. Each

design consists of multiple pages of design specification. The page first displayed is

always the graphical flow diagramn or the mathematical specification page, as this is

likely to be of most interest. Note that you will leave the browsing system when you

load a design. You will be in the design editor facility. You may return to the browser

by selecting one of the options at the bottom of the screen when the design has been

loaded, if you wish to load additional designs.

Load the design from the library that is titled 'ACS/Momentum hlanager Separation.

with the largest version number.

3.3.2.3 Editing Facility

The flow diagram should appear for the attitude control subsystem. The diagram does

not need to be edited, but should give YOU an idea of the type of diagram that you might

construct. You should note several things. Within the design region there are scroll

markers to allow for diagams that are larger than screen size. The palette on the left is

used for creation of new designs. The palette currently used is generic, but. specific

43

I
I
I
f

t
t

t

palettes that are project, or at least workstation incarnation specific will later be added

with a facility for the user to add new icons. The graphical icons represent effectively

the language available to you. Specific icons would imply specific vocabulary otpions

that are frequently used, but currently the generic ones are presented. Later we will

build a new one.

At the bottom of the editing and palette regions you will see the specification

categories required to be filled out for full design specification. Each will lead you to a

page of the specification that must be fdled in. These have already been filled out. Just

browse the various pages by mousing any of the various options. Observe all thc.

information that is required for a design to be fully specified for the library.

At the bottom of the screen, you will see many options. Most have been implemented,

some have not. On the far left are the options available regarding the current design.

You may save it to the library - this means storing the entire multi-page specification.

Currently, you may save a design without all specification pages being fdled out, this is

likely to change in later Phases. You may clear it - this means start the diagram over

and wipe out the current graphical diagram. You may also delete it - this meacs starting

over entirely on the specification.

In the middle of the bottom of the screen you will fmd many options. They are
described elsewhere, but the ones worthy of note for the tutorial are 'Browse Library'

whcih leads you back to the browsing facility, the .Generate Code. option which should

only be used as described below, and the 'List All Buffers' option which brings up your

current buffer list just as in E M C S . The buffer list allows you to select other loaded

designs for editing just as in EMACS.

At the far right of the bottom of the screen yo^ will find options that sre used for the

graphical layout. Default values are shown for scrolling increments, block aligrment,

and line type. The first two are implemented. The scrolling increments determine the

jumps made when scrolling in pixels. The block alignment allows you to keep blocks

aligned vertically or horizontally in a diagram.
i

i
I

I
I
I
I
I
I
t
I
t
I
1
t
1
!
I-
!
! -

44

You may try various of the botom screen options as you desire. Beware of the

consequences if clearing or deleting. Hoever, library designs may be reloaded.

Generating code for the diagram is described below.

3.3.2.4 Graphical Spec

Let's begin anew, and just draw a simple flow digram. Select the 'Create New DDS.
option from the bottom menus. You are now to enter a name for the block by typing.

Call it 'ACS/Momentum Manager Integration'. Then the editing region and palette

will appear. You may exit this design and return to the previous via the 'Exit Current

DDS' option at the bottom of the editor and palette, or via the 'List All DDSs' option

from the bottom menu. Note that. all pages of the specification may be reached by the

region containing the .Exit Current DDS' option.

Let's draw a diagram. Mouse left on the rectangle of the palette. We first must build

a 'START' block. This block is intended to contain initialization statements for the

design (i.e. later for Fortran DATA statements). Position the f i t mouse click at the

location below but near the top center of the editing region where you wish the upper

left corner of the block to appear. A rubber rectangle will then appear and you must

position the lower right. Next you must type 'START' in the block. Next go back to

the palette and mouse the rectangle again. Position it an inch or more below the

START block. It will align automatically. Type the name 'Momentum Manager' in

the box with a carriage return between Momentum and Manager. Note that the text is

centered automatically. Note that is you make an error you may delete a block by

clicking right. You will then have to mouse the palette and locate and name the new

block.

Now, you may link the START block to this one. First, ports must be constructed on

each block, then links cau be made. Click middle on the START block, A men9 will

appear that contains INPUT PORT, 0VIT"I'T PORT, and other items. Select

OUTPUT PORT. The menu will disappear and the mause can now be seen to locate

the position of the pozt line. Simply observe the line O n the block as you move the

mouse. Four center lines have

the center lines of any side.

45

been provided for you to align ports that are desired on

Click at some location for the port construction. The

orinigal menu will appear for additonal port construction. Choose the Exit Menu option.

A small mouse sensitive area for the port may be found at the farthest edge of the arrow

from the block. You may delete the port by clicking right on this area if you have

positioned it in error. Also the mouse area is later used to connect with the other block.

We will see this in a minute. Next, click middle on the Momentum Manager block and

choose the INPUT PORT option. After these two ports are

created, you may link blocks. Simply, click left on the small port area of one of the

blocks. Then move the mouse to the other port area and click left. You will see a

mouse sensitive area at the mid-point of the connecting line. This is to be used in later

Phases for results presentation and data flow observation during simulations. For now it

allows deletion of the connection if an error has been made by clicking right on it to

delete the connection.

Position it as before.

Additionally, the conect,ion link may be a segmented line by simply clicking at any

chosen point to make a bend in the line. As many segments as desired may be added,

then proceed to a port mouse area to finish the line. Note that clicking right during this

procedure deletes the last line segment so that you may reposition it.

Now you see how to build flow diagrams. You may continue to build further block and

link them as appropriate for an attitude control system. Next you may want to fill in

other pages of the specification. Please browse and enter some appropriate information

for this design assuming it regards the building of a space station attitude control

subsystem that integrates the momentum manager and sttitude control functions. Note

that it is difficult to fill in the variables for input, local, and output to this design.

Currently the user must fill these in. Later Phases would aid you by percolating the

information from lower level specs.

Now return to the graphical flow diagram. Click middle on the Momentum Manager

block. You will see in the list of options 'DDS 1'. If other library deisgn were of this

same name it would list them as options also. If you desired to connect this block to the

46

stored one you would select DDS 1. Otherwise, you would choose to create a IICH'

graphical or mathematical specification. Creating another graphical spec is idestical in

nature to this one, so let's create a leaf mathematical specification. Click left on the

create math spec option.

3.3.2.6 Mathematical Spec

The specification page will appear for entering mathematical design information. This

leaf level routine should be named for Fortran purposes. The next entry is a

mathematical specification of the design. S M P is used later to translate this

mathematics into Fortran code. Vector mathematics may be used with dot products,

etc.

Before attempting to create this mathematical specification, let's review one that

already exists. Simply click on 'Browse Library' at the bottom of the screen. Kest,
click on the DESIGN 1 mcuse a rea , and enter 'ACS Attitude Control Function'. Then
hit the END key or click outside the DESIGN 1 region to enter the information. Then

click on DO IT. When the design hierarchy appears, select the latest version of the leaf

design, and load it by clicking left. You will see the mathematical specification with all

pages availahle as usual. View the mathematical design for an example of the

engineering mathematics supported.

Then click on the EXJT CURRENT DDS
options. This will return us to the last spec we

First, let's name this routine 'ATTCF' by

option in the row of syt.:Xcation page

were working on.

mousing the subroutine name area and

entering the data. To exit, simply press end after typing or click outside that mouse

area.

Now let's enter some simple mathematics for the specification (inappropriate to ti.is

design, but possibly instructive). Enter this continuoulsy on the first line of the

Mathematical specification. Note that most of t,he simple EhIACS editing co rnmuds

work in all text entry areas.

thc = (t h t r s ,

47

I
t
t
I
!
I
L
!

All variables must be also be declared and typed as you saw in the other mathematical

design. I! you wish to review it, simply go to the bottom center menu and select .List A 4

DDSs.. Select the Attitude Control Function design and review the variables page, t!,eu

return by mousing 'EXIT CURRENT DDS..

For our variables we will enter inputs, outputs, and 10ca.k Under Input 1, mouse the

variable name area and enter hcmg then click outside. Next enter the desciiptivc d.ita

by mousing in that area and entering CMG momentum. Again click cutside. You will

note that two separate mouse clicks are required - one to finish the entry and one to

begin another. Continue filling in the appropriate data for hcmg. Note that menus of

options appear for coordinate system, variable data type, etc. The control moment g-yro

momentum is a vector with the default dimensions (3). After hcmg is completed with an

INERTIAL coordinate system and DOCBLE precision., enter imom as Input 2, and

continue as before. The variable h o r n contains the principal moments of inertia fcr the

space station (Le. it is a vector of dimension 3 with the coodinate system 'N/Am and is

the default DOUBLE precision. Next enter Input 3 tu@, a double precision scalar that is

the orbit frequency; then t as the orbit time, a scalar; then thtea a scalar angle; etc. The

enter fhc as Output 1, which contains the commanded station angles (a vector of

dimension 3). ShrP inny

generate local variables to optimize computation, such as for wO4.

There are no local variables specified by the user here.

Next fill in some information that might he appriopriate on the various specificatim

pages and finally click on 'Save Current DDS' at the bottom left. This will store your

design away, and place it in the library card catalog system.

Finally, we are ready to 'Generate Code' for this design.

Special notes: the START blocks are always to be nlathemstical specifications and the

data entered is to be initialization data for Fortran DATA statements. See the exanzple

48
h

provided by browsing the library and reviewing Fortran code generated at the flow

diagram level. End blocks must finish each diagram, and require no lower level

specification.

3.3.2.6 Code Generation

The mathematical code generation is accomplished by S M P on the VAX. When

selecting generate code a file is created with the same name as the unique design name

(like mDD!3-06/23/86 12:00:00') with a type extension of '.FTN'. ART puts all the

specified information in the Fortran file as header informstion (just as NASA currently

does for in-line documentation). ShlP generates the declzratims and body of the code.

To view the results, you must go to EMACS and look at the file. It contains the

documented Fortran source code.

If vector mathematics has been used, a set of Fortran low-level utilities is called to

perform the vector algebra. These have the following s y n t x each starts with the letter

specifying the variable result type - S for scalar, V for vector, M for matrix, and Q for

quaternion. The second letter tells of the first, argument with the same notation; the next ..

letters specify the function, nd the last specifies the second argument type. For

examples, QQADDQ implies adding two quaternions which returns a quaternion,

WDOThl implies a dot 2roduct of a vector with a matrix that returns a vector. ?'he

utilities perform dot products, cross products, and multiply, add, subtract, etc. T!I se

utilities are trivial Fortran routines and would have to be loaded during linking froii: a

utility library. Later, with more sophistication, in-line code could be placed for t!. se

functions based on user selection to optimize the Fortran execution.

Go ahead and try it. The result should be roughly identical to that shown in I : e

'DDS-10/28/86 11:07:08.FTNm.

We will not generate code for a graphical specification in this tutorial, but it procccds

identically. MtT calculates the flow and builds the Fortran source fde in the graphical

case. For graphical code generation, however, note 1) you should save the current design

prior to code generation so that the code is consistent with the design, and 2) all designs

e 49

referenced by the flow graph (at one level lower) must have been saved previously so

that the subroutine calls can be referenced appropriately. This should lead to successful

code generation.

Go to EhL4CS and view the fie .DDS-10/28/86 10:55:W.FTNm for the . ACS/hlomen t um Manager Separation ..

3.3.2.7 Domain Expertise Rule Use

This is to be the main area for focus in Phase XI. Phase I only attempted to perform

coordinate system transformations between graphical blocks as necessary to connect two

slightly disparate library modules. This capability is demonstrated for the top levei

.ACS/Momentum Manager Separation .. See library file .DDS10/2S/86

10:55:09.FTNm.

3.3.2.8 Simulation Capability

No real simulation capability was attempted during Phase I. Thus feedback in flow

diagrams does not produce DO loops based on some time granularity specified by the

user. This executable simulation capability is the second main topic of Phase II.

3.4 Conclusion

At this point you have a cursory look at the facilities produced during Phase I and the

current state of the workstation design. You should be able to move around within these

facilities with a little more practice.

Many of the Phase I efforts continue in Phase 11. NMA4 iDput would be appreciated

regarding usefulness of Phase I functionality, desired features that are missing, etc.

Phase I admittedly has only used AI in a very limited context. Phase II needed thk

basic functionality to achieve the longer term goals. It is the hope that Phme I
accomplishments have provided adequate underpinnings for successful Phase II
demonstration of an AI approach to saftware development automation.

I-

i
i
I
f
f 1

i
I
i

I
I
t
I

r

9

!

i
!.

50
<

3.5 Documentation

The Automated Software Development Workstation documentation consists of:

0 Proposal - Phase I (Technical Volume)

0 Conceptual Design Document - Phase I

0 Final Report - Phase I

0 Source Code with In-line Documentation

0 Tutorials

The proposal introduce the original ideas regarding the workstation functionality and

purpose. This is further detailed in the Conceptual Design Document. This Final Report

(Phase I) documents the accomplished tasks through descriptions of the current

workstation operations. The Source code contains in-line documentation per file, rule,

LISP function, defrelation, defschema, deffacts, etc. The format for each is presented

below. Finally, the brief tutorials lead a user through the current functionality.

3.6.1 File Documentation

The format for File documentation consists of a source code language and version

descriptor, a copyright header, then a brief description of the file contents - why these

rules, schema, etc. are bundled together in this file. The file organization is an attempt

to subdivide workstation functionality into rule sets, etc. The format including an

example is:

;;; Machine: Symbolic6 - relea10 6 . 1
;;; ART Version: 2.0
;;; LiOp: Zetali6p

.. .
* * * ...
; ; ; Copvight (c) 1986, Inference Corporation. Lor Angelerr, Calif o n i r ;
O D * ... COPYRIGHT (C> 1986 INFERENCE CORPORATION,
* * * . . . 6300 1. Centtry Blvd. . Lor Angelar. California 90045.
* O D . . . AN UHPUELISHED 1o.u - MJ, RIGHTS RESERVED.
...
0 . 0 3) RESTRICTED RIGHTS LECEND:

51
I .

D D D . . .
D D D ... authorized agency thereof. ueo, duplication, or dieclosnre ;
D D D . . . by the U.S. Government i8 rubject to rertrictionr 88 ret
D D D . . . ;
D D D . . .

When ths Liceneee ir the U.S. Government or a duly

forth in the Right8 in Data - General Clause at 18-62.227-74
of the NFS ar rpecified in NASA Contract #NU 9-17616.

._ . . .
D D D ..
D ~ D D D D

;"hi8 program containr confidential inionration of Inference Corporation.;
; Uoe or copying without exprere written authorization of Inference ,
; Corporation ir rtrictly prohibited. Copyright omerehip rightr hereby ;
; aeeerted by Inference Corporation. Copyright 1986. ..
D ~ D ~ ~ ~ ~ ~ ~ D ~ D D D D ~ ~ D ~ ~ D D D D D * D ~ D D D D D D D D D D D D D . D

***** . . .
. . I

;;; Documentation:
D D D . . .
* * * *****

relatione for ecrolllng i n a graphical editing buffer
. . .

3.5.2 Rule Documentation

The format for Rule documentation including an example is as follows:
... * * * . . .
D D D ...
D D D . . .
D D D ...
D D D ...
D D D

...
* D D

...
D D D

D . . .
D D D

* ...
D O
D O *

...
O D D

. . .
D D D . . .
D D D

Ruleret (if any): editor rcrolling
Rulename: rcroll-manager-init-dirplay-palette
Author: Dale Prouty
Date: 9/29/88
Salience: 0
Ref erenced relations (ochemntr or facts) :
buffer-array-size
buffer-world-uray
rcroll-tmp-rcregn

buffer-world-array

none

none

Aeserted relatione (echemata or facts) :

Retracted rolationr (rchemato or facts) :

Modified relatione (ochemota) :

(Significant) External Function Callr :
LISP :
make-world-array

Rule Docuentation (ealieoce and rnle) :
make a palette world array

References:
Edit Hietoq - U: author, date rearon what chmged

I '

1 '
52

. . .
0 * 0

I
I

3.5.3 Relation Documentation

The format for Relation documentation including an example is 8s follows:

; ; ; Relation:
;;; Author: Dale Prouty
;;; Date: 9/29/86 *
;;; Relation Documentation:

;;; Edit History - 0

.
. O O O O U: author, date reamon w3at . . . * * *

changed

3.6.4 Initial Schemata Documentation

The format for initial schemata documentation including an example is as follows:

; ; ; Schemata:
;;; Author: Dale Prouty
;;; Date: 9/29/86
;;; Schemata Documentation:

;;; Edit History -
0

..... U: author, date reason , what chaapd

3.6.6 Initial Facta Documentation

The format for initial facts documentation including an example is as follows:

;;; Schemata:
;;; Author: Dale Prouty
;;; Date: 9/29/86
;;; Focte Documentation:

; ; ; Edit History -
. O I O I U: author, date reason wh8t changed . . .
* 0 *

i '

i
I

I
I
I
I
I
I
I
1
1
c
I
I

53

3.6.6 LISP Function Documentation

The format for LISP function documentation including an example is as follows:

;;; LISP function:
;;; Author: Dale Prouty
;;; Date: 9/29/86
;;; Referenced functions:
;;; Documentation:

;;; Edit Hietoxy - U: ruthor, date , reason . what changed
3.6.7 SMP Code Documentation

/*
/*
/*
/*
/*

SMP function: Wkstaprag */
Author: Dale Prouty */
Date: 9/29/86 */
Documentation: */
Edit History -

U: author, data . reason . what changed */

3.6.8 C Code Documentation

/* C function: Wktetaprog */
/* Author: Peter Holtrmnn */
/* Date: 9/29/86 */
/* Documentation: */
/* Edit History -

U: author. date . reateon . what changed */

3.5.9 VAX-VMS Code Documentation

All W S code existis in a single, simple file, and as such is only documented cn a file

basis.

'

8 0 ,

54

4. Phase 11 Recommendations
Phase II should enhance the current workstation functionality and add software

development aids based on AI technology (rulebased and objectoriented programming)

where AI can overcome limitations of current software methodologies, 8s mentioned in

the introduction.

Several specific areas where an AI based approach may benefit software development

include:

0 domain specific expertise - its acquisition, storage, representation, and reuse,

0 transformational implementation of designs in Fortran,

0 significantly enhanced interactive classifier or cataloguer of library
information, and

0 capturing of design and implementation history.

The domain expertise is the cornerstone of expert systems. A method of reusing this

engineering expertise should be encompassed in Phase 11, as well as automation of the

knowledge acquisition process. The designs developed with this expert assistance should

then more readily and efficiently be implemented in low level procedural code. The
cataloguing of designs should significantly improved so that the knowledge regarding the

design is reusable, especially the design decisions made by the engineer.

Other significant accomplishments that should be addressed in Phase II include:

0 support for execution and analysis of graphical specifications, including
interacitve simulation capability, and

0 autormted documentation of designs.

It. is desirable for the user to be able to test designs direct,ly from the interface in a

modular and interactive fahion, in a way similar to that of the interactive use of LISP.
Finally, the automated recording of documentation is a process to be heralded for

removing the biggest existing headache for software developers and certainly deserves a

place in m y workstation that seriously addresses developers needs.

I"
I
I
I
I
I
I
I
t
I
I
I
1
1
I
I

55

A. Phase I Source Code Listing
The source code listing is over

supplied to Robert Savely, NASA

500 pages long. A single copy has

JSC. Also, a tape has been .
supplied for a Symbolics computer.

for any associated information.

Please refer to Mr. Savely

