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INTRODUCTION

NASA is developing graphite/epoxy filament-wound cases (FWC) for the solid

rocket motors of the space shuttle. Each motor consists of four cases -- a

forward case, two center cases, and an aft case. The cases are 3.66 m (12 ft)

in diameter and the ends are joined to short steel segments with pins. The

forward and center cases are approximately 7.62 m (25 ft) in length, and the aft

case is somewhat shorter. They are wet-wound with AS4W graphite fiber and HBRF-

55A epoxy (Hercules Inc.). The membrane region away from the ends is about 36
mm (1.4 in.) thick.

A program was outlined in [i] for determining the effect of low-velocity

impacts on the residual tension strength of a FWC. Initially, impact tests were

conducted on thick aluminum beams of various lengths to determined how large a

specimen was required. The results indicated that a 30-cm-long (12 in.) beam

was long enough to simulate the dynamic behavior of a FWC. Thus, a 76.2-cm-

diameter (25 ft), 2.13-meter-long (7 ft) cylinder of full-thickness was wet-

wound to represent an aft segment of a FWC. In order to apply uniaxial load in

the hoop direction (the most highly stressed direction in a pressurized

cylinder) and have straight specimens, the cylinder was wound with fiber
o

orientations rotated 90 so that the hoop direction of the FWC was the

longitudinal direction of the cylinder. The cylinder was cut into seven 30.5-

cm-long (12 in.) rings. Then a few specimens that were cut from several of the

rings were impacted with impacters of various shapes. The shapes were 1.27ocm-

radius (0.50 in.) and 0.635-cm-radius (0.25 in.) spheres, a 0.635-cm-diameter
o

(0.25 in.) rod, and a 90 corner. The 1.27-cm-radius (0.50 in.) impacters made

no visible surface damage, whereas the sharper impacters made visible craters.

However, for a given kinetic energy, the residual strengths of the specimens

were reduced about the same for the various impacters. Thus, impacts by the

1.27-cm-radius (0.50 in.) impacters were the most critical with regard to
inspection.

Having identified the most critical impacter shape, two intact rings were

then impacted 44 times each, every 5 cm (2 in.) of circumference, with the 1.27-

cm-radius (0.50 in.) impacters. The purpose of the present paper is to

summarize the results of these latter tests. The results are presented in more

detail in [2]. One of the rings was empty and the other was filled with inert

propellent. The propellent was cast into the ring, much like an actual FWC.

The impacter masses varied from 2.8 to 18.6 kg (6.1 to 41.1 ibm) to represent

tools and other heavy objects that might fall onto an FWC. They were dropped

from heights varying from 0.38 to 3.0 m (1.2 to I0 ft) giving kinetic energies

from 37.7 J (27.8 to 329 ft ibf). The impacters were instrumented to measure

impact force. After the impacts, the rings were cut into 5.l-by-30.5-cm (2.0 by

12.0 in.) specimens. Each was centered on an impact site. The specimens were

x-rayed and ultrasonically scanned to determine the extent of impact damage, and

then loaded in uniaxial tension to measure the residual strength. A few

specimens were deplied and the fibers were examined for impact damage. The

conventional ultrasonic attenuation maps revealed no damage. In addition to the

specimens with impacts, 16 specimens without impacts from two other rings were

loaded to failure to determine how specimen width affected undamaged strength.



For low velocity impacts, it was suggested in [3,4,5] that the damage and

resulting loss of strength depend on the maximum value of the impact force and

the material characteristics. For this reason, the impact damage and residual

strengths were analyzed here and in [2] in terms of impact force. Rigid body

mechanics and the Hertz law were used to derive an equation for impact force in

terms of kinetic energy and masses of the impacter and target. The depth of

impact damage was predicted in terms of impact force using Love's solution for

pressure applied on part of the boundary of a semi-infinite body and a principal

shear stress criterion for failure. The Hertz law was used to predict the

contact diameters and pressures that are required for Love's solution. The

predicted and experimental values of damage depth were compared.
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equivalent surface cut depth or impact damage depth, m (in.)

constants

contact diameter, m (in.)

Young's modulus, Pa (psi)

Shear modulus, Pa (psi)

spring constant for flexure, N/m (Ibf/in.)

-I -I
factors in the Hertz law, Pa (psi)

kinetic energy, J (ft Ibf)

modified kinetic energy, J (ft ibf)

mass of impacter, kg (ibm)

mass of target or composite ring, kg (ibm)
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P

Pc

RI

effective mass of composite ring, kg (Ibm)

factor in the Hertz law, N3/2m -3/2 ibf3/2in. -3/2)

maximum impact force, N (Ibf)

average contact pressure, Pa (psi)

radius of impacter, m (in.)
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Subscripts :

x,y

p,Z

gross stress for failure of first ligament, Pa (psi)

shear strength, Pa (psi)

impact duration, sec

flexural displacement, m (in.)

Hertz displacement, m (in.)

velocity of impacter immediately before initial impact, m/sec (ft/sec)

rebound velocity of impacter immediately after initial impact, m/sec

(ft/sec)

width of specimen in test section, m (in.)

Poisson's ratio

Cartesian coordinates. The x-direction corresponds both to the axial

direction of the 76.2-cm-diameter (30 in.) full-thickness cylinder and

to the hoop direction of the FWC.

polar coordinates. The z-direction is normal to the laminate.

MATERIAL

The membrane region of an aft FWC segment was chosen for this

investigation. This segment is 3.66 m (12 ft) in diameter, approximately 7.62 m

(25 ft) long, and about 36 mm (1.4 in.) thick in the membrane region. The FWC

segments are wet-wound by Hercules Inc. using their AS4W-12K graphite fiber and
o o

HBRF-55A epoxy resin. From outside to inside, the layup is (±33.5)2/90 /

o o o o o o o o o

[(±33.5 )2/90 ]3/[(±33.5 )2/90 ]7/(±33.5 /902)4/(±33.5 )2/(0 /90 ), where the
o o o

90 layers are the hoops and the ±33.5 layers are the helicals. (The 0

direction in the laminate corresponds to the axis of the cylinder.) The number

and orientation Of the layers was chosen to match the axial stiffnesses of the

original steel cases as well as to give adequate strength margins. The
o

underlined ±33.5 helical layers have about 1.6 times as many tows per in. per

layer as the other helical layers and are thus thicker in the same proportion.
o o

The 0 /90 layers at the inner surface are actually one layer of cloth. The
o o

layup is balanced equal numbers of +33.5 and -33.5 layers) but not



symmetrical about the midplane. Most of the hoop layers are closer to the inner
surface than the outer surface.

It was not feasible to impact and pressure test full-size FWCsegments or
to cut specimens from such segments and apply two-to-one biaxial stresses. The
most expedient option was to apply uniaxial load to impacted specimens in the
most highly stressed direction, which is the hoop direction. Although material
was available from prototype FWC'sthat had been hydrotested, specimens could
not have been cut from that material and loaded uniaxially in the hoop direction
because the axial load would cause significant bending in the curved specimens.
For that reason, a small cylinder was madewith full-thickness and winding
angles rotated 90° so that the longitudinal direction of the small cylinder was,

in effect, the hoop direction of a FWC. Then the specimens could be cut with

the loading axis in the longitudinal direction rather than the hoop direction.

For unsymmetrical laminates, stretching can cause bending and vice versa.

However, for internal pressure type loading, the unsymmetrical laminate does not

have bending strains because the FWC is axisymmetric. Also, because the

diameter of the FWC is large compared to its thickness, the laminate only has

membrane stresses. Therefore, the strains in the laminate due to internal

pressure are essentially constant through the thickness. On the other hand,

with uniaxial loading, bending strains will develop if the specimen ends are

allowed to rotate. However, uniform strains can be produced by using very stiff

grips like those used here.

Hercules Inc. had a 76.2-cmodiameter (30 in.), 2.13-meter-long (7 ft)
o

mandrel available, but it could not be used to wind 0 (longitudinal) layers.

Thus, unidirectional prepreged broadgoods were hand-laid on the mandrel in lieu
o

of the 0 layers, and the helicals were wound wet. Three plies of the
o

broadgoods were used for each 0 layer to give the same fiber count and

thickness as the wet-wound hoop layers in the FWC. From outside to inside, the
o O

layup of the small cylinder and hence the specimens was (±56.5)2/0 /

o o o o o o o o o

[(±56.5 )2/0 ]3/[(i56.5 )2/0 ]7/( ±56.5 /02)4/(±56.5 )2/(90 /0 ). After the

cylinder was made, it was cut into seven 30.5-cm-long (12 in.) rings for

testing.

The properties of the materials used in making the 76.2ocm-diameter (30

in.) cylinder and the elastic constants of the laminate are given in the

Appendix.

TEST APPARATUS AND PROCEDURE

Impact Tests

Two of the rings were impacted by free-falling masses. It was believed

that the rings were large enough to simulate the full-sized FWC because the

duration of the impacts was short compared to the natural periods of vibration.

This was demonstrated in [I] for a thick aluminum beam that was simply

supported. Masses were dropped onto the beam at the center of the span for

4



various span lengths. The impact force decreased with increasing length for
lengths up to 30 cm (12 in.) but remained constant for greater lengths. It was
also believed that impact force for a FWCcontaining propellent would be greater
than that for an empty FWCbecause the propellent adds massand stiffness.
Thus, inert propellent was cast in one of the rings by Morton Thiokol
International, prime contractor for the FWC,using a procedure similar to that
used to cast propellent in an actual FWC. The other ring was left empty.

The free-falling impacters were madeof a 5-cm-diameter (2 in.) steel rod
with a 1,27-cm-radius (0.5 in.) tup on the end. Four rods of different lengths
were used to give massesof 2.8, 5.0, 9.0,and 18.6 kg (6.1, II.i, 19.9, and 41.1
ibm), including the tup. The corresponding lengths were 16.5, 31.0, 56.6, and
117.6 cm (6.5, 12.2, 22.3, and 46.3 in.). The tup contained a piezoelectric
accelerometer and four strain gages for measuring acceleration and impact force.
The signals were recorded with an oscilloscope at the rate of 500,000 samples
per second. More details about the impacters and their calibration are given in
[2].

The filled ring lay on a thin rubber sheet in a shallow aluminum cradle.

See figure I. Its mass, which was 288 kg (635 ibm), was so much greater than

that of the impacters that its rebound was imperceptible and attachment to the

floor was not necessary. After each impact, the ring was lifted and

repositioned with a hoist using the handle that is visible in figure i. The

handle is attached to a rod that passes through a pipe in the center of the

propellent. The empty ring lay on the same rubber sheet and cradle during

impact. However, its mass was only 40 kg (89 ibm), and it had to be secured to

the concrete floor with bolts and a cross-bar to prevent rebound during impact.

Each ring was impacted 44 times with the following masses and kinetic

energies.

Mass, Kinetic

kg (Ibm) energy,

J (ft Ibf)

2.8 (6.1) 41.1 (30.3)

82.2 (60.6)

5.0 (11.1) 37 7 (27.8)

75

151

9.0 (19.9) 67

135

270.

18.6 (41.1) 69

139

279

446

4 (55.5)

(iii.)
5 (49.8)

(99.5)
(199.)

7 (51.4)

(103.)
(206.)
(329.)

Comments

empty ring only

filled ring only

empty ring only

empty ring only

Prior to impact, 44 impact sites were marked on each ring at equal intervals of

arc length of 5.1 cm (2.0 in.) plus an amount to allow for the kerf of the saw

and final machining. The impact sites were selected so that no contiguous

specimens were impacted with the same mass and energy. Each ring was impacted,



rotated, and impacted again until all 44 impacts were made. The impact damage
was localized and never extended into adjacent specimens.

The velocity at a point just above the rings was measuredwith a laser type
velocimeter. Newton's law was used to extrapolate the measuredvelocity to the
surface of the rings. The kinetic energies calculated from the measured
velocities were within a few percent of the preselected potential energies of
the impacter masses.

The area of contact between the specimen and the 1.27-cm-radius (0.5 in.)
impacter was recorded by placing a sheet of paper covered by a sheet of carbon
paper on the specimen before the impacter was dropped. The pressure over the
contact area transferred carbon to the paper. The diameter of the carbon area
was measuredwith a scale.

Static Compliance Tests

The static compliances of the rings were evaluated for comparison with
their dynamic responses. Accordingly, one specimen-site on each ring was not
impacted. Instead, the impacter was mounted in a large testing machine and
statically pressed against each ring. The force was reacted at the opposite
side of the ring, muchas in the case of the impact tests. The maximumforces
applied to the empty and filled rings were 74.7 and 75.3 kN (16.8 and 16.9 ibf),
respectively. These correspond to about 80 percent of the maximumimpact
forces. The impacter displacement and, for the empty ring, the displacement of
the inner surface beneath the impacter were measured. Also, the strengths of
these specimens were measured to confirm that strength loss is the samefor a
statically applied force and an impact force.

X-Ray Tests

After the static compliance tests and impacts were completed, each ring was
cut into 44 specimens that were 30.5 cm (12 in.) long and a little wider than
5.1 cm (2.0 in.). The specimens were centered on the impact sites. Next, the
cut edges were ground flat and parallel so that the width was 5.1 cm (2.0 in.).
Then the impacted face of each specimenwas soaked in a zinc iodide penetrant
for half an hour, and radiographs were madefrom the top and side. The
penetrant was contained by a circular damon the surface of the specimen. The
depth of impact damagein the radiographs was measured. Whenthe impacters made
craters, the surface around the crater was pushed up by the material that was
squeezed aside and wedgedbetween layers. Then the depths were measured from
the original surface, not the raised surface.

Residual Strength Tests

After the specimenswere x-rayed, circular arcs were symmetrically ground
into the specimens' edges with a 47.0-cm-diameter (18.5 in.) silicon carbide
wheel to reduce the width in the test section to 3.3 or 3.8 cm (1.3 or 1.5 in.).
See figure 2. The preliminary investigation in [i] revealed that, even with
impact damage, straight sided specimens tended to fail prematurely beneath the
leading edges of the grips. The widest test section was desirable in order to



minimize edge effects. Thus, a compromisewas made, and the 3.3-cm-wide (1.3
in.) test sections were used for low kinetic energies where the highest
strengths were expected, and the 3.8-cm-wide (1.5 in.) test sections for high
energies where the lowest strengths were expected. Approximately 8.9 cm (3.5
in.) on each end remained a full 5.1 cm (2.0 in.) wide for gripping.

After the specimens were machined, they were uniaxially loaded to failure
in a 445-kN-capacity (I00 kips), hydraulic testing machine with hydraulically
actuated grips. The grips mostly prevented the specimen ends from rotating.
The stroke was controlled because preliminary tests indicated that partial
failures were difficult to detect when load was controlled [i]. The load and
stroke signals were recorded on an x-y recorder.

To allow for the curved surfaces of the specimens, 9.5-mm-thick (3/8 in.)
aluminum shims were placed between the surfaces of the specimens and grips. One
surface of each shim was flat and the other was convex or concave to conform to
the curvature of the specimens. Sheets of abrasive screen were placed between
the shims and specimen to increase the coefficient of friction and prevent slip.

Except for specimens with small impact forces, the impacted specimens
failed in two stages as shownin figure 3: first the outer layers with impact
damageand then, with increasing load, the undamagedremainder. Whenthe outer
layers failed, they also delaminated from the undamagedlayers. For each
combination of impacter mass and kinetic energy, a duplicate specimenwas
unloaded when the outer layers failed, removedfrom the testing machine, and x-
rayed. Then, it was reinstalled in the testing machine and loaded to complete
failure. Depths of the delaminations in the radiographs were measured.

Strength Tests of UndamagedSpecimens

During the course of the investigation, specimenswith 2.5-, 3.3- and 3.8-
cm-wide (I.0, 1.3, and 1.5 in.) test sections were used. The 2.5-cm-wide (I.0
in.) specimens were used in the preliminary tests but not in the impact tests
reported here. In order to increase the data base of undamagedstrengths and to
determine the effect of specimenwidth, sixteen undamagedspecimens from the
other rings were loaded to failure in tension using the same testing machine and
procedure as that used for the impacted specimens. The test sections were 2.5,
3.3, and 3.8 cm wide (i.0, 1.3, and 1.5 in.). The strengths were calculated by
dividing the loads by the gross area of the test section. The thickness was
assumedto be 36 mm(1.4 in.) for all specimens.

As noted previously, pressurization will not cause bending stresses in a
FWCeven though the laminate is not symmetric. However, uniaxial loading will
cause bending if the ends of the specimens are allowed to rotate. The hydraulic
grips that were used to load the specimens are relatively stiff and did not
allow much rotation. In order to measure the actual bending stress, strain
gages were affixed to the inside and outside surfaces of five of the 2.5-cm-wide
(i.0 in.) specimens. They were located midwaybetween the edges and ends of the
specimens. The results, which are given in [2], revealed that the bending
strain was less than seven percent of the membranestrain. With pinned ends,
the bending strain was predicted to be as large as 66 percent of the axial
strain. Also, someof the undamagedspecimenswere oriented with the inside
surfaces to the front of the testing machine, and others were oriented with the



inside surfaces to the back. The strengths for the two orientations were not

significantly different. Thus, the testing machine itself did not induce any

bending.

RESULTS AND ANALYSIS

Static Compliance Tests

The displacement of the spherical impacter has two components: overall

flexure of the composite ring and local indentation. For a semi-infinite body

that is homogeneous and isotropic, the local indentation is given by the Hertz

law [3],

Uh = (_)2/3 (i)

where

4R_/2

n = 3_(k I + k2 )

2
i - _I

k I - GE 1

2
I - _2

k 2 = _E 2

and Vl, _2' El, and E2 are the Poisson's ratio and Young's modulus of the

sphere and half-space, respectively, and R 1 is the radius of the sphere.

The flexural component can be represented by a linear spring,

P

uf=
(2)

where kf is the spring constant.



Values of kf and n were calculated from the displacements measured

during the static compliance tests. For the empty ring, kf was calculated
from the displacement of the inner surface beneath the impacter, and n was
calculated from the displacement of the impacter less the displacement of the
inner surface beneath the impacter. The results were kf = 5.08 MN/m (29.0

kips/in.) and n = 583 MN/m3/2- (531 kips/in.3/2).- At the maximumforce of 74.7
kN (16.8 kips), the flexural displacement given by equation (2) is more than
five times the Hertzian indentation given by equation (i). Thus, for static
loading, flexure dominates the behavior of the ring.

For the filled ring, the displacement of the impacter was measured, but not
that of the inner surface beneath the impacter. The inner surface was
inaccessible. Thus, values of kf and n could not be calculated from the
displacements of the filled ring alone. Becausethe contact stresses decrease
rapidly with distance from the contact point and the composite is very thick,
the indentations for the filled and empty rings were assumedto be equal. Then
kf was calculated from the impacter displacement less the Hertzian indentation

calculated with equation (2) and n = 583 MN/m3/2 (531 kips/in.3/2). The result
was kf = 6.34 MN/m(36.2 kips/in.).

The value of kf for the filled ring is only 25 percent greater than that
for the empty ring. Thus, the inert propellent, which has a Young's modulus of
1.2 to 34 MPa (0.18 to 5.0 ksi) depending on loading rate, did not contribute
substantially to the static compliance of the ring.

The value of n can also be calculated from the elastic constants of the
composite and spherical impacter using equation (i). However, equation (i) was
derived for isotropic materials and there is someuncertainty about what to use
for E2. Becausemost of the deformation is transverse to the laminate, the

Young's modulus for the laminae E22 is probably a good representation of E2.
Unfortunately, values of E22 for the hoop and helical layers were reported to
be quite different, 6.39 and 1.92 GPa (0.927 and 0.278 Msi), respectively. (The
value for the helical layers was calculated from strains measuredon subscale
pressure vessels. They maybe low because of crazing or premature cracking.
The value for the hoop layers was calculated from strains measuredon a
unidirectional specimen.) Assuming E1 = 207 GPa(30 Msi) for the steel
impacter, Vl = _2 = 0.3, and RI = 1.27 cm (0.5 in.), equation (i) gives

n = 1020 and 313 MN/m3/2 (932 and 285 kips/in. 3/2) for E2 = 6.39 and 1.92 GPa

(0.927 and 0.278 Msi), respectively. Thesevalues bound n = 583 MN/m3/2 (531

kips/in.3/2). Therefore, E22 is a reasonably good estimate for E2.

Conversely, using n = 583 MN/m3/2 (531 kips/in. 3/2) and solving equation (I)
for an effective value of E2 gives 3.60 GPa (0.522 Msi).



Impact Tests

Equations (I) and (2) are valid during the impact if the duration of the
impact is long compared to the natural periods of vibration. As noted
previously, the duration of the impact for the rings is short comparedto the
natural periods of vibration for the rings. Otherwise, the rings would not
represent the FWC. Thus, the value of kf from the static compliance tests
will underestimate the stiffness of the rings during impact as we shall show
subsequently. Nevertheless, it will be instructive to use equations (i) and (2)
to derive equations for the maximumimpact force. The displacement of the
impacter is the sumof equations (I) and (2). An equation for the maximum
impact force is derived in [3] using the sumof equations (i) and (2) and
assuming that energy is conserved. However, the equation is nonlinear and
cannot be solved explicitly for the maximumimpact force. It will be more
convenient here to consider the displacement componentsseparately and to solve
explicitly for the maximumimpact force. Assuming that the ring is initially
stationary and the displacements and forces follow equation (i), one can showby
conservation of energy that the maximumimpact force is

p = n2/5[ 5KE ]3/5

2(1+ ml)

m 2

(3)

and the impact duration is

to = 2.942-9/10(5)2/5(1 + _)-2/5m_/2(KE)-I/10 (4)

where

2
mlv I

KE =--
2

is the kinetic energy of the spherical impacter, mI and v I are the mass and

velocity of the impacter immediately before impact, and m 2 is the mass of the

composite ring.

Similarly, for the linear flexural spring,

I0



p = ( 2kfKE)i/2
mIl+--
m2

(5)

and

t
O

=m I

kf(l + m_ )

(6)

In equations (3) and (5), maximum impact force increases in proportion to

KE/(I + ml/m2) raised to the 3/5 and 1/2 power, respectively. This term will

be referred to as the modified kinetic energy, KE. For ml/m 2 << i, KE = KE

and impacter mass has a negligible effect. In equations (4) and (6), the

duration of impact increases with increasing impacter mass but varies little

(not at all for flexure) with kinetic energy. Therefore, the forms of the

equations are very similar for both components of displacement.

Some typical impact force signals are plotted in figures 4 and 5 for the

filled and empty rings. Just as predicted by equations (3) (6), the maximum

value of impact force increases with increasing kinetic energy and decreases

with increasing impacter mass, and the duration increases with impacter mass but

is hardly affected by kinetic energy. Sun and Chen [6] obtained similar results

analytically for relatively thin, 1.4 - 2.7 mm (0.05 - 0.ii in.) graphite/epoxy

plates impacted with a 12.7-mm-diameter (0.50 in.) steel ball. Although the

masses were small, the ratio ml/m 2 was in the range of those here.

The signals in figures 4 and 5 contain high-frequency oscillations. The

intensity of the oscillations increase with increasing kinetic energy, which is
2

equivalent to velocity of the impacter squared v I. Sun and Chen [6] predicted

the same type of oscillations in the impact force. They explained that the

higher impact velocities excited higher modes of vibration in the plates.

However, many of the high frequency oscillations occur at the natural

frequencies of the rod-like impacters, indicating that some of the oscillations

may be ringing of the impacters.

Notice in figures 4 and 5 that the 9.0 and 18.6 kg (19.9 and 41.1 Ibm)

impacters collided twice with the empty ring. These two impacters always

collided twice with the empty ring, regardless of kinetic energy. The peak

value of force for the second impact was less than that for the first impact.

These multiple collisions can best be understood by examining the rebound

velocities v r of the impacters in figure 6. The values of vr were

normalized by the corresponding initial velocities v I and plotted against the

ii



impacter massesnormalized by the ring masses. The massesof the empty and
filled rings were 40 and 288 kg (89 and 635 ibm), respectively. The normalized
values tend to coincide for the various kinetic energies and the empty and
filled rings. The equation

4ml 0 318
"V--r= I - ( ) "
Vl

fit the data quite well. The two largest values of ml/m 2 correspond to the

9.0 and 18.6 kg (19.9 and 41.1 Ibm) impacters. Notice that these two impacters

did not rebound (reverse motion) on the first collision. The 9.0 kg (19.9 ibm)

impacter was nearly arrested and the 18.6 kg (41.1 ibm) impacter continued to

fall. The empty ring initially moved away from the impacters. However, when

the disturbance traveled around the ring and the ring rebounded, the impacters

collided a second time with the ring. The less massive impacters rebounded on

the first collision and were out of the way when the ring rebounded.

Equations (3) and (5) were derived assuming that the entire mass of each

ring acted at a point rather than being distributed around the rings. Thus, an

effective mass m2 should be used for each ring rather than the total mass m 2.

Consider the empty ring to be represented by a spring and mass. Recall that

when a moving body collides with a stationary body, the moving body will be

arrested if the masses are equal. If the mass of the moving body is less than

that of the stationary body, the moving body will rebound or reverse direction

and vice versa. Thus, the effective mass m2 of a ring corresponds to the mass

= 0 figure 6 An interpolation of the rebound velocitiesof the impacter at v r

and masses in gives a value of ml/m 2 = 0.25 for v r = 0. Thus, the effective

masses of the rings correspond to one quarter of the static mass, or m2 = i0.0

kg (22.0 ibm) and 72.1 kg (159 Ibm) for the empty and filled rings,

respectively. For the filled ring, all the impacters rebounded. Consequently,

ml/m 2 = 0.25 represents an extrapolation of the data in figure 6.

Nevertheless, the accuracy of the extrapolation is probably not critical because

the difference between i + ml/m 2 and i + ml/m 2 is only between 3 and 19

percent for the filled ring; whereas, the difference is between 20 and 139

percent for the empty ring.

The maximum values of impact force are plotted against the modified kinetic

energy term KE/(I + ml/m2) in figure 7 for the filled and empty rings.

Because some of the high frequency oscillations might be ringing of the

impacter, the maximum impact forces were obtained from the impacter signals

after they were smoothed to eliminate the high frequency oscillations. Usually,

the peaks of the smoothed and unsmoothed curves differed by less than I percent.

The data in figure 7 tend to coincide indicating that the dynamic stiffnesses

for the filled and empty rings are approximately equal. Thus, the effect of the
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inert propellent was to increase the inertia of the composite ring but not the

dynamic stiffness. Recall that the static stiffness of the filled ring was only
about 25 percent greater than that of the empty ring. The impact forces are
very large compared to the weights of the impacters. The accelerations at

impact ranged from 277 g's for the 18.6 kg (41.1 Ibm) impacter to 2500 g's for

the 2.8 kg (6.1 Ibm) impacter. Tests of thin composite laminates usually

involve kinetic energies and impact forces that are orders of magnitude less
than those here.

The symbols were filled in figure 7 to indicate when impacters made visible

craters. The craters were visible in the filled ring for impact forces as small

as 75.2 kN (16.9 kips) and in the empty ring for impact forces as small as 90.7

kN (20.4 kips). Below the threshold, the impacter only made a slight

indentation and gave luster or sheen to the surface -- not a very detectable

mark. The transition from crater to no crater was somewhat vague as evidenced
by the variability in impact force to cause a crater. The difference between

thresholds for the filled and empty rings is probably due to this vagueness or
some difference between material properties rather than the presence of the
inert propellent.

Equations (3) and (5) with m2 = m2 are also plotted in figure 7 using

kf = 5.08 and 6.34 MN/m (29.0 and 36.2 kips/in.) for the empty and filled

rings, respectively. A value of n = 583 MN/m 3/2 (531 kips/in. 3/2) was used

for both rings. Equation (3) for the Hertz law overestimates the impact forces

6 to 28 percent, depending on KE. However, equation (5) for the flexural

spring underestimates the impact forces about 56 percent. Because the total

displacement of the impacter during contact is the sum of uh and uf in

equations (I) and (2), both equations (3) and (5) should overestimate the

impact force. (Two springs in series are less stiff than either spring alone.)

In order for equation (5) to overestimate impact force, the dynamic value of kf

must be more than four times the static value. Therefore, because of the short

duration of the impact, the static stiffness or first mode greatly overestimates

the flexural displacements during impact. On the other hand, equation (3) for

the Hertz law probably gives a fairly good estimate of the dynamic indentation
behavior because of the very local nature of the indentation.

Viscoelasticity of the epoxy matrix could also cause the dynamic value of

kf to be underestimated. However, n should also have been affected, and yet

it overestimated the impact force as it should. Thus, viscoelasticity was
probably not a significant factor.

Because uh and uf in equations (3) and (5) are both proportional to KE

raised to the 3/5 and 1/2 powers, respectively, the actual impact force is

approximately proportional to KE raised to a power between 3/5 and 1/2. The
equation
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( KE )0.516
p = C I

m I
l+----

m 2

(7)

with C I = 6860 N 0"484 m "0"516 (1810 Ibf 0"484 ft -0"516) fits the data without

craters in figure 7 quite well. The value of C I and the exponent 0.516 were

determined by a linear regression analysis. When craters were made, the impact

forces were smaller than those given by equation (7), indicating that the damage

had a softening effect.

Strengths

Undamaged specimens.- The undamaged strengths were not significantly

affected by specimen width. The average strength for 19 specimens is 345 MPa

(50.1 ksi) and the coefficient of variation is 0.0805.

Hercules Inc. made and tested numerous quarter-scale cylinders 91.4 cm (36

in.) in diameter to determine design allowables for the FWC. The mean strength,

in terms of hoop-fiber stress, for the tensile specimens is 38 percent less than

that • for the cylinders, 2.19 GPa (317 ksi) compared to 3.54 GPa (544 ksi). The

mean strength of the fibers in the quarter scale cylinders, as determined from

fiber-lot-acceptance tests, was 4.07 GPa (590 ksi) [i] and that of the

broadgoods fiber in the 76.2-cm-diameter (30 in.) cylinder with full thickness

was 3.75 GPa (544 ksi). Thus, one would expect the stress in the hoop fibers of

the tensile specimens at failure to be about 3.54x3.75/4.07 = 3.26 GPa (473

ksi), not 2.19 GPa (317 ksi)!

On the basis of lamination theory, the helical layers only carry 20 percent

of the axial load. Thus, had edge effects prevented the helical layers from

carrying any load, the strengths would have been reduced only 20 percent, not 33

percent. Helical layers on the surfaces sometimes failed at the grips, but the

interior layers failed in the test section. Thus, neither edge effects nor grip

failures could have caused the low strengths.

Photographs of an edge of a tensile coupon and a coupon cut from the excess

material at the end of an actual FWC case are shown in figure 8. Although the

layups are different, notice that the hoop layers (light bands) of the FWC case

are straight, but those of the tensile specimen are wavy. The inset shows an

enlargement of one wrinkle that is so high the epoxy did not fill in beneath it.

These wrinkles are part of a pattern of waviness that occurs throughout all the

specimens in varying degrees. It was probably caused when the helical layers

were wound over the hand-layed hoop layers, which had no pre-tension.

For carbon/carbon composites, Jones and Studdert [7] noted that wrinkle-

free laminates are stronger than wrinkled laminates. The differences in

strength were not given. However, in experiments conducted by of one of the

present authors (Poe), two 16-ply-panels made of graphite/epoxy tape failed at

remote wrinkles rather than at 13-cm-long (5 in.) cuts at the center of the

panels. The strengths were about half those of an uncut laminate, indicating
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that the stress concentration factor at the wrinkles was about two. In the
tensile specimenshere, a stress concentration factor of only 1.6 would account
for a 33 percent loss in strength. Thus, the wrinkles in the hoop layers
probably caused the low strengths.

Impacted specimens.- As shown previously in figure 3, except for small

impact forces, specimens failed in two stages: first the outer layers

containing the impact damage and then, with increasing load, the remainder.

When the outer layers failed, they also delaminated from the undamaged layers.

These failures will be referred to as first- and remaining-ligament failures,

respectively. For small impact forces, the laminate did not fail in two stages;

instead, all layers failed simultaneously. Radiographs of two impacted

specimens made before and after loading to first-ligament failure are shown in

figures 9(a) and 9(b). Both specimens came from the filled ring, but they are

representative of specimens from both rings. The impact forces for specimen 7-7

and 7-8 were 60.0 and 79.2 kN (13.5 and 17.8 kips), respectively. The impact

damage caused a visible crater in specimen 7-8, but not in specimen 7-7. A top

and a side view are shown in figure 9 for each load condition. In the side

views, the dark narrow bands are the hoop layers and the light bands are the

helical layers. The delaminations in the radiographs made after loading to

first-ligament failure are not confined to a single interface or plane but

meander among layer interfaces. Thus, the delaminations do not appear as narrow

lines in the radiographs of the sides but as wide dark bands. The innermost

path of the delaminations seem to lie at interfaces of hoop and helical layers.

It is important for the reader to understand that these delaminations were

caused by the loading, not the impacts. The impacts themselves did not cause

delaminations.

Specimens with semi-elliptic surface cuts failed similarly with the cuts

acting like impact damage [1,8]. For very shallow cuts, the laminate failed as

one part, much like a metal. The stress at which the top part failed decreased

with increasing cut size according to linear elastic fracture mechanics, and the

strength of the bottom part varied inversely with its thickness, much as an

Uncut laminate. Similar results were reported in [9] for a 10-mm-thick (0.4

in.) quasi-isotropic T300/5208 laminate.

The stresses to fail the first and remaining ligaments were divided by the

mean undamaged strength of 345 MPa (50.1 ksi) and plotted in figures 10(a) and

10(b), respectively. Stresses were calculated by dividing the loads by the

gross area of the test section, just as they were for the undamaged strengths.

When the impact forces were small and the specimens failed in one stage, the

strengths were plotted in both figures. Therefore, the failing stresses in

figure 10(b) are also the ultimate strengths of all the specimens. Different

symbols were used for the empty and filled rings, and the symbols were filled

when the impacters made craters. The impact force threshold for visible damage

is indicated by the vertical line at 75.2 kN (16.9 kips). The stresses for

first-ligament failure decrease with increasing impact force. On the other

hand, the stresses for remaining-ligament failure appear to be more independent

of impact force, even when the impacters made craters. For the largest impact

forces, the stresses for first-ligament failure are as low as 50 percent of the

mean undamaged strength. On the other hand, the stresses for remaining-ligament

failure are no lower than 75 percent of the mean undamaged strength. At the
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threshold for visible damage, the lowest stresses for first- and remaining-
ligament failures are 63 and 78 percent of the meanundamagedstrength,
respectively.

The individual undamagedstrengths were also plotted in figures 10(a) and
10(b) for comparison. The failing stresses of the impacted and undamaged
specimens overlap considerably. For several specimens, in fact, the stress to
fail the remaining ligament is greater than the meanundamagedstrength.
Nevertheless, the coefficients of variation amongspecimenswith the sameimpact
conditions is not large [2]. It is typically less than 0.I. Also, the failing
stresses for specimens from the filled ring are typically 5 to I0 percent higher
than those for specimens from the empty ring. It is believed that this
difference is caused by material or testing variations and not by the inert
propellant.

The failing stresses for the two specimens that were statically "impacted"
in the static compliance tests were also plotted in figures 10(a) and 10(b).
They fall amongthe impacted strengths indicating that the static and impact
tests were equivalent.

The fracture toughness and undamagedstrengths were reduced by the wrinkles
in the sameproportion [i]. Consequently, the ratios of strengths with and
without surface cuts were not affected by the wrinkles. Because the behavior of
specimens with impact damageand surface cuts was similar, it is believed that
the strength ratios in figure I0 can be applied directly to the FWCdespite the
wrinkles.

It is not known if the uniaxial strengths in figures 10(a) and 10(b) are
greater or less than strengths in a biaxial stress field like that in a
cylindrical pressure vessel. For thin graphite/epoxy laminates with holes,
Daniel [i0,ii] obtained mixed results. For one layup and stress ratio, the
uniaxial strengths were 20 percent greater than the biaxial strengths; and, for
another layup and stress ratio, they were 20 percent less than the biaxial
strengths.

Whenthe specimens failed in two stages, the remaining-ligament strengths
were usually larger than the first-ligament strengths. Thus, the two-part
failures constituted redundancy or fail-safeness in somemeasure. However, the
delamination that accompanied the first-ligament failure spread throughout the
tensile specimens and could itself constitute structural failure. Then the two-
part failure would not be fail-safe.

Hercules, Inc. hydrotested four quarter-scale cases with impact damage.
The cases did not appear to fail as two parts like the tensile specimens. By
using fracture mechanics, it was shown in [2] that two-part failure will not
occur in the thin laminate of the quarter-scale cases with hydrostatic pressure.
Also, for a given depth of damage, the strengths maybe less in the thin
laminate than the thick laminate. Thus, impact damageis very difficult to
represent in subscale pressure vessels.
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Impact Damage

Predictions and radiographs.- Love's solution for stresses in a semi-

infinite body produced by hemispherical pressure on part of the boundary [12]

was used to predict the depth of impact damage in terms of impact force. The

body is assumed to be homogeneous and isotropic. Even so, the results should be

accurate, at least qualitatively, when the contact diameter is large compared to

layer thickness.

Love's solution gives no tension stresses beneath the contact area. On the

other hand, the compression stress in the plane of the fibers is as large as

(1/2 + v2)Pc, where Pc is the average contact pressure at the center of the

contact surface. However, as will be shown subsequently, the observed mode of

fiber failure did not appear to be shear kinking or micro-buckling, which is

usually associated with compression failures. Therefore, a maximum shear

criterion was assumed for failure of the fibers. Principal shear stress

contours from Love's solution are plotted in figure ii for various ratios of

average contact pressure to shear strength. These stress contours are

equivalent to damage contours. The coordinates z and p are normalized by

the contact radius. The average contact pressure Pc is the impact force

divided by the contact area or Pc = P/(_D2/4)" The maximum value of the

hemispherical pressure is 1.5 times the average value and occurs at p = 0. The

contours in figure ii are approximately circular in cross section, giving a

somewhat spherical damage region.

The maximum and minimum depths of the damage contours (p = 0) are plotted

against the contact pressure in figure 12. The damaged envelope is cross-

hatched. Damage initiates below the surface at 2z/D = 0.47 when the contact

pressure is approximately 1.61 times the shear strength. As the pressure

increases, the damage spreads up and down and reaches the surface at a pressure

equal to approximately 5.0 times the shear strength.

In order to use the curve in figure 12 to predict the depth of impact

damage, the shear strength, the contact radius, and the contact pressure must be

known. The contact diameter measured with the carbon paper is plotted against

impact force in figure 13. Different symbols were used to indicate when the

impacters made craters. (In the empty ring, the contact area was inadvertently

not measured for the largest kinetic energy when the impacters made craters.)

The paper was obliterated in the contact area when the impacters made craters,

and the outline of the area was somewhat ragged. Thus, the dispersion is

greater when impacters made craters. For the Hertz law [3], the contact
diameter is

,= (8)

A regression analysis of the data without permanent craters using equation (8)

gave n = 448 MN/m 3/2 (408 kips/in.3/2). Equation (8) models the contact

diameters in figure 13 very well except when the impacters made craters. Then,
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the contact diameters were considerably greater than equation (8) predicted.

Recall that the indentation depth in the static compliance test was modeled by

equation (i) with a value of n = 583 MN/m 3/2 (531 kips/in.3/2), reasonably

close to 448 MN/m 3/2 (408 kips/in.3/2). Thus, the Hertz law models the

indentation depth and contact diameter fairly accurately for both static loads

and impact.

The impact forces divided by the circular contact area _D2/4 are plotted

against impact force in figure 14. Different symbols were used when impacters

made craters. Without craters, the pressures are 480 to 690 MPa (70 to I00

ksi). (Recall that the peak value of the hemispherical pressure in Love's

solution is 50 percent greater than the values in figure 14.) When craters were

made, the contact diameters increased so much that the pressures dropped about

40 percent. Eliminating the contact diameter in equation (8) with

D = [4P/(_pc)]I/2 and solving for the average contact pressure Pc'

n

(9)

Equation (9) with n = 448 MN/m 3/2 (408 kips/in. 3/2) is also plotted in figure

14. The calculated pressures and equation (9) agree likewise. Notice that both

contact diameter and pressure increase in proportion to impact force to the 1/3

power.

The only remaining information that is needed to predict damage depth is

the shear strength S . Two values were used one for the matrix and another
U

for the fibers. A value of S = 103 MPa (15 ksi) which is typical for the
U

shear strength of unidirectional graphite/epoxy, was used for the matrix, and a

value of S = 310 MPa (45 ksi) was used for the fibers. The value for the
u

fibers was obtained by compressing disks that were cut from several specimens

using core drills. See figure 15. Compression loads were applied to both faces

of each disk, giving loading on the outer surface similar to the impact loading.

The diameters of the disks were 2.5, 3.8, and 5.1 cm (i.0, 1.5, and 2.0 in.).

Several specimens with each diameter were crushed. The average compression

strength was 620 MPa (90 ksi). The strength varied little with specimen
o

diameter. The failure surfaces intersected the free edge at a 45 angle,

typical of shear. The shear stress at the free edge is 1/2 the compression

stress. It may be slightly greater in the interior. Thus, the shear strength

is approximately 310 MPa (45 ksi).

Using equations (8) and (9) and the curve for damage depth in figure 12,

the depth of damage was calculated and plotted in figure 16 for the values of

S = 103 and 310 MPa (15 and 45 ksi). The locations of hoop layers are
U

indicated on the ordinate. The minimum values of impact force for the curves in

figure 16 are i.I and 29.7 kN (0.25 and 6.68 kips) for S = 103 and 310 MPa (15
U
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and 45 ksi), respectively. They represent the thresholds for matrix and fiber
damageand increase in proportion to Su to the third power. (This was
incorrectly reported in [2] as the one-third power.) The matrix damage
initiates in the outer helical layers, about one-third of the distance to the
first hoop layer and reaches the surface for impact forces greater than 33.5 kN
(7.53 kips). On the other hand, the fiber damageinitiates in the first hoop
layer and reaches the surface for impact forces greater than 907 kN (204 kips).
The depth at which the damageinitiates increases in proportion to the shear
strength.

The depths of impact damagerevealed in the radiographs are also plotted in
figure 16. Filled symbols were used to indicate when the impacters made
craters. The depths are very similar in the filled and empty rings for the same
impact force. The damagewas not evident in the radiographs for impact forces
less than 40 kN (9 kips). The damagewas not always evident for impact forces
between 40 (9 kips) and 89 kN (20 kips). However, it was always evident when
impacters madecraters. In general, damagedepth in the radiographs increased
with impact force above 40 kN (9 kips) and did not extend below the second hoop
layer.

If the dye penetrated to the innermost matrix damage, the depth of damage
in the radiographs should correspond to the predicted curve for matrix damage.
However, it does not; the depths in the radiographs correspond more to the
predicted curve for fiber damage. Actually they are a little less than the
curve for fiber damage. Radiographs were madeof a specimen with an impact
force of 81.4 kN (18 kips) before and after a small hole was drilled deep into
the impact site [I]. There was no visible surface damage. The radiograph made
before the hole was drilled also did not reveal damage. However, the radiograph
madeafterward did. Therefore, the dye apparently has difficulty penetrating
the damage. Also, the damagedepths are probably overpredicted somewhatbecause
isotropic theory gives larger stresses than anisotropic theory [3]. On the
other hand, the impact force threshold for appearance of damagein the
radiographs does agree fairly well with the force at which the predicted matrix
damagereaches the surface. However, the force threshold for causing craters,
which is about 75.2 kN (16.9 kips), is an order of magnitude less than 907 kN
(204 kips) that is predicted for the fiber damageto reach the surface.

Equivalent cut depths.- The failure modes of specimens with surface cuts

were the same as those with impact damage, indicating that depths of impact

damage and surface cuts are equal for equal remaining-ligament strengths. Thus,

depths of impact damage can be inferred from remaining-ligament strengths and

surface cut data. These depths will be referred to as equivalent cut depths to

distinguish them from other measurements or predictions of impact damage depth.

They were calculated with the following equation, which was fit to the

remaining-ligament strengths of specimens with surface cuts [I].

C2 3 60

a = (_-) "
c

(i0)
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where C 2 = 0.208 MPa m I/3"6 (30.1 ksi in. I/3"6) and Sc is the remaining-

ligament strength. The equivalent surface cut depths, which were calculated

only for specimens that failed as two parts, are plotted against impact force in

figure 17. The filled and empty symbols represent the filled and empty rings,

respectively. The large exponent in equation (I0) would greatly amplify the

scatter in strengths among like specimens. Thus, the average values for a given

impacter mass and kinetic energy, rather than individual values, were plotted to

clarify the trends. The location of the hoop layers are shown on the ordinate.

Also, the depths of matrix and fiber damage predicted with shear strengths of

103 and 310 MPa (15 and 45 ksi), respectively, were plotted for comparison. The

equivalent cut depths are between those predicted for fiber and matrix failure

but agree best with the fiber-failure curve for large impact forces. The values

of equivalent cut depth were smaller for the filled ring than the empty ring

because the filled ring was 5 to i0 percent stronger than the empty ring.

The average depths of impact damage in the radiographs made before loading
are also plotted in figure 17 for comparison. For small impact forces, the

damage depths in the radiographs are much less than the equivalent cut depths.

But, for large enough impact forces to cause craters, the damage depths are more

nearly equal to the equivalent cut depths. Therefore, the radiographs reveal

much less impact damage than that implied by the remaining-ligament strengths

when there is no surface damage. Although the values of equivalent cut depth

were smaller for the filled ring than the empty ring, the damage depths in the

radiographs were not.

Delamination depths after loading to first-ligament failure.- For 80 ply
quasi-isotropic T300/5208 laminates with surface cuts, the delamination that

accompanied first-ligament failure developed at the bottom of the cut [9].
However, for surface cuts in the FWC laminate [8], the delamination was not

always at the bottom (private communication from Dr. D. H. Morris, Virginia

Polytechnic Institute and State University, Blacksburg, Virginia). It was at

the interface of hoop and helical layers that was nearest the bottom of the

surface cut. For this reason, the delamination depths could differ from the

surface cut depths by as much as half the thickness of a group of helical

layers, which is 1.4 mm (0.055 in.) for the (±56.5)2 double helical layers near

the outer surface. In the T300/5208 laminate, the delamination could also have
o o

been at the interface of the ±45 and 0 layers nearest the bottom of the

surface cut. However, the difference probably would not have been noticed
o

because only about 0.4 mm (0.016in.) separates the 0 plies.

The depths of delaminations in the radiographs were measured and plotted

against impact force in figure 18. Average values of equivalent cut depths were

also plotted for comparison. (The delamination depths are not averages.) The

filled symbols represent the filled ring and the empty symbols represent the

empty ring. If impact damage is equivalent to a surface cut, one would expect

the delamination depths to be deeper than the equivalent cut depths by no more

than half the thickness of a group of helical layers. This was true for

Specimens from the empty ring, indicating that the delamination and equivalent

cut depths were consistent. For specimens from the filled ring, the

delamination depths were a full thickness of helical layers below the equivalent

cut depths. As noted previously, the specimens from the filled ring were 5 to
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i0 percent stronger than those from the empty ring, and the equivalent cut
depths were correspondingly less. Because the damagedepths in the radiographs
were equal for the filled and empty rings and the delamination depths were equal
for the filled and empty rings, the difference between strengths of the filled
and empty rings is probably due to material variation or load measurementerror
rather than impact damage. Nevertheless, the equivalent cut depths and the
delamination depths both indicate that the radiographs madebefore loading do
not reveal the full extent of impact damage,even when the impacts caused
craters.

Actual impact damageto the fibers was also determined by destructively
examining a specimen after impact. This specimen was not from the two intact
rings. Instead, it was cut from another ring and then impacted while lying on
inert propellent. The impact force was 54.3 kN (12.2 kips). A 2.5-cm by 2.5ocm
(I-in. by loin.), coupon of full thickness was cut from the impact site, and the

o o

layers were separated by heating to a temperature of 422 K (350 F) and holding

for 90 minutes). Then, the individual layers were examined with an optical

microscope and a scanning electron microscope for broken fibers. The layers

from the surface through the second helical layer below the first hoop layer,

inclusively, contained obviously broken fibers. Two photographs of the deepest

layer with damage, which was 3.6 mm (0.14 in.) from the surface, are shown in

figure 19. They were made in the scanning electron microscope with 13X and 280X

magnification. A 5.l-mm-long (0.20 in.) "crack" (locus of fiber breaks) can be

seen in the 13X photograph. The "crack" was directly below the impact site and

oriented normal to the fibers. The "cracks" in layers above this layer were

similar, and all the layers below this layer were largely free of "cracks." The

"cracks" in each layer were oriented normal to the fibers. The region of the

"crack" covered by the 280X photograph is outlined by the rectangle drawn on the

13X photograph. The individual fiber breaks can be seen in the 280X photograph.

The broken fibers do not have the appearance of fibers that have failed in

compression by shear kinking or micro buckling.

The depth of the "cracked" layer in figure 19 was also plotted in figure 18

for the corresponding impact force and labeled "deply". It is less than the

equivalent surface cuts and delaminations. However, it is almost as deep as the

predicted curve for 310 MPa (45 ksi), which corresponds to fiber failure.

Perhaps fibers below the "cracked" layer in figure 19 were weakened but not

visibly broken in the deplied layers, causing lower remaining-ligament

strengths. Elber [4] found evidence to this effect. He removed fiber bundles

from the impact site of a thin graphite/epoxy laminate and loaded them to

failure. The strengths of some bundles were 30 to 50 percent of the undamaged

strength without a corresponding number of visibly broken fibers (private

communication from Dr. Elber, U.S. Army Aerostructures Directorate, USAARTA -

AVSCOM, Langley Research Center, Hampton, Virginia).

The predicted curves for shear strengths of I03 and 310 MPa (15 and 45 ksi)

in figure 18 represented matrix and fiber failure, respectively. An

intermediate strength can be associated with fibers that are weakened but not

broken. Accordingly, a curve was predicted and plotted in figure 18 for a

strength of 241 MPa (35 ksi). This curve, which passes through the approximate

median of the equivalent cut depths and impact forces, indicates the sensitivity

of damage depth to shear strength.
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CONCLUSIONS

A special 76.2-cm-diameter (30 in.) cylinder, 36-mm(1.4 in.) thick, was
madeto represent the membraneof a graphite/epoxy solid rocket motor for the
space shuttle. Two 30.5-cm-long (12 in.) rings were cut from the cylinder and
impacted with 1.27-cm-radius (0.50 in.) impacters. Oneof the rings was filled
with inert propellent and one was empty. The massesof the impacters varied
from 2.8 to 18.6 kg (6.1 to 41.1 ibm) and the kinetic energies from 37.7 to 446
J (30.3 to 329 ft Ibf). Specimenswith a width of 5.1 cm (2.0 in.) were cut out
of the two rings and uniaxially loaded to failure in tension to determine the
strength loss due to the impacts. Specimenswere x-rayed and ultrasonically
scanned to determine the amount of impact damage. Also, one specimenwas
destructively examined (deplied by pyrolysis) to determine the extent of actual
broken fibers. The strengths and depths of impact damagewere analyzed in terms
of maximumimpact force. Rigid body mechanics and the Hertz law were used to
derive an equation for impact force in terms of kinetic energy and the massesof
the impacters and rings. The depth of damagewas predicted in terms of impact
force using Love's solution for pressure applied on part of the boundary of a
semi-infinite body. The results indicate the following:

Q

i. Impact force increased in proportion to KE/(I + ml/m2) raised to the

0.516 power, where KE and m I are the kinetic energy and mass of the

impacter, respectively, and m2 is 1/4 the total mass of the filled or

empty ring.

2. The stiffnesses of the filled and empty rings were nearly equal.

However, the apparent flexural stiffnesses during impact were more than
four times the static values.

3. The impacted specimens failed as two parts when loaded, much like

specimens with surface cuts. Except for very shallow damage, the

damaged outermost layers failed first; and then, with additional load,

the remaining or undamaged part. The first part delaminated from the

remainder when it failed. For very shallow damage, the specimens

failed as one part, much like a metal. The stresses at which the two

parts failed decreased with increasing impact force, more for the first

part than the remainder. For the largest impact forces, the stresses

to fail the first and remaining parts were as low as 50 and 75 percent

of the mean undamaged strengths, respectively.

4. Impact forces ranged from 36 to 98 kN (8 to 22 kips). For impact

forces less than 75.2 kN (16.9 kips) damage was not visible. Above

75.2 kN (16.9 kips), the impacts usually caused visible surface
craters. Conventional ultrasonic attenuation maps revealed no damage.

The radiographs did not reveal damage for impact forces below 40 kN (9

kips). They sometimes revealed damage for impact forces above 40 kN (9

kips) and always revealed damage when the impacts caused craters.

However, the radiographs never revealed the full depth of damage.

Impact damage inferred from remaining-ligament strengths and

delaminations was considerably deeper, especially for the smallest
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impact forces. The predicted threshold for causing fiber damagewas
about 30 kN (6.7 kips). For nonvisible damage, the stresses to fail
the first and remaining ligaments were as low as 63 and 78 percent of
the meanundamagedstrengths, respectively.

5. The undamagedstrength was about 39 percent less than expected on the
O

basis of fiber-lot-acceptance tests. Wrinkles in the 0 layers
probably caused the low strengths. It is believed that the wrinkles

reduced the strengths of the impacted specimens likewise. For this

reason, the ratios of impact strength to undamaged strength should not
have been affected by the wrinkles.

6. The Hertz law gave reasonably correct local deformations, contact

diameters, and contact pressures except when craters were made.

7. The depth of broken fibers was reasonably well predicted using Love's
solution for pressure applied on part of the boundary of a semi-

infinite body and a principal shear stress criterion.
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APPENDIX- MATERIALPROPERTIES

The graphite fiber is Hercules Inc.ts AS4W-12K,and the winding resin is
Hercules Inc.'s HBRF-55A. The epoxy in the unidirectional broadgoods is
Hercules Inc.'s MX-16. Fiber-lot-acceptance (FLA) tests were conducted on the
fiber used to make the test case. Properties of the helical fiber, broadgoods
fiber, and matrix or winding resin are given in the table below. (The helical
and broadgoods fibers were from different lots.)

Helical Broadgoods Matrix
fiber fiber

Tensile modulus, GPa (Msi) ... 228 (33)
Poisson's ratio ..............
Tensile strength, GPa (ksi) .. 3.96 (574)
Elongation at failure ........ 0.0167
Density, kg/m3 (ibm/in. 3) .... 1790 (0.0648)

228 (33) 2.85 (0.414)
.35

.75 (544) °

1780 (0.0642) 1230

Physical properties and lamina constants were measuredby Hercules Inc. on
six coupons cut from the ends of the test case. The physical properties are

Composite density, kg/m3 (Ibm/in. 3) .. 1490 (0.05397)
Resin mass fraction .................. 0.3459
Resin volume fraction ................ 0.3845
Fiber volume fraction ................ 0.5449
Void content ......................... 0.0706

and the lamina constants are
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Unidirectional Helical Cut Cloth
broadgoods layers helical

layers
1.06 iii iii 59.3

(15.4) (16.2) (16.2) (8.60)

6.39 1.92 1.92 59.3

(0.927) (0.278) (0.278) (8.60)

4.47 4.28 4.28 3.68

(0.649) (0.621) (0.533) (0.533)

0.275 0.267 0.267 0.0348

Ell , GPa(Msi) ....

E22, GPa(Msi) ....

GI2, GPa (Msi) ....

v12 ...............

Thickness per ..... a0.427 0.427

layer, mm (in.)

(0.0168) (0.0168)

aEqual to three plies of broadgoods.

0.711 0.427

(0.0280) (0.0168)

The elastic constants of the test case laminate were predicted with

lamination theory using the lamina constants in the table above. It was assumed

that bending and stretching were not coupled, that is, the laminate was

symmetric. The predictions are E = 30.6 GPa (4.44 Msi), E = 39.0 GPa (5.66
x y

Msi), G = 19.7 GPa (2.86 Msi), v = 0.351, and v = 0.447. (The x-
xy xy yx

direction corresponds to the axial direction of the test case and the hoop
direction of the FWC.)
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Figure 1.- Photograph of filled ring and part of the impact apparatus.
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