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Abstract

This report examines the feasibility of using a periodic
dielectric layer, composed of alternating bars having dielectric
constants &; and e,, as a frequency selective sub-reflector in
order to permit feed separation in large aperture reflecting
antenna systems. For oblique incidence, it is'found that total
transmission and total reflection can be obtained at different
freduenciés for proper choice of €41, €9 and the geometric
parameters. The frequencies of total reflection and transmissioﬁ
can be estimated form wave phenomena otcurring in a layer of
uniform dielectric constant equal to the average for the periodic
layers. About some of the frequencies of total transmission, the
bandwidth for 90% transmission is found to be 40%. However, the
bandwidth for 90% reflection is always found to be much narrower;

the greatest value found being 2.5%.



I. Introduction

Separation of the feed structures for different frequency bands in
large reflecfing antennas has been achieved using sub-reflectors whose
transmission and reflection coefficients are frequency dependent. For
frequencies in one band, the sub-reflector acts as a perfect reflector, ’
while for freguencies in another distinct band the sub-reflector is
transparent to the radiation, thus permitting direct illumination of the
main reflector by the feed. To date, periodic arrays of conducting
plates, or apertures in a conductive screen, have been used as the fre-
gquency selective surface [1-4]. Typically, the conductors are placed on
a dielectric'layer that provides mechanical support.

Use of a dielectric layer with periodically varying dielectric
constant has been suggested as an alternative way to obtain a frequency
selective surface. As considered here, the layer is composed of alter-
nating strips of two materials having different dielectric constants, as
shown in Figure 1. At mm frequencies, such dielectric layers offer the
advantage of low absorption loss as compared to metallic screens. Since
the layer thickness is on the order of a wavelength, the amount of mate-
rial required would not be excessive at these high frequencies.

This report describes a theoretical study of frequency selective
reflection and transmission at dielectric layers of the type shown in
Figure 1. Because this effort was intended as a limited feasibility
study, we consider the case when the plane is incident perpendicular to
the strips, and assume the electric field to be polarized along the
strips, as in Figure 1. The layer is found to exhibit the desired fre-

quency selective properties. It is also found that the approximate
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locations of reflection and transmission bands can be predicted from wave
properties of a layer having uniform dielectric constant equal to the
average of that in the periodic layer.

The significant wave properties are discussed qualitatively in
Section II. 1In Section III, the necessary mathematical analysis is
carried out to permit_numerical evaluation of the reflection and trans-

mission coefficients. Numerical results are presented in Section IV.



L LA

II. wWave Mechanisms for Frequency Selective Behavior

In this sectioh, we describe the wave phenomena that can provide
frequency selective reflection and transmission at a periodic dielectric
layer. The description given here is intended to clarify the nature of
the subsequent analysis, and to provide a context for discussing the
numerical results that have been obtained.

Consider first a dielectric that is periodic along x but infinite
along z, as shown in Figure 2. For two dimensional propagation in the
(x,z) plane, the dielectric will support an infinite set of modes with
different wavenumbers, x, along z, but each having the same Bloch wave-
number k, along x [5,6]. At low frequencies, only the lowest n = 0 mode
will have a real wavenumber x,, while all other modes will be cut off («,
imaginary or complex). At somewhat highér frequencies, the n = -1 mode
will also propagate (x_; real), while higher modes remain cut off.
Further increase in frequency will result in more propagating modes.

Consider now a semi-infinite, periodic dielectric illuminated by a
plan wave incident from vacuum, as shown in Figure 3. The incident wave
will excite all of the modes of the periodic structure. At a low enough
frequency f,, only the n = 0 mode will propagate along z, as suggested in
Figure 3a. Higher modes will decay exponentially away from the surface 2z
= 0. However, at a higher frequency f,, the n = 0 and n = -1 modes can
propagate. 1If &; and ¢, are not close to the dielectric constant of free

space, two modes can propagate in the dielectric even for the periodicity

‘d small enough compared to the free space wavelength i, so that no grat-

ing lobes are present in the field reflected into the region z < 0. 1In

this case, the reflected field propagates only at the specular angle, as
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indicated in Figure 3b. If the periodic dielectric is of finite thick-
ness h, as in Figure 4, the propagating modes will excite a plane wave in
the vacuum region z > h below the dielectric.

At low frequencies f,, only one mode propagates along z with real
wavenumber kg, so that the layer acts approximately as if it had a uni-
form dielectric constant equal to the average of that for the periodic
layer. Thus the transmission properties will be similar to those of a
uniform layer. In particular, the reflection coefficient will vanish at
about the frequency for which xoh = x. 'In this case, the dielectric
acts as a half-wave window, and there will be total transmission of the
incident plane wave, as suggested in Figure 4a.

At a higher frequency f,, both the n = 0 and n = -1 modes will
propagate ;long z. ‘These modes are excited at the top surface of the
layer by the incident wave. When each mode reaches the bottom surface,
it excites both modes traveling back to the top, as well as a transmitted
plane wave in the air. Because of the phase~-matching conditions at the
top and bottom surfaces, the transmitted plane wave in the air propagates
in the same direction as the incident plane wave.

The modes in the layer that are traveling back towards the top
surface excite a reflected plane wave in the air above the layer, as well
as being scattered back into the layer, as suggested in Figure 4b.
Repetition of this scattering process establishes the total field in the
layer, and the total reflected and transmitted plane waves in the air.
For some frequency f2, the phases of the two modes in the layer will be
such as to add destructively in producing the transmitted plane wave,

while constructively adding for the reflected plane wave, thereby produc-
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ing the desired frequency selective property. However, at other frequen-
cies in the range where the n = 0 and n = -1 modes propagate along z, the
phases of these two modes may be such as to add for the transmitted plane
wave and cancel for the reflected wave. Thus it is possible to have
multiple frequencies for which total reflection and total transmission
take place.

The foregoing behavior is known in other related geometries to be
associated with the excitation of waves guided along the layer [7,8]. To
understand the connection with the guided waves, consider a layer of
uniform dielectric constant équal to an average permittivity of the

periodic layer defined by
ea = (51d1 + 52d2)/d. ‘ . (1)

This layer will support guided waves whose fields vary sinusoidally in
the layer, and decay away from the layer in the air [9]. For TE guided
wave modes, the normalized wavenumber th with g=0,1,2 is plotted along
the horizontal axis in Figure 5 versus the normalized free space wave-
number k,h = oh/c, which is plotted along the vertical axis for €4 = 2.
Because Bg is greater than «y, there are no angles of incidence 6 at
which a plane wave can satisfy the phase-match condition kgsing = Bg for
direct excitation of the waveguide modes. However, excitation is pos-
sible if the dielectric constant of the layer is a periodic function of
x. In this case, the fields of each waveguide mode will consist of a
series of space harmonics, one of which has fields that are very similar

to those of a mode in a uniform layer having the same average dielectric

constant e&,. This space harmonic is designated m = 0, and has wavenumber
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Bgo along x that is close to Bg for the uniform layer. Other space har-

monics have wavenumbers along x given by

ng=ﬁgo+q2ﬂ/d. (q=t11 +2, cee) (2)

While 5g0 = > k,, it is possible to choose the periodicity d such

Bg
that lﬁg'_ll < kg for m = ~-1. In this case, a plane wave incident at an
angle 9 = sin'l(lﬁg,_ll/ko) will couple to the space harmonic, and
through it excite the waveguide mode. Once excited, this mode will re-
radiate plane waves into the air regions above and below the layer
through the same space harmonic. The process of excitation and re-radia-
tion is depicted in Figure éa for the case when k, + Bg > 2n/4 > Bg.
This condition is sufficient to guafantee that oﬁly one space harmonic
will give rise to a plane wave propagating away from the.layer, and also
implies that the plane wave propagates backward with respect to the
direction of the waveguide mode. Guided waves that radiate some of their
energy as they propagate are known as leaky waves[10].

The same physical processes hold if the incident wave is from the
left, as shown in Figure 6b, except that the direction of propagation
along x is reversed for the waveguide mode. The re-radiated plane wave
above the layer adds to the reflected plane wave generated directly at
the top surface of the layer to give the total reflected field. When the
two components are in phase, strong reflectiéns take place. However,
when they are out of phase the reflected field is small and strong
transmission occurs. Because the phases are frequency dependent, the

overall reflection can have the desired frequency selective behavior. 1In

11




Re-Radiated

‘ Incident
Reflected Wave

Plane Wave

Directly Reflected
Wave

X
< D :#’- =
. -l \
\ .
Guided Wave
Re-Radiated
Transmitted Wave
(a)
Incident
Total Reflected
Plane Wave X Wave
X
—_ e - >
j\ o
Guided Wave z
Transmitted
Wave
(b)
Figure 6. Plane wave excitation and re-radiation of the wave

guided by a dielectric layer with periodically
modulated dielectric constant for the case: a) plane

‘wave incident from the right;

and b) plane wave
incident from the left.
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Section IV, it is shown that total reflection can be achieved, and that
the frequencies of total reflection can be predicted from the properties

of the leaky wave modes.

13



ITI. Formulation of the Reflection Problen

In this section we develop'the mathematical formalism for the re-
flection and transmission coefficients at a layer of a periodic dielec-
tric in a way that can be implemented on a computer for numerical evalua-
tion. The analysis is restricted to the case of TE polarization (E, = E,
= 0) but it can be readily extended to the TM polarization. Expressions
for the fields in the infinite periodic medium of Figure 2 are first
derived. Subsequently the scattering matrix for a single surface normal
to z, as shown in Figure 3, is found. Finally, network concepts are used
to join the scattering matrices for the two surfaces normal to z that are
shoﬁn in Figure 4, so as to obtain the reflection and transmission coef-
ficients for the layer.

A. Fields in an Infinite Periodic Medium

In studying the fields in the infinite periodic medium we use the
approach of Collin [11] and Lewis and Hessel [12] which expresses the
fields as a superposition of modes having different wavenumbers along z.
Assuming a time dependence exp(-iwt), the fields of the n-th mode have
dependence along z given by exp(+ix,z). Thus the only non-zero component
of electric field E,, and the z-component of magnetic field H, can be

Y
written as the sum of modal fields in the form

Ey(x,z) = I [A, exp(ikpz) + B, exp(-ixknz)] ep(x),

n=-«

(3)

Hy(x,2) = r [A, exp(ix,z) - B, exp(-iknz)] h,(x).
n=-—o .

Here e, (x) and h,(x) are the x-depeqdent mode functions while A, and By

are the modal amplitudes for waves propagating in the +z and -z direc-

14




tions, respectively.

Because each slab of dielectric has a homogeneous &, the mode func-
tions can be expressed in trigonometric form. We first define the wave-
numbers along z in the two dielectrics as

Un = (k12 = ‘nz)x'

(4)
(k22 - an)xl

<
]

where k12 = k°251 and k22 = kozez. We further define the impedances and

admittances for the dielectrics by

Zin = 1/¥3n = ong/uy, (5)
Zan = 1/¥yn = ong/vy.

Referring to the coordinate system in Figure 2, the mode functions

for -d4, < z < 0 are given by

e, (X) Vn cos(unx) + 1 Z1nln sin(unx),

(6)
hp(x)

In cos(unx) + i ¥Y1nVn sin(unx).

In the range 0 < z < d2, the mode functions are

]
<

e, (x) n cos(vnx) + i ZonIn sin(vnx),
(7)
hy, (%)

i
[l

n COS(vpx) + 1 Y,V sin(vnx).

The constants Vh and I, in (6) and (7) are defined using the Floquet

condition discussed below.
The Floquet condition requires that the fields at one end of a
period (z = -d;) differ from those at the other end (z = d,) by at most a

phase factor. Writing the phase factor as exp(1Syd), the Floquet condi-

15




tion is
en(dz) = en("dl) exp(isod), o
h,(dy) = hh(-d,) exp(ispd). e)
Substituting from (5), (6) énd (7) into (8) gives two homogeneous equa-
tions in the two unknowns V., and I,. . In order to have a non-trivial

solution of these equations, it is necessary for u, and v, to satisfy the

secular equation

cos Syd = cos(undl) cos(vndz)

+ [(up/vy) + (vp/uy)] sin(upd,y) sin(vpdy). . (9)

Since u, and v, are functions of xﬁ, (9) can be viewed as a relation
between x, and S;. As will be seen later, Sy = k, siné where 4 is the
angle of incidence in Figure 1. Thu§ (Qf serves as an equation whose
roots are the allowed values of x,, and represents the dispersion equa-
tion of the periodic medium. For large |n|, the roots are well ap-

proximated by

Kp = [kozea - (So+n2n/d)2]x, (10)
which holds even for relatively small values of |n|. From expression
(10), it is seen that only for small values of |n| will k, be real,
whereas higher-order solutions will be below cutoff along z.

When the dispersion equation (9) is satisfied, the ratio I,/V, can

be determined form (8). After some manipulation, it is found that
I, . cos(vndz) - exp(isod) cos(undl) (11)
Vn Zon sin(vndz) + 2, exp(iSyd) sin(undl)'

whereas I, can be found from (11) if Vn is known. The value of V, is

16




itself arbitrary and is usually obtained by normalizing the mode func-
tions. In this analysis, we use the normalization

d

2 .

°le(x)1? dax = 4. (12)

-dl
This normalization is carried out numerically during the computations, as
described subsequently.

Because of the Floquet condition, the mode functions e,(x) and h,(x)

are periodic functions of x multiplied by the phase factor exp(iSgx).

Thus we may write en(x) as the Fourier sum

en(x) = q_E ang exp(isqx), (13)

where

Sq = S¢ + g2r/d. (14)

Alternatively, the expansion coefficients apng can be found from the

integral
; 92
ang = 3 I ej(Xx) exp(—isqx) dx. (15)
-d
1
Substituting (6) and (7) into (15), we obtain after much manipula-
tion that
(1) (2)
where
(1) .
an = i { (Sq + ?n)[exp(isqdl)cos(undl) - 1] (17)
+ [up + (YnSg/up)lexp(iSgd;)sin(upd,))} /(uy? - qu)r
with

17




iunvn [cos(vndz) - exp(isod)cos(undl)]
Y, = . (18)
n unsin(vndz) + vnexp(isod)sin(undl)

(2) (1)
The quantity an in (16) is of the same form as that of an with u,
replaced by v,, and 4, replaced by -d, in (17).
The normalization (12) is equivalent to requiring
- 2 _
L lapgl® = 1. (19)

q=—¢

From (16) it is seen that the normalization condition (19) implies

= () (2,
Vo= (L |Jng - Ing 12175 | (20)
q=l—eo

Substituting expression (13) into (3) for Ey(x,z) and changing the
order of summation gives

EY(x,z) = 7 T [An exp(ixnz) + Bp, exp(—ixnz)] aqn exp(isqx), (21)
qs—a n=s-—wo
When applying boundary conditions at the surface z=0 in Figure 2, it
is necessary to consider the x component of magnetic intensity He(x,2z).
For the TE polarization, and using the Maxwell curl equations, it is
readily seen that H, can be found from the derivative with respect to z

of Ey. The resulting expression is

—iwpo Hy(x.2)

= ¥ I x5 [A, exp(iknz) - By exp(-ix,z)] agn exp(iqu). (22)

q=—eo n=-—w

18



Expressions (21) and (22) are used in the next section to find the scat-
tering matrix for a single interface z = 0.

B. Scattering at a Single Interface

A single interface at z=0 is depicted in Figure 3. The field in the
air region z < 0 consists of an incident plane wave propagating at an
angle 6 with respect to the z axis, and reflected plane waves correspond-
ing to the specular and higher space harmonics. We define

Sg = ky sin 9,
(23)
Co = k, cos 4,
and assume the incident electric field to be polarized along y with

amplitude E,. The electric field of the incident wave is then given by
E, exp (isox) exp(icoz). (24)

The electric field due to the reflected wave is the sum of the space
harmonics and takes the form

qi_w Rq exp(isqx) exp(—icqz), (25)

where Sq is given by (14) and
2 2
Cq = (ko - Sq )x. . {26)

For the conditions of interest here qu > k°2 for all q # 0 so that only
the fields of the specular (q = 0) space harmonic propagate away from the
interface, while the fields of all other space harmonics decay. The
amplitude coefficients Rq have yet to be determined.

From (24) and (25) the total electric field in the air region is

19




seen to be

EY(x,z) = ¥ [éqo E, exp(iC,z) + Rq exp(—icqz)] exp(isqx), (27)

= -0

where 6q0 is the Kronecker delta. The x component of magnetic intensity
in the air can be found from the derivative with respect to z of (27),

which yields

~ieng Hy(x,y)

q=§“cq [6q° E° exp(icoz) - Rq exp(-icqz)] exp(isqx). (28)
The boundary conditions at z=0 require that EY and H, be continuous
there. Equating the pair (21), (27) and the pair (22), (28), and making

use of the orthogonality of the functions exp (iqu) over a period, one
obtains

aquO + Rq = naz [An + B,] agn- (29)
Cq (aqozo - Rq) =n_2 ko [A, - B,] agn- (30)
In (29) and (30), n ranges over all positive and negative integers, so

that these equations represent two infinite sets of egquations.

We wish to solve (29), (30) for the amplitudes R, and A, of the

q
waves traveling away from the surface in terms of the amplitudes E, and

B, of the incident waves. 1In this way, we obtain the scattering matrix
of the surface. The waves incident from the periodic medium arise from

reflection at the second surface, as suggested in Figure 4. For the

20



conditions of interest, only one or two waves are propagating in the
periodic medium, while all other waves are cutoff along z. It can be
shown that the two propagating waves correspond to the indices n = -1, 0.
Since the two surfaces are separated by at least one half-wavelength, the
fields of the cutoff waves excited at one surface are exponentially small
at the other surface. Hence, to a good approximation we may assume B, =
0 for n # -1, 0.

While all the higher modes are excited in the air and in the pe-
riodic medium, the interaction at the two surfaces and radiation into the
air are described by the amplitudes Ry, Ay, A_y of the propagating waves.
Thus we ultimately need only the 3x3 portion of the full scattering
matrix relating Ro' Ag, A_y to Eo' Bg, B-l' This scattering relation

takes the form

s - — - 7

Rq $3,1 S1,0 S1,-1 Eo

Bo | = 180,21 So0,0 So,-1 Bo . (31)
A_y S-1,1 S-1,0 S.1,-1 B_4

L. . - d L o

To solve for the elements Sa’B in the scattering relation (31), we

first multiply (29) by C, and then add (29) and (30). Since B, = 0 for

q
n # -1,0, the resulting equation may be written in the form

2C0 aqo EO + (Ko - Cq) aoq Bo + (K_l - Cq) a_lq B_l
= I (kg + Cq) agn An. (32)
N=-—=co
Expression (32) represents an infinite set of equations with index q in

an infinite number of unknowns An.

The terms (xn + Cq) aqn can be viewed as elements of a matrix. With

21




this view, it can be shown that the elements decrease as one moves away
from the main diagonal. Thus it is reasonable to solve (32) by using a
finite truncation of the summation and a corresponding limitation on the
number of values of q considered. For the parameters chosen in this
study, it was found to be sufficient to allow q, n to range over the
integers -3, -2, -1, 0, + 1, + 2, With this truncation, (32) is solved
for A, with n= -3 ... +2. Returning to (29}, we then compute Rg from
, . .

Ro =z - EO +n 23 An aon + aoo Bo + ao’_l 3_1. (33)
- )

Collecting the resulting values of Ag, A_; and Ry due separately to E,,

B, and B_; gives the values of the scattering matrix in (31).

C. Scattering From A Periodic Layer

Having found the scattering matrix for a single surface (z = 0),
network concepts can be used to treat the interation with a second sur-
face at z = h, As discussed previously, the interations between the two
surfaces are essentially due to the propagating modes in the periodic
medium. For our case, these are the n = -1, 0 modes, which are shown in
the transmission line model for the interation shown in Figure 7. At the
surface z = 0 the incident waves E,, Bo and B_, couple to the scattered
waves Rg, Ag and A_,.

At the surface z = h, the incident waves in the layer are
Ay exp(ixgh) and A_,4 exp(ix_lh), while no wave is incident from the air
side. 1In this case, the scattered waves are T,, By exp(-ixgh) and
B_; exp(-ix_lh). The relation between scattered and incident waves is

again given by (31), which for the foregoing conditions takes the form

22
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To slll 31,0 Sll-l 0

Boexp(—ixoh) So'l So’o SO,-I Aoexp(ixoh) (34)

B_lexp(—ix_lh) S‘l,l S_l'o S_l'_l A_lexp(ix_lh)

For thé problem of scattering by a layer, the field E, is known and
one wishes to solve for the reflected and transmitted wave amplitudes Rg
and Ty, respectively. To this end, (31) and‘(34) can be viewed as six
inhomogeneous equations in six unknowns Ro, AO, A—l' BO' B—l' TO' Assum-
ing Ey,=1, the solution of these equations for R; and T, give the reflec-
tion and transmission coefficients of the layer. This approach has been
used as the final stage in our computer program, as discussed below.

D. Computer Program for Ry and T,

A program has been written in the PL-1 language to compute Ry and Tj
by the methods derived above. The listing of the program is given in

Appendix A. An outline of the program is given below.

1. Given input frequency o, angle of incidence 4, geometric parameters
of the layer d,, dy, h and the electrical parameters ¢, and’ez.
2. For integers n between -3 and 2, compute «, from (9) using Newton's

method with starting value given by (10).

3. For integers n, q between -3 and 2 compute Anq using (16)-(18) and
(20).
4. Using (32) and (33), solve for An (-3 < n <2) and Ro for Eo =1, BO

= B—l = 0. This gives the elements sl,l' 30,1' 5—1,1 in (31).
Repeat for Bg = 1 with Egy = B_1 = 0, and then for B—l = 1 with Eg =
By = 0 to get the remaining scattering coefficients in (31).

5. Using (31) and (34) with E; = 1, solve for Ry and T,.
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Several checks were carried out to ensure that the program was
working properly. Choosing &; and g5 very close to each other, we com-
puted Ro and Tp. As expected, they were very close to the values for a
homogeneous dielectric layer of value ¢5;. For values of &, and &, used
subsequently, it was found that the scattering matrix in (31) conserves

power. Finally it was observed that IROIZ +IT0|2 is very close to unity,

as required by power conservation.
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IV. Numerical Studies of Frequency Selective Reflection

Using the computer program described previously, we have carried out
numerical studies for several examples. The purpose of these studies is
to gain insight into the frequency selective behavior that can be ex-
pected for Ry and Ty, and to relate this behavior to wave processes in
the periodic layer. We have therefore arbitrarily chosen the angle of
incidence 6 = 45° and set d4; = d, = d/2.

For the initial studies, we have assumed &; = 2.56 and &, = 1.44,
which are realistic values for low-loss plastics. With these choices,
the average dielectric constant is €4 = 2. The perodicity d must now be
chosen such that, at the high frequency of interest, two modes (with n =
-1, 0) propagate  in the dielectric layers. Furthermore, only the spe-
cular (q = 0) space harmonic must propagate in the air.

A, Choice of d, h and frequency

The restriction on d needed to insure that only the ¢ = 0 spaée har-
monic propagates in the air can easily be interpreted with the help of
Figure 8a. The incident wave has wavenumber So = kg sin 8 < kg, along x.
Wavenumbers Sq of other space harmonics lie at a distance q(2n/4) away
from S,, as shown for q = -2, -1 and + 1 in Figure 8a. Provided that d
is small enough so that

kKo sin 8 - 2r/d < - kg, (35)
the q = -1 space harmonic will lie outside the visible circle defined by
s2 + ¢c2 = koz. It is further seen that, if (35) holds, all other space
harmonics will also lie outside the circle, so that Cq defined by (26) is

imaginary for q # 0, and the space harmonics decay away from the layer.

Provided that the modulation (eq - €5)/e54 is not too large, the concept
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of the visible circle can also be ﬁsed to estimate the number of propa-
gating waves in the layer. When the modulation is small, (10) can be
used as an estimate for «,, in which case the visible circle is given by
Sn2 + xn2 = kozea, as shown in Figure 8b. It is seen from this figure

that, for the two modes n= -1, 0 to propagate in the layer, 4 must satis-

fy
ko sin 0 - 4n/4d < —koJEE < ky, sin 8 - 27/4, (36)
kOJE; < ko sin 8 + 2=r/4.
Conditions (35) and (36) can be rearranged into the following in-
equalities:
d/2 < 1/(1 + sin 8),

1/(J&5 + sin §) < d/2 < 2/(J&5 + sin 9), (37)
a/2 < 1/(J&g - sin 9).

Assuming e¢; = 2 and 6 = 45°, these inequalities are d/12 < 0.586,
0.471 < d/2 < 0.943 and d/2 < 1.414, respectively. To satisfy these in-
equalities, we have chosen d/i2 = 0.54.

Initially a value of layer thickness h at which total reflection
will occur was obtained by computing Ry for various values of h/z.
Subsequently, it was found that values of h and d for total reflection
could be related via the conditions for guidance of a wave by a layer of
uniform dielectric constant ¢,. Whereas our ihitial approach gave us the
value of h/2 = 0.925 for sample calculations, it is the subsequent inter-

pretation that is discussed below.

28




B. Variation of R, With Frequency

Computations of the frequency dependence of R, have been made assum-
ing that h = 0.925 and 4 = 0.54 for ¢; = 2.56 and €5 = 1.44. This choice
produces total reflection for a frequency f such that 2 = c¢/f is about
unity. Note that, if h and d are scaled by A, then total reflection can
be obtained at any desired frequency. The results of the calculation for
IRyl are depicted in Figure 9, where we have used the normalized frequen-—
cy variable k;h = 2zfh/c, and have plotted up to the value kjh = 6.30 at
which the q = -1 space harmonic in air switches from cutoff to propagat-
ing along z.

For kjh < 5.12, only the n = 0 mode in the periodic dielectric is
propagating along z. In the frequency range O < kjh < 5.12 for single
mode propagation, Ry vanishes at the two frequencies kjh = 2.56 and 5.03,
at which «xph = 3.145 and 6.355. Thus, frequencies of total transmission
occur when the layer thickness is close to a multiple of one half the
effective wavelength along z, as predicted in Section II. The difference
between the values of xph for total transmission and 7, 2zn are due to the
non-zero phase of the transmission and reflection coefficients at the
individual surfaces z = 0 and h, which result from excitation of higher
cutoff space harmonics.

For kjh < 5.12, where the n = -1 mode also propagates along z in the
layer, total reflection takes place at two frequencies given by k,h =
5.32 and 5.83. In the vicinity of these frequencies for total reflec-
tion, the variation of IRg! is that associated with resonances wherein a
frequency dependent function has a real axis zero and a nearby pole at a

complex location.
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To examine the bandwidth of the total reflection resonance, we have
plotted IROI2 on an expanded scale in Figure 10. Since IROI2 + lT0l2 =
1, the curve can also be used to determine ITOI2 by using the vertical
scale to the right of the plot. The wider of the two peaks of IROI2 is
centered at kgh = 5.83. For this peak, the fractional bandwidth between
the frequencies at which IRol2 = 0.9 is 0.86%.

The narrower of the two peaks in Figure 10 is shown further expanded
in the insert. For this peak, the fractional bandwidth between the fre-
quencies at which IROI2 = 0.9 is less than 0.04%. By comparison, much
wider bandwidths are found for total transmission when the n = -1 mode in
the layer is cut off. For example, in a region about k,d = 2.56 in
Figure 9, a 40% bandwidth is found between the frequencies for which
IRg!2 = 0.1.

C. Prediction by Means of Guided Waves

The location of the frequencies of total reflection can be predicted
from the properties of the waves guided by the periodic layer. Consider
first the case of a wave guided along a uniform layer having dielectric
constant ¢,. The normalized propagation constant th of this guided wave
is plotted horizontally in Figure 5, versus the normalized frequency Kkgh,
which is plotted vertically. The lowest g = 0 guided wave mode starts at
the origin and becomes’asymptotic to the wavenumber koJ€; of the layer.
Higher guided-wave modes start at points kjh = gn(ey-1) along the 45°
line, where g =1, 2, 3

In Figure 11, we have repeated the plot of Figure 5, and have added

the dispersion curves for waves propagating in the negative x direction

(B < 0). We have also plotted as a broken line the transverse wavenumber
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Sgh = koh sin ¢ of the incident plane wave. Except at ksh = 0, the
broken line is never close to the dispersion curves for the guided waves.
As a conseguence, an incident plane wave cannot couple to the guided
waves on a uniform lavyer.

If the dielectric layer is made periodic along x, the field of each
guided wave mode becomes a sum of space harmonics. For the guided waves
traveling in the -x direction, the wavenumber of the q = -1 space har-
monic is (—Bg + 2n/d). When normalized by h, the dispersion curve of
this.space harmonic has the same form as -ﬁgh versué koh, except for a
shift 2zh/d to the right. While finite modulation affects the value 6f
Bg for the guided wave, for small'modulation of the dielectric constant
Bg is close to that for a uniform lavyer.

Dispersion curves for the'q = -1 space harmonics of the guided waves
in the small modulation limit are shown in Figure 12 for h/d4d =
0.925/0.54. We have also drawn a broken line representing Sjh versus
k,h. Intersection of the S h line with the dispersion curvers indicates
strong coupling between an incident plane wave and guided waves through
the @ = -1 space harmonic. Note that, above the dashed line having an
angle of -45°, the q = -1 space harmonic in the air propagates along z.
Thus for reflection and transmission of a single space harmonic, the
operating point along the S h line must be kept below the dashed line.
For the parameters used in drawing Figure 12, this condition implies that
kosh < 6.30 for one propagating space harmonic in air.

In Figure 12, the line S h intersects the dispersion curve for the g
= 0 guided wave at koh = 5.27, and for the g = 1 guided wave at koh =

5.72. These values are close to the values koh = 5.32 and 5.83 for total
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reflection (IROI=1) obtained from Figure 11. The deviation between the
values of kg h obtained from Figures 11 and 12 is thought to result from
the fact that the finite modulation of the dielectric constant of the
layer alters Bg from the value obtained for a uniform slab. Thus, de-
creasing modulation should bring the values closer together, while in-
creasing modulation should result in greater deviation. This latter
condition is shown subsequently.

To further demonstrate the relation between the frequencies of total
reflection and the guided waves of the layer, we have considered a layer
of increased thickness h = 1.1, but the same periodicity d = 0.54. The
dispersion curves of the g = -1 space harmonics of the first three guid-
ed;wave modes are shown in Figure 13 for the limiting case of small
modulation. The broken iine giving Sgh = k,h sin 8 is seen to intérsect
the three dispersion curves at ioh = 6.22, 6.67 and 7.30. Our model pre-
dicts that total reflection should take place at normalized frequencies
close to these values.

A plot of IRy! versus k,h for h = 1.1 and d = 0.54 is shown in
Figure 14. From this plot, total reflection is seen to occur at the
three frequencies k,h = 6.25, 6.78 and 7.42, which are close to those
predicted by the small modulation theory. The bandwidth over which IROI2
> 0.9 about each frequency of total reflection is seen to increase as k,h
approaches the value 7.50 where the line S h crosses the dashed line,
above which the n =‘-1 space harmonic propagates in air. The bandwidth
about the lowest of these frequencies is only 0.01%, while that of the

highest is 0.7%.
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C. Influence of Modulation

To explore the influence of modulation, we have computed the reflec-
tion and transmission coefficients for a layer with € =3 and ¢4 = 1.
This layer has average dielectric constant ¢, = 2, as before. We further
assume that d = 0.54 and h =0.925, as in the case of the results pre-
sented in Figures 10-12. A plot of IRy| versus normalized frequency koh
is shown in Figure 15. The variation of IRg! is seen to be gqualitatively
the same as that of Figure 10. The increased modulation is seen to shift
the first frequency of total reflectionh(lRol = 1) to kgh = 5.45 and the
second to kjh = 6.12, which are farther from the respective values 5.27
and 5.72 predicted by small modulation theory.

Besides shifting the frequency of total reflection, the modulation
influences the bandwidth. At the first total-reflection frequency, the
bandwidth for IROI2 2 0.9 is 0.001%. However, at the higher total re-
flection frequency, the bandwidth is 2.5%. The modulation is also seen

to have a small effect on the frequencies of total transmission (IROI=O).
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v. Conclusion

It has been shown that frequency selective reflection and transmis-
sion takes place at a periodically modulated dielectric layer. Frequen-
cies of total transmission and total reflection were found, and they can
be related to 'various wave phenomena. In the limit of small modulation,
these frequencies can be estimated from the app;opriate wave phenomenon
in a uniform layer having dielectric constant equal to the average of
that in the periodic layer.

In the range of low frequencies where a single space harmonic propa-
gates along z in the periodic dielectric, total transmission occurs when
the layer thickness h is one half the effective wavelength along z, i.e.,
when h = n/xo. For small modulation, kg = (sakoz—soz)x, where €54 is the
average dielectric constant. Total reflection can be achieved at those
higher frequencies for which two space harmonics propagate along z in the
periodic dielectric. These frequencies of total transmission are asso-
ciated with the excitation of leaky waves guided by the dielectric layer.
In the limit of small modulation, the frequency of total reflection can
be approximated from the dispersion characteristics of waves guided by a
uniform dielectric layer.

In the examples treated, the bandwidth over which IR0I2 > 0.9 about
the frequency of total reflection was found to be small. The largest
bandwidth obtained was 2.5%. While angle sensitivity was not computed,
the narrow frequency bandwidth suggests that, at the frequency of total
reflection, IR0|2 will be sensitive to the angle of incidence 9.

Whereas the study was carried out only for the TE polarization, the

form of the results have implications for the TM polarization. We expect
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that the frequencies of total reflection for the TM polarization are also
associated with the excitation of the leaky waves guided by the periodic
layer. However, the dispersion characteristics of the leaky TM waves
will differ from those of the TE polarization. As a result, it is ex-
pected that incident plane waves of the TE and TM polarizations will, in
general, experience total reflection at different frequencies.( Hence,

the periodic dielectric layer is expected to be polarization sensitive.
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Appendix A: Listing of Computer Program

1. //TEMNNFOF JOB (F109602,CHEO) , 'L.S5.CHED"

2. // EXEC FPLIXCLG .

3. //PLIL.SYSIN DD *

4, TEMODE: FROCEDURE OPTIONS (MAIN) ;

4.1 /% FINAL FROGRAM FOR TE MODE WITH ONE AND TWO */

4.2 /#* FROFAGATION MODES */

S. /% GAMA(-1) CAN BE EITHER REAL OR IMAGINARY */

5,2 JRFREREEREEREEERRERRARRERRE AL AR R AR A XA L XXX F AR LR R/

.3 /# INSTRUCTION FOR DATA ENTRY : */

5.4 /# THE FIRST DADA CARD ENTRY ORDER IS : */

5.9 /* D,D1,D2,E1,E2,LAMTA,DEGREE ,H */

3.6 /% THE SECOND DATA CARD IS FOR VALUES OF M AS : */

S.7 /% M=—6,-5,~4,-3,-2,-1,0,1,2,3,4,5 */

5.8 JRE RN T e R URI RN U EENRREREHREREEERERFECERREREER SRR/

b. /% CONSIDER V(-6:5),U(~6:5), SN{(-6:5) AS ARRAYS */
7. /% X1 = U/V, U IS REAL , V CAN BE REAL OR IMAGINARY %/
8.

9. / * */
10. /% FIND A ROOT NEAR UO=S0O OF THE FUNCTION */
i1. /¥ F(U) = O BY NEWTON'S METHOD , TO SIX DIGIT */
12. /% ACCURACY. */
13. /* */
15. /% THIS FROGRAM COMBINES TEMNNFO, RTLCOMF,AND RTLGAUS */
16. DCL (AA(1:8,1:11),X(1:3,1:8)) FLOAT ;

16.01 /% AA IS THE COEFFICIENT MATRIX FOR GAUSS EL.IMINATION */
16.02 /% AND X IS THE SOLUTION VECTOR OBTAINED */
16.03 /% FROM THE GAUSS ELIMINATION METHOD FROCEDURE */
16.1 /% */

16.2 /% MATRIX MN(M,N), EXCEPT PRINTING PART FOR ALFHA*/

16.3 /* SUMJREAL ,SUMJIMAG, SUMJ1J2 ARE ELIMINATED. %/

16.4 /&% *xx/

17. DCL (5,85,U, (U1,U2) (-6:5) ,EPSILON) FLOAT DEC;

18. DCL (V,SM) (-6:5) FLOAT ,

19. (k,KMAX) FIXED DEC;
20. DCL (UD1(-6:5) ,RTRDZ,D2,D1,D,50,SGRTR) FLOAT 3
21. pCL (El,E2,K0,S50D,UR,RU,S5UM1,SUM2,R(-6:5)) FLOAT ;

22. pcL (A,R,TERM,FI,SMD(-6:5) ,GAMAIN,GAMA(-6:5)) FLOAT ;
23. DCL M FIXED (4,0)INITIAL(-5);

24. DCL (Y,YR,YI,Y1,Y2,Y3,Y4,YMAG) (-46:5,-6:5) FLOAT ;
28. DCL (JiR1,J1R2,J1R3,J1R4,J1R) (-4:3,-6:5) FLOAT:;

26. DCL (J1I1,J112,J113,J114,J11) (-6:5,-6:3) FLOAT;

27. DCL (J1,J2) (-6:5,-6:3) FLOAT;

28. DCL (J2R1,J2R2,J2R3,J2R4,J2R) (-6:5,-6:5) FLOAT;
29. DCL (J211,J212,J213,J2I4,J21) (-6:5,-6:3) FLOAT:

Z0. DCL (SUMJ1J2,SUMIR,SUMJII) (-6:5,-6:9) FLOAT:

31. DCL (AMN,AMNR,AMNI ,MN,MNR,MNI) (-6:5,-6:5) FLOAT;

32. DCL SUML. (-6:3) FLOAT ;

33. DCL (ALFPHA,CN,COSVD2,SINVDZ) (-46:5) FLOAT;

I4. DCL <(UMD1,SND,SNDt,SND2,VMD2) (-6:S) FLOAT;

35. DCL (COSHVDZ,SINHVD2) (-6:5) FLOAT;

35.01 DCL. (TR,TI)(ZF,-2:1) FLODAT (&)

35.02 DCL. (SCATR,SCATI) (-2:1,-2:1) FLOAT (&)

35.03 DCL (ROR,ROI) (1:3) FLOAT (&) ;
35.04 DCL (LAMTA ,DEGREE , THETA,KO02,RATIO) FLOAT;

35.041 DCLAN,I,J,F) FIXED(S,0) ; :

35.05 DCL (RTLR(4,4) ,RTLI(4,4)) FLOAT;

35.06 DCL (AB(12),CD(12)) FLOAT ;
395.07 DCL GAMAO_1H FLOAT ;3 /% GAMA(Q) *GAMA(—1)%*H */

35.08 DCL GAMAOQZH FLOAT; /% 2%GAMA (Q) *¥H */

I5.09 DCL GAMA 12H FLOAT: /% 2#GAMA(-1)*H %/

44




I8.1

35.11
I6.
6.1
6.2
37.
37.1
37.2
37.%
37.31
37.32
37.4
7.5
37.46
7.7
7.8
7.9
8.
39.
39.1
4G,
41.
42.
43,
44.
4S.
46.
47.
47.1
48.
49.
Sa.
S1.
S2.
33.
S4.
SS.
Sé6.
S7.
58.
59.
S9.1
60.
61.
&2,
63,
b4,
65.
66.
&7.
68.
69.
70.
71.
72
73>
74.
7S.
74,
77.
78.
79.
80.
81.
8z2.
83.

/ *
/*®
/%
/%
/*
/%

DCL. GAMAOH FLOAT ; /% GAMAC(D)*H =/

DCL GAMA_1H FLOAT; /% GAMA(—1)%H */

DCL (LL)Y FIXED(Z,0);
DCL FLAGZ FIXED(Z,0);

DCL (RREAL ,RIMAG,RFRIMER,RFRIMEI) FLOAT;
DCL (CDISC,GAMAD) (-6:5) FLOAT;

DCL (EB2R,B21,B3R,E3I) (~4:5) FLOAT:

DCL H FLOAT 3

DCL (MM,NN,FIVOT,RS) FIXED (S5,0) ;
DCL(TOR,TOI, TMINUSIR, TMINUS1I} FLOAT;:
DCL (RAES ,RFHASE , RFRABS ,RFRFHASE) FLOAT;

MM=NO. OF COLUMNS % NN=NDO. OF ROWS IN MN(N,M) */
MATRIX IN PROGRAM TEMNNFO */
IF PIVOT=1 THEN THE PFPIVOT IS SUESCRIBED, */
RS=NO. OF RHS OF THE AUGMENTED COEFFICIENT MATRIX#*/
IN THE FROCEDURE GAUSS{(ELIMINATION METHOD */

*/

/% DEFINE THE FUNCTION F(X)
F : PROCEDURE (U,M) ;
DCL U FLOAT ;

DCL M FIXED(4,0) ;

CALL CHECKR(U,M) ;
S=COS (UD1 (M) ) #A—0. S*SUM1*SIN(UD1 (M) ) *B—COS (SOD) ;

RETURN(S) 3
END F;
/%
/% DEFINE THE 1ST DERIVATIVE OF F(X)
FPRIME: PROCEDURE (U,M);
DCL U FLOAT ;

DCL M FIXED (4,00
DCL (TERM1i,TERM2,TERM3 ) FLOAT:

CALL CHECKR (U,M) ;
TERMi =—D1*SIN(UD1 (M))*A-D2%COS (UD1 (M)) *B*#UR ;
TERM2=-0.5%SUM2*SIN (UD1 (M) ) *B ;
TERMI==0.5*SUM1% (D1%COS (UD1 (M) ) *B+TERM) ;
SS=TERM1 + TERMZ + TERM3 ;

RETURN (SS) ;
END FPRIME;
/% PROCEDURE TO CHECK THE SIGN OF R=Ux*2-KO#**2% (E1-E2)
VL
CHECKR : PROC (U,M);
DCL U FLOAT ;
DCL M FIXED(4,0);

UDL(M) = U * DI ;

R(M) =Un#2-KOx#2% (E1-E2) ;

SERTR = SERT(ABS(R(M))) ;

RTRDZ = S@RTR*D2 ;

RU = S@RTR/U

UR = U/SERTR

SOD = SO # D 3

IF R(M) > O THEN

s me wa

DO ;

A = COS(RTRD2) : /¥ WHEN R = O %/

B = SIN(RTRDZ) ;

SUML = RU + UR ;

SUMZ = 2/SERTR-RU/U-UR**2/SERTR ;

TERM = D2*SINUDIL (M)) *A 3

END /% END OF R>QO CASE =/
EL.SE

DO ; /% WHEN RO */

A = COSHRTRD2) ;

B = SINH(RTRD2) ;

SUMi = UR - RU ;

SUMZ = 2/SERTR+RU/U + UR#*#2/SEORTR

TERM = —D2#*SIN(UDL (M))*A ;

END = /7% END QF R<O CASE */
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84. END CHECKR H /#% END OF CHECER FROCEDURE #%/

85. / *
86. FLAG=1

87. ON ENDFILE(SYSIN) FLAG=0j;

88. /% MAIN FROCEDURE */
ae. FI = 3.141S6 ; EPSILON=1.0E—-06; KMAX=S0 ;

0. GET t15T(D,D1,D2,E1,EZ,LAMTA,DEGREE,H) ;

F0.1 KO = 2%FPI/LAMTA ; :

0.2 PUT SKEIF;

F0.21 IF LAMTA=1.0 THEN

90. 3 FUT SKIF EDIT('TE MODE WITH TWO FROFAGATION MADES")
90.301 (X(5),A);

90.31 ELSE

90.311 DO ;

90.32 FUT SKIP ;

90.33 PUT SKIP EDIT('TE MODE WITH ONE PROFAGATION MQDE )
90. 34 (X(5),A)

P0.35 END ;

0.5 PUT SKIP EDIT (REFPEAT(’#°,40) ) (X(S),A);

0.6 FUT SKIF EDIT¢('D=',D, Dil=',Dil, 'D2=°,D2, 'THETA=',DEGREE)
0.7 (X(S),4 (A,F(9,3),X(4)));

90.71 FUT SKIF EDIT('El=",El, ‘E2=',EZ, 'LAMTA=",LAMTA, "KG=" k)
90.9 (X(5) ,4 (A,F(8,5) ,Xt));

F0.91 FUT SKIF;

90.911 FUT SKIP EDIT( H=",H) (X(5) ,A,F(8,4));

90.92 PUT SKIF EDIT(REFPEAT( %’ ,50)) (X(5) ,A):

90,93 PUT SKIF ;

91. CALL INPUT(M);

92. LLOOP: DO WHILE (FLAG=1) 3

3. CALL CALCULATE (M)

94, CALL PRINT (M) ;

95. FLAGZ2=1;

6. CHECK1: DO WHILE (AES ( (U2 (MY-UI (M)) /U1 (M)) *=EFSILON %
96.1 FLAGZ=1)

97. IF K<=KMAX THEN DO;

98. Ul (M) =U2(M);

99. CALL CALCULATE (M) ;

100. CALL PRINT (M);

101. END;

102. ELSE DO;

103. FUT SKIF(2) EDIT('FAILS TO CONVERGE ') (A);
104, FLAG2=0;

105. END;

106. END CHECK1;

107. PUT SKIP(2);

108. PUT SKIF(2) EDIT('R=",R(M)) (X(5) ,A,E(14,6));

109. IF R(M) < O THEN

110. PUT SKIF(2) EDIT('V IS IMAGINARY ') (X(5) ,A);

111, V(M) = SERTR ;

112, PUT SKIP(2) EDIT('V(M)=",V(M) (X(5) ,A,E(14,6));

113. GAMAIN = KO%%#2#EL1—UZ2 (M) ##2 ;

114, PUT SKIP(2) EDIT( KO*%2%E1-U2#%2=",GAMAIN) (X(5) ,A,E(14,6
115. IF GAMAIN < O THEN

116. FUT SKIF(2) EDIT('GAMA IS IMAGINARY ') (X(5),A);

117. GAMA (M) = SORT (ARS (GAMAIN) ) 3

118. FUT SKIF(2) EDIT( 'GAMA=",GAMA (M)) (X(S),A,E(14,6));
119, IF FLAGZ=1 THEN CALL OUTPUT(M); .
120. CALL INFUT (M);

121. END LOOF;

122, /* y
127, /% TO COMFUTE UM*D1,VM*D2,SN#D1,SN#D2Z,SN*D *#/

124, /% TO COMFUTE COS(VMDZ) ,COSH(VMDZ) ,SIN(VMDZ) ,SINH(VMDZ) %%/

125, . /*********************************************************/

126. LOOPM : DO M=-6 TO 5 ;

127. UMD1(M) = UZ(M) % D1:
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128. VMD2(M) = V(M) * D2 3

129. SND1 (M) = SM{M) * D1 ;

120, SND2 (M) = SM(M) * D2 ;
C131. SND(M) = SM{M) * D ;

32, SINVDZ (M) = SIN(VMDZ(M));

133. SINHVDZ2 (M) = SINH((VMDZ(M)) ;

134, COSVDE (M) = COS(VMDZ2(M))> 3

135, COSHVD2 (M) = COSH(VMD2{M));

136. END LOOPM ;

137. P R T S S SR LR PR LR L L
138. /% TO COMPUTE Y (M,N) #EAREAREHEFHEXEXFEEAFREEEXERERERREARARRA/
139. /* */
140. LOOPYM : DO M= -6T0O S ;

141. LOOFYN =« DO N = -6 TO S ;

142. Y1(M,N) = COS(UMD1 (M)) *SIN(SND(N)});

143, Y4 (M,N) = SIN(UMDI (M)) * SIN(SND(N)) /UZ(M);

144. IF R(M) » O THEN

145. DO 3

144. T(M,N)=SINVDZ (M) /V (M) +SIN(UMD1 (1)) #*COS (SND (N) ) /UZ (M) 3
147. Y2 (M,N}=COSVD2 (M) —COS (UMD1 (M) ) *COS (SND {(N) } 3

148. END;

149. ELSE

150. DO ;

151. Y3 (M,N)=SINHVD2 (M) /V (M +SIN(UMD1 (M) ) #COS (SND (N) ) /UZ (M) 3
132. Y2 (M,N)=COSHVDZ (M) —COS (UMD1 (M) ) *COS (SND (N) ) 3

133. END ;

154. B T R e e R R E At Lt
15S. /% TO COMPUTE ABS(Y (M,N) *%2) *%/
156. /% TO COMFUTE REAL AND IMAGINARY FART OF Y: YR, YI »*¥%/
157. YMAG (M,N) =YZ (M, N) #%#2+Y4 (M,N) #%2 3

158. YRM,N)=(Y1 (M N)#YZT(M,N) +Y4 (M, N) Y2 (M, N) ) /YMAG (M, N) ;
159. YI(M,N)=C(Y2(M,N)#YI(M,N)=Y1(M,N)*Y4 (M, N))/YMAG (M, N) ;
160. END LOOPYN ;

161. END LQOFYM ;

162. /36 36 336 I 6 I I T H I I I T I I I TSI I I I I I KNI I KN/
163. /% TO COMFPUTE J1(M,N) */
164. /% REAL AND IMAGINARY PART OF JI : JiR, J1II */
164.1 PUT SKIP ;

165. LOOPJIM ¢« DOM = -6 TO 5 3

166. DON = -6 TQO S ;

167. JIR1 (M,N)=YI (M,N)*(1-C0OS (UMD1 (M) ) #*COS(SND1 (N) )} 3
168. JIR2(M,N) = (SM(N) +YR (M,N) ) *COS (UMD1 (M) ) *SIN(SND1 (N)) ;
169. J1IRI (M,N) = (U2 (M) +SM (N) #YR (M,N) /U2 (M} ) *COS(SND1 (N) ) 3
170. J1IR4 (M,N)=SIN(SND1 (N) ) *SM(N) *YI (M,N) /U2 (M) 3

171. JIRMM,N)=(J1IR1 (M,N) -JIR2 (M N) +SIN(UMD1 (M) ) *

172. (JIRS(M,N) —=J1IR4 (M N) ) /(U2 (M) #%2-GM (N) #%2) 3
173, J1I1 (M,N)=(SM(N)+YR(M,N))*(COS(UMD1 (M) ) *COS(SND1 (N))—-1)3;
174, J1I2(M,N)=YI (M,N) *COS (UMD1 (M) ) *SIN(SND1 (N)) ;

175. J1I3(M,N)=SM(N)*YI (M,N)*#C0OS (SND1 (N)) /U2 (M) ;

176. J1I4 (M,N)=SIN(SND1 (N))* (U2 (M) +SM(N) *YR(M,N) /U2(M)) ;
177. JITMN=(JL1T1 (M N} -J1I2(M,N)+SINUMD1 (M) ) *

178. (JIIZM,N)+JL1I4 (M, N) ) )/ (U2 (M) #%#2—-SM(N) #%2) ;
178.1 END ;

179. END L.00PJ1M;

180. P L R L L L v R R Y I S I I A R I R e Y
181. /% TQ COMPUTE J2(M,N) */
182, /% REAL AND IMAGINARY FPART OF J2 : J2R, J2I */
182.1 FUT SKIPF;

183, LOOFJI2M = DO M = -5 TO 5

184, DON=-5T0 S5 ;

185. JZR4 (M N) =SM (N) #Y I (M, N) *SIN(SND2 (N) ) /V (M) 3

186. JRIT(M,N) =SM(N) *#YI (M,N)*COS(SNDZ(NJ) /V (M)

187. IF R(M) *>O THEN

188. . NO;

189. ) J2R1 (M N)Y=YI (M,N) # (COSVDZ (M) #*COS (SNDZ2 (N) ) —1)
190. J2RZ (M. N =(SM(N) +YR(M.N) ) #COSVD2Z (M) *SIN(SND2 (N) ) 2
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191.
192.
193,
194.
195,
194.
197.
198.
199.
200.
201.
202

203.
204.
205,
206.
207.
208.
209.
210.
211,
212,
212.1
213,
214,
215.
216.
217.
218.
219.
220,

221.

27
Ll

223.
224.
225.
226.
227.
228.
229,
230.
231.
232,
233.
234.
235.
235. 1

236.
261.
262.
262.
262.
262.
263.
264.
265.
265.2
265.3
266.

267.

268.

268.1
268.2

M))
268.3

AR -

J2RTIMGNY = (VM) +SM M) YR (M NY /V (M) ) #*COS (SNDZ (M) ) 5
JR2RM,NY = (J2R1T (M, N) =J2R2 (M, N) +SINVDZ (M) =
(J2RZ (M GNY +J2RE (M,N) D) /A (V (M) ##2-GM (N %%2)
JRIL MG N) = (SM (N} +YR(M,N) ) #* (COSVDZ (M) #COS (SND2 (N) ) ~1) 5
J2UI2M N =COBVD2 (M) *SIN(SNDZ2 (N) ) #YI (M,N);
214 (M,N) =SIN(SND2 (N) ) * (Y (M) +SM (N) *YR (M, N) /V(M) ) ;
J2I(MyN) =(-J2T1 (M,N)=J212 (M, N)+SINVDZ (M) *
(JRIZ(M,N)-J2I4 (M ,N) )/ (V (M) #%2-SM (N) #%2) ;
END ; /#END OF R(M) > O FOR J2 COMFUTATIONS #*%x/
ELSE
DO ;
J2R1(M,N) =Y I (M,N)* (COSHVD2 (M) *COS(SND2(N))~1)3
J2R2(M,N) = (SM(N) +YR(M,N) ) *COSHVDZ2 (M) *SIN(SNDZ (N) )
J2RI(M,N) = (~V (M) +SM(N) #*YR (M, N) /V (M) ) #COS (SND2 (N) )
J2R (M, N) == (J2R1 (M,N) =J2RZ2 (M, N) +SINHVD2 (M) ¥
(J2RZ (M, ND) +J2RE (M,N) )Y /7 (V (M) #%24+SM(N) #%32) 3
J2I1(M N =(SM(N) +YR (M ,N) ) % (COSHVD2 (M) #*COS (SND2 (N) ) ~1) 3
J2I2(M,N)=COSHVD2 (M) *SIN (SNDZ2 (N) ) *#YI (M,N) ;
J2I4(M,N)=SIN(SND2(N) ) # (=Y (M) +SM(N) *YR (M N} /V(M) ) ;
J2I M, ==(~J2T1 (M,N)~J2I2 (M,N) +SINHVDZ (M) * (J2IZ (M,N)
=J2I4(M,N) )/ (VM) $%2+SM(N) %%2) ;
END 3 /% END OF R(M) <= O FOR J2 COMFUTATION * %%/
END
END LOOFRIZM ;

an can

/3B e e W I K e B I I I I3 I F I W e I I e I I I U I B I I T I I I W NN
/* ’ */
/% TO COMFUTE SUMJ1J2 */
/% REAL AND IMAGINARY PART OF SUMJ1JZ2 : SUMIR , SUMJI */
SUMIJM : DO M= -5T0 S ;
SUMIN : DON = -5 TO S ;
SUMIJR(M,N)=J 1R (M,N) +J2R(M,N)
SUMJI (M ND=J1T(M,N)+J2T (M,N) ;
SUMJ1J2(M,N) =SUMIR (M N) #%#2+SUMJII (M,N) #%2 ;
END SUMJIN;
END SUMJM g
/%#x%%%% TO COMPUTE ALPHA(M), M=—-4 TO S AP WA I NN/
/% TRUNCATE INFINITE SUM TO SUM SUMJLJ2(M,N) */
/%* */
ALFA DOM=-85T0 S ;
SUML (M)=0 : PUT SKIP :
SUMLL : DO LL = -5 TQO S ;
SUML (M) = SUML (M) + SUMJ1J2(M,LL) 3
END SUMLL;
/xex#x TO COMPUTE ALPHA (M) WA N RN/
/* */
ALPHA (M) = SERT (SUML (M));
PUT SEIP EDITC( ALPHA( M, ") =" JALFPHA(M)) (X (S) ,A,F(2,0) ,A,E(12,5)
END ALFA;
/%% TO COMPUTE CN(N),GAMA(M) ,AND MN(N,M) M,N = -6 TO 5 #**x/
/%% *%/
PUT SKIP;
PUT SKIP EDIT(REPEAT ("% ,40)) (X(3) 4A);
FUT SKIP;
LOOFCN: DO N = -5 TO S;
CDISC(N) = KO##2—-SM (N) #%2 ;
CN(N) = SERT(ABS(CDISC(N)));
FUT SKIP EDITC('CN(C’ N, )=",CN(N), ‘CDISC(" ,N, "Y=",CDISC{N))
(X€(3),2 (A,F(3,0) ,A,EQ12,9) ,X()));
END LOOFCN ;
GAMADM: DOM=-5T0 S ;
GAMAD (M) = K O*#2%E1—-U2 (M) #%2 ;

GAMA (M) =SART (ABS (GAMAD (M) ) ) 3
PUT SKIF EDIT('GAMAC(’ M, ")=",GAMA(M) , "GAMAD (" ,M, ") =" BAMAD (

({32 (AF(3I,0).AE(12,5) . X(2))) e
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269. END GAMADM ;

270. LOOFPAMN: DO M = -5 TO 3;

271. LOOPMNA = DON = -5 TO S ;

272. AMNR (M, N) =SUMJIR (M,N) /ALFPHA (M) 3

273. AMNI (M N)=SUMJI I (M,N) /ALFHA (M) ;

274. IF CDISC(N) » O & GAMAD(M) > O THEN .

275. CASELl Do ; o

276. MNR (N,M) = (CNN)+GAMA (M) ) #AMNR (M, N) 3

277. MNI(N,M) = (CN{N)+GAMA (M) ) *AMNI (M,N) 3

278. END CASE1 ;

279. ELSE

280. CASEZ2 : IF CDISC(N) < O & GAMAD(M) > O THEN

281. DO;

282. MNR (N,M) = GAMA (M) *AMNR (M,N) —CN (N) *AMNI (M,N) ;

283. MNI (N, M) = CN(N)*AMNR (M,N) +GAMA (M) *AMNT (M, N) ;

284. END 3 /h%x CASEZR *%%%/

285. ELSE

286. CASET : IF CDISC(N) > O % GAMAD(M) < O THEN

287. : DO ;

288. MNR (N, M) =CN (N) #AMNR (M, N) -GAMA (M) *AMNTI (M, N) 3

289. MNI (N, M) =GAMA (M) *AMNR (M, N) +CN (N> *AMNI (M, N) 3

290. END 3 /x%%x CASE T =x#%%/

291. ELSE

292. CASE4 : DO ;

293. MNR (N, M) == (CN (N) +GAMA (M) ) *AMNI (M,N) ;

294. MNI (N,M)=(CN(N) +GAMA (M) } *AMNR (M,N) ;

295. END CASE4 ; '

295.1 END LOOFMNA ;

295.2 END LOOFPAMN 3

296. /%% TO FRINT REAL AND IMAGINARY PART OF MATRIX MN(M,N) %%/
297. /#% z MNR(M,N) AND MNI(M,N) : M , N = -6 TO S *H/
298. / %%E% *H¥%/
299. PUT SKIP;

300. PUT SKIF ;

301. PUT SKIFP EDIT(REPEAT (%’ ,585)) (X(3),A);

302. PUT SKIP EDIT('FRINT VALUES OF MNREAL AND MNIMAG )
303. (X(&),A) j;

J04. PUT SKIP EDIT(REPEAT (%’ ,535)) (X (3) ,A);

303. MNFRINT: DO N = -5 TO S ;

J05.1 FUT SKIP;

306. FUT SKIP EDIT('N=",N) (X(7) ,A,F(3,0)) 3

307. FUT SKIP EDIT (REPEAT('%*°,10)) (X(S) ,A);

308. PUT SKIF 3

309. FUT SKIP EDIT( M’ , "MNREAL ', "MNIMAG ) (X(3) ,A,2 (X(5),A(10)))
310. PUT SKIP

3it. NMFRINT: DO M = -3 TO S;

312. PUT SKIP EDIT(M,MNR(N,M) 4MNI (N,M)) (X(2),F(2,0),2 E(15,5));
313. END NMPRINT;

314. END MNPRINT ;

314.01 /%% TO COMPUTE RIGHT HAND SIDES VECTORS FOR T(II) AND #*¥%x%%%x/
314.02 /%% T(III) ,B2 AND B3 ,REAL AND IMAGINARY PARTS EX 222 ¥4
314.03 /% B2 (N)=(GAMA(O)-CN(N) ) *AMN (O ,N) , N=1,0,-1,-2 *ERRN)
JF14.04 /% B3I (N)=(GAMA(-1)—-CN(N))*AMN(-1 ,N), N=1,0,-1,-2 s Y4
314.05 /e E2 T X X 4
214.06 LOOFEB2 : DON =1 TO -2 BY -1 ;

314.07 IF CDISC(N) > O THEN

IF14.08 DO ;

314.09 B2R (N) = (GAMA (Q) ~CN (N) ) *AMNR (O ,N) 3

J14.1 B2I (N) =(GAMA (O) ~CN{(N) ) *AMNI (O, N) 3

Z14.101 END

314.102 ELSE

314.103 DO j; .

314.104 B2R (N) =GAMA (0) *AMNR (0, N) +CN (N) #*AMNI (O ,N) ;

314.105 E21 (N) =GAMA (0) *AMNI (O ,N) ~CN (N) *AMNR (O ,N) 3

314.106 END : END LOOPEZ
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314,107
=14.108
T14.109
314,11
T14.12
314,13
z14.14
14,15
T14.16
314.18
I14.181
314.19
T14.191
T14.197
T14.193
F14.194
T14.195
T14.196
T14.197
T14.198
T14.199
T14.2
I14.201
T14.21
I14.22
14,23
T14.24
I14.25
I14.26
T14.27
T14.28
T14,29
T14.3
314.31
314.32
314.33
314.354
314.35
T14.36
314,361
T14.37
T14.3
314,39
T14.4
T14.41
314,42
I14.47
314.44
314.45
T14.46
314.47
314,48
Z14.49
314.5
314.51
F14.52
314,53
I14.54
T14.55
T14.56
T14.57
z15.
T16.
317.
z18.
T19.

LOOFBEZ: DO N=1 TO -2 BY ~1; /% BIZ(N) FOR REAL % IMAGINAGRY GAMA{(-1)#/
IF CDISC(N) = O & GAMAD(—1) = O
THEN DO ;
BIR(N) = (GAMA (—1) —CN (N) ) *AMNR (=1 ,N) ;3
B3I (N) =(GAMA (—~1)—-CN(N) ) *AMNL (-1 ,N) ;
END ; /% C(N) 2% GAMA(-1) ARE BROTH REAL */
ELSE .
IF CDISCI(NY < © % GAMAD(-1) » O
THEN DO ;
BIR (N) =GAMA (—1) #AMNR (-1 ,N) +CN (N> #AMNI (-1 ,N) 3
BEZI (N) =GAMA (~1) *AMNI (~1 ,N) ~CN (NJ *AMNR (-1 ,N) 3
END ; /% END OF C(N) IMAGINARY % GAMA(—-1) REAL */
ELSE
IF CDISC(N) » O % GAMAD(~1) < ©
THEN DO ;
BIR (N) =— (GAMA (—1) *AMNI (=1 ,N) +CN (N) #*AMNR (=1 ,N) }
B3I (N)=GAMA (—1) *AMNR (=1 ,N) —CN (M) #AMNI (-1 ,N) ;
END ;5 /% C(N) REAL % GAMA(-1) IMAGINARY #*/
ELSE
DO g
JR(N)=(CN(N)-GAMA (~1) ) *AMNI (~1 ,M) ;
FIN)=(GAMA(—1)—CN (N) ) #AMNR (-1 ,NJ ;
END ;3 /7% C(N) % GAMA(~-1) ARE BOTH IMAGINARY %/
END LOOPE3I ; /% END COMPUTING B2 AND BZ #/ .
/%% TO FRINT EZR(N),B2I (N) ,BIR(N) ,AND BII(N), N=1,0,-1,-2 %%/
/% %%/
FUT SKIP ;
FUT SKIP ;
PUT SKIF EDIT(REFEAT ("% ,53)) (X(3),A) 1
PUT SKIP EDIT( 'PRINT REAL AND IMAGINARY FART OF B2 &RI )
(X(6) ,A);
FPUT SKIP EDIT(REPEAT ('%°,55)) (X(3),A) ;
PUT SKIP ;
PUT SKIP EDIT('N’, ‘B2REAL’, 'B2IMAG’, 'BIREAL ', 'BIIMAG ")
(X(3),A,4 (X(3),A10))) ; '
PUT SKIP ;
FRINTB: DO N = -2 TO 1 ;
PUT SKIP EDIT(N,B2R(N) ,B2I (N) ,BIR(N) B3I (N))
(X(2),F(2,0),4 E(15,5)) ;
END PRINTE; /%% END PRINTING B2 AND B3I %%/
/%% PRINT AMNR (M,N) ,AMNI (M ,N): M,N = =& TO S %¥%%E®%%%%/
/%% %%/
FUT SKIP;
FUT SKIP ;
FUT SKIF EDIT(REPEAT( '#°,50)) (X(3),A);
PUT SKIP EDIT('PRINT VALUES OF AMNREAL AND AMNIMAG ‘)
(X(6) ,A);
PUT SKIP EDIT (REPEAT( %' ,55)) (X(3),A);
FRINTAM: DO M = -5 TO S ;
PUT SKIP ;
PUT SKIP EDIT( 'M=",M) (XA7),A,F(3,0)) ;
PUT SKIP EDIT (REPEAT('#*‘,10)) (X(5),A) ;
FUT SKIP;
FPUT SKIP EDIT('N’, AMNREAL ', AMNIMAG')
(X(3),A,2 (X(S5),A(10)));
FUT SKIFP;
PRINTAN: DO N = =5 TO S ;
FUT SKIF EDIT(N,AMNR (M,N) ,AMNI (M,N))
) (X(2),F(2,0),2 E(15,5)) ;
END FRINTAN ;
END PRINTAM ;
/-l'**'l'%********************************************-***********/
/% SUBROUTINE TO INFPUT DATA */
INPUT: PROC(M);
DCL M FIXED (4,0);
GET LIST (M):
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20 k=0

I21. ) FI = 3.14156 ;

I22. THETA = FI % DEGREE/180. ;

I23. : SO = KO *SIN(THETA)

I24. SM(M) = SO + M*2xPI/D ;

325. FOZ = (D2/D) #KO**2% (E1-E2) 3

I26. UL (M) = SERT(SM(M) **2+K02) . 3

I27. IF FLAG=1 THEN DOj '

328, FUT SKEIF (2) ;

I29. FUT SKIFP(2) ;

I3I0. FUT PAGE EDIT( 'NEWTON' 'S METHOD ) (X (10) ,A);

331, PUT SKIP(2); ‘

I32. FUT SKIP(2) EDIT( #%*TE MODE *%%°) (X (10) ,A);

IIE. PUT SEIF(2) ;

I34. FUT SKIF(3Z) EDIT( INITIAL VALUES ‘) (X(10) ,M);

I35 FUT SKIFP (2):

I36. FUT SKIF(Z) EDIT('M=',M) (X(5) ,A,F(4,0));

337. FUT SKIF EDITC ' UL(M)= *,Ul (M)}, EFSILON= ',EFSILON,
z38. "EMAX= L EMAX) (X(S) ,2(A,EC12,5) ,X(5)) ,A,F(Z,00)
339. FUT SEIF(S) EDIT( UL, U2, FJLY ', "F’ (Ul ",

Z40. THU2-ULE, CCOUNT 3 (X (D) ,A,X(12) ,A, X (1M ,A,
I41. X(7),A,X(8) ,A,X{2),A);

I42. END;

I43, RETURN;

za44, END INPUT;

F45. /* */
I464. /% SUBROUTINE TO FERFORM CALCULATION */
347. CALCULATE: PROC(M)

348. DCL M FIXED (4,0) ;

T49, U2 (MY =U1 (M) =F (U1 (M) ,M) /FPRIME (U1 (M) ,M) 3

350. M=k+13

3S1. RETURN;

3s2. END CALCULATE;

IS3E. /% */
354, /% SUBROUTINE TO PRINT TABLE x/
355. PRINT:PROC (M)

386, DCL M FIXED(4,0);

357, PUT SKIP EDIT(UL (M) ,U2(M) ,F(U1(M),M) ,FPRIME (U1 (M) M),
3s8. ABS (U2 (M) -U1 (M)) ,K)

359. (S(E(12,5) ,X (1)) ,F(2,0));

360. : RETURN;

J61. END PRINT;

362. /% */
363. /% SUBROUTINE TO PRINT FINAL RESULTS */
T4, QUTPUT: PROC (M)

I65. DCL M FIXED(4,0) ;

366. FUT SKIP(S) EDIT('APPROXIMATE ROOT U2= " ,U2(M),

367. ‘FLU2)= C ,F(U2(M) (M)) (A,E(14,7) ,X(5),A,E(14,7));
368. RETURN;

3469, END OUTPUT;

369.01 /%* TO COMPUTE SCATTRING MATRIX SCAT */
369.02 /% CONSTRUCT COEFFICIENT MATRIX AA FROM MATRIX MN(N,M) */
T69.03 MM= 8;

269.04 NN= 8 ;

T69.041 AAIL: DO I = 1 TO NN/2

369.042 AAJL: DO J =1 TO MM/2;

269,047 AA(T ,J)=MNR(2-1,2-J);

T69.044 AACT ,J+MM/2) =—MNI(2-1,2-3);

269.045 END AAJL

369.046 END AAIL ;

269,05 PIVOT= 1.0 ;

369.06 RS= 2 ;

369.11 AAIZ2: DO I = NN/2+1 TO NN ;

369.12 AAJ2: DD J = 1 TO MM/2 ;

369.13 AA (I.J)=MNI (NN/2+2-1,2-J)
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T69.14 AACT , J+MM/2) =MNR (NN/2+2~1 ,2-J) 3

369.15 END ARAJZ2

I69.16 END AAIZ ;

269.21 RHS1: DO I = 1,2 TD NN ;

T69.22 AACT ,MM+1) =0 3

F69.23 END RHS1 3

369.24 AA(2,MM+1) =2%CN(O) 3

F69.25 /% END OF RHS1 COLUMN o */

369.29 RHS2ZR: DO I = 1 TO NN/Z2 ;

I69.31 AA(T JMM+2) =B2R(2-1) 3

269.32 AACT , MM+3)=BIR(2-1)

T69.3T END RHSZ3IR ;

369.34 /% END OF RHS2 COLUMN OF AUGMENTED MATRIX IN GAUSS FROC.*/
369.35 RHS2ZI: DO I = NN/2+1 TO NN ;

369.36 AACT ,MM+2)=RB2T (MM/2+2-1) 3

369.37 AA(I MM+3) =B3T (MM/2+2-1)

369.372 END RHS23II ;

I469.38 /# END OF RHSZ COLUMN OF AUGMENTED MATRIX IN GAUSS FROC. */
369.39 CALL GAUSS (AA,MM,NN,FIVOT,RS,X);

369.4 /% INVOKE GAUSS ELIMINATION TO COMPUTE SCATTERING MATRIX =/
400. GAUSS: FROC (AA,M,N,PIVOT,RS,X) ;

404. /* . ) */
407. /%  GAUSSIAN ELIMIMATION WITH OR WITHOUT FIVOTINMG. */
408. /% ANSWERS ARE THEN SUBSTITUTED BACKE INTQO THE */
409. /#+ ORIGINAL EQS. WITH MULTIFLE RHS VECTORS. */

410. /* . */
456. DCL (AA(#,%) ,X(*,%)) FLODAT ;

457. DCL (M,N,FIVaT,RS) FIXED(S,0) ;

459, START: BEGIN;

460, DCL (AC{M,N+RS) ,BB(M,N+RS) ,HOLD (N+RS) ,SUM) FLOAT (&),
461. XX (RS ,N) FLOAT (&) INIT((RS#*N)G);

462. /% INFUT AUGMENTED MATRIX */
463. CALL INFUT1;

464. /7% CONVERT TO UPPER TRIANGULAR MATRIX */
465. CALL UFPTRI;

466. /% BACK SUBSTITUTE */
467. CalLL BACKSUB;

468. CALL QUTFPUT1;

449, /% PUT ANSWERS BACK IN ORIGINAL EQUATIANS */
470. CALL TESTi;

477, /% */
478. /% SUBROUTINE TO INPUT AUGMENTED MATRIX */
479, INPUT1: PROC;

480, PUT PAGE EDIT( 'GAUSSIAN ELIMINATION ) (X (28) ,A);
481, IF PIVOT=1 THEN PUT SKIP EDIT( ' WITH PIVOTING")
482, (X(31) ,A);

483. ELSE PUT SKIF EDIT('WITHOUT FIVOTING ) (X(30) ,A);
484, PUT SKIP EDIT('FOR ' ,M,’ BY ', N,  MATRIX ')

485. (X(29) ,A,F(2,0),A,F(2,0) ,A);

486, FUT SKIP EDIT('WITH',RS, 'RIGHT HAND SIDES‘)

487. (X(29) ,A,F(3,0) ,X(2),A);

488. PUT SKIFP(S);

489. DO I=1 TO M;

490, DO J=1 TO N+RS;

491. AC(I,I)=AA(1,d) ;

492, FUT EDIT(AACI ,,J)) (X(1) ,F{8,2));

493, BR(I,J)Y=AC(I,J);

494, END;

493, FUT SKIP;

494, END; ;

497, RETURN

494, END INFUTL;

499 . /* */
500, /%  SUBROUTINE TO PRINT MATRIX */
S01. PRINT: PROC;

S02. FUT SKIP(S):
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303,
304.
S035.
S506.
S07.
508.
509.
S10.
S11.
S12.
S15.
S14.
g15.
S16.
317.
Si8.
519.
S20.
521.
S22.
523.
S24.
525.
S26.
927.
S28.
329.
530.
g31.
532.
533.
534.
93S.
S536.
537.
538.
S539.
540.
S41.
S42.
S543.
S44.
S45.
S46.
S47.
548.
549.
550.
S51.
552.
553.
S54.
555.
556.
557.
558.
559.
S60.
Sé6l.
Sé61l.
D62,
SeI.
S564.
SéS.
Sb6é6.
867.

DO I=1 TO ™Mj
DO J=1 TO N+RS; :
FUT EDIT(AC(I J)) (X (1) ,F(B8,3));
END; .
FUT SKIFjg
END;
RETURN;
END FRINT;
/*

*/

/% SUBROUT. CONVERTS MATRIX TO UFFER TRIANGULAR #*/

UPTRI: PROC:
DO K=1 TQ M-1i;
IF PIVOT=1 THEN CALL FIVOT1;
DO I=K+1 TO M;
RATIO = AC(I,K)/AC (K,K)
DO J=K TO N+RS;

AC(I,J)=AC(I,J)-RATIO*AC(K ,J);

END:
END3;
END;
RETURN;
END UPTRI;
/% SUBROUTINE TO USE PIVOTING
PIVOT1: FROC;
F=K;
DO I=k+1 TO M;

IF ABS (AC(P,E)) < ABS(AC(I,EK)) THEN F

END3
IF P*=K THEN DO;
DO J=1 TO N+RS;
HOLD (J)Y=AC (K ,J);
AC (K ,J)=AC(P,J) s
AC(P,J)=HOLD(J) s
ENDj;
ENDj;
RETURN;
END PIVOT1;
/% .
/% SUBROUTINE TO BACK SUBSTITUTE
BACKSUB: PFPROC;
DO Kk = 1 TO RS ;
DO I=N TO 1 BY(~1)3%
SUM=C3
DO J=I TO Mg
SUM=SUM+XX (K,J)*AC(1,J) 3
ENDg
XX (K, I)=(AC (I ,N+K)-SUM) /AC(I,I);
ENDj
END
RETURN;
END BACKSUB;
/%
/% SUBROUTINE TO PRINT ANSWERS
OUTPUT1: PROC:
PUT SKIF(S) EDIT( ANSWERS ) (X(Z4),A);
PO J =1 TO.RS 3

PUT SKIF EDIT ('SET’,J) (X(20),A,F(3,0));

PUT SKIF;
DO I=1 TO Nj
X (I, D) =XX(J, 1) 3

I;

FUT SHIF EDITC X ,d, ", 51, 0= ", XX(I, 1))
(X(28) ,A,F(2,0) ,A,F{2,0) ,A,F(9,6));

END;

END 3

RETURN;
END OUTPUTI:
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s68. 7z " */

569. /%  SUBROUTINE TO FUT ANMSWERS BACK IN ODRIGINAL */
S570. /% EQUATIONS */
571. TEST1: FPROC;

S72. FUT SKIF(Z) EDIT

S73. ("ANSWERS PUT IN ORIGINAL EQUATIONS ) (X(21) ,A);
574. DO kK = § TO RS ;

573. FUT SKIF EDIT ('SET L E) (X(29) ,A,F{2,0));

S76. FUT SKIF;

577. DO I=1 TO M;

578. PUT SEIP;

a79. SUM=03

580. FUT SKIP EDITC(" ‘) (X(1),A);

S81. DO J=1 TO Nj

s82. SUM=SUM+BB(I,J) XX (i,Jd) s

583. FUT EDIT(EBRB(I,J), ' X(',J,°)

584. (F(9,3),A,F(1,0) ,A);

S85. IF J<N THEN FUT EDIT('+ ") (A);

586. ELSE IF J=N THEN PUT EDIT('= ") (A);

s87. END;

o88. FPUT EDIT(SUM) (F(9,3));

589. ENDg

589.1 END 3

S90. RETURN;

S591. END TESTI1:

591.1 END START ;

591.2 END GAUSS ;

S92. /% */
592.1 CALL LOOPT; /% PROCEDURE TO COMPUTE T VECTORS */
g92.2 /% TO FRINT OUT T VECTORS FROCEDRE CALL */

g92.F CALL PRINTT;

592. 4 CALL INNER ; /% FROCEDRUE TO COMPUTER DOT FRODUCT =/
592.5 CALL SCATTER; /% PROCEDURE TO COMFUTE SCATTERING MATRIX*/
592.6 CALL RTL 3 /% PROCEDURE TO COMPUTE RTL MATRIX */
S93. /* PROCEDURE TO COMPUTE T VECTORS */

g94. /% TR AND TI ARE REAL AND IMAGINARY FART OF T VECTORS */
593. /% */
S96. LOOPT: FROC;

S97. DO K =1 TO 3 ; -

598. DON=1TC -2 BY -1 ;

S99. TR, N =X (K ,2-N) 3

&600. TI(K,NY=X(K,6~-N)3

601, END;

602. END;

603. RETURN;

604. END LOOPT

605. /% PRINT T VECTORS, TREAL AND TIMAGINARY */
606. /% */
607. FRINTT: FPROC;

&08. PUT SKIP;

609. PUT SKIP EDIT(REPEAT ('#*’ ,53)) (X(3) ,A);

&10. PUT SKIP EDIT('PRINT T VECTORS FOR N = 1,0,-1,-2 ')
611. (X(7),RA);

612. FUT SEIP EDIT(REFEAT('*‘,55)) (X(3),A);

613. PUT SKIP ;

b14. DD ¥ = 1 70 3 ;

61S. ’ PUT SKIF;

616. FUT SKIP EDITC K=" ,K) (X(10) ,A,F(3,0));

617. FPUT SEIP EDIT (REFEAT (%7 ,10)) (X (5) ,A);

&618. FPUT SEIF;

b619. FUT SEIF EDITO'N', "TREAL ", "TIMAG ") (X (7) ,A,2 (X (4) A1) ));
620, FUT SKIF:

621. DO N = -2 TO 1 ;

622. FUT SKIP EDIT(N,TR(K,N) ,TI(K,N)) (X(5) ,F(Z,0),2 E(15,5));
&23. PUT SKIP;:

&24. END;:
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625,
626.
&627.
&28.
629.
&30,
631,
&633.
&34.
635.
&36.
637.
638.
639.
&40,
641,
642,
643,
644,
645,
a6,
647.
648.
649.
&30.
&51.
652,
653,
654,
685.
696.
657 .
658.
699.
660.
661,
662,
663,
&64.
b64.
663.
666.
&67.
&68.
&69.
670,
671.
&72.
673,
674,
675.
676.
&677.
678.
679.
680,
631.
682,
HBZ.
£834 .
6835,
&86.
687.
&88.
689.

END;
END PRINTT;

/% FROCEDURE TO COMFUTE INNER FRODUCT OF AMN AND T MATRICES*/

/%
INNER : PROC;
DO K = 1 10 = ;
ROR(K) = O3
ROI(GD = 0 ;
DO N=-27T01 ;
ROR (K) =ROR (kD) +AMNR (N, O) # TR (K ,N) —AMNT (N, O) #TI (k,N)
ROT (KD =ROTI (k) +AMNI (N, O) # TR (K N) +AMNR (M, 0) #TI (K N) 3
END ;
END;
ROR(1)=ROR(1)-13
ROR(2) =ROR(2) +AMNR (0, O) 3
ROI (2)=R0OI (2)+AMNI (0,0);
ROR (3) =ROR (3) +AMNR (-1 ,0) 3
ROI (3)=ROI (F) +AMNI (-1 ,0) ;
/% FPRINT INNER FRODUCT OF AMN(N,O)AND T (K ,N) */
/% */

PUT SKIP;
FPUT SKIP EDIT (REFEAT (% ,35)) (X (7),A);
FUT SKIP EDIT( 'RO,INNER FRODUCT OF A 2% T')(X(5),A);
FUT SKIP EDIT(REFPEAT (' #',55)) (X(7),A);
PRINTRO: DO I =1 70 3
FUT SKIP EDIT( 'ROREAL( ,I, )=',ROR(I), ROIMAG( ,1,")
ROICII) (X(10) ,2 (X(2),A,F(2,0) A E(12,9)));
END PRINTRO
END INNER ;
/% END ON INNER FRODUCT FROCEDURE #*/ :
/% PROCEDURE TO COMFUTE SCATTERING MATRIX %/
SCATTER: PROC;:
LOOPSCL ¢ DO J = -1 TO 1 ;
SCATR(1,J)=ROR(2-J) 3
SCATI(1,0)=RAI{(2-J);
END LOOPSC1:
LOOPSC2: DO I = 0,-1 ;
DO J = -1 TO 1 ;
SCATR(I,J}=TR(2-J3,1);
SCATI(I,J)=TI(2-J,1);
END 3
END LOOPSCZ2;
/% PRINT SCATTERING MATRX SCATREAL, SCATIMAG FARTS #*/
/» */
PUT SKIP;
PUT SKIP EDIT(REFPEAT( #°,55)) (X(3),A);
PUT SKIP EDIT( PRINT SCATTERING MATRIX SCAT‘)
(X(10),A4);
PUT SKIP EDIT(REPEAT('#‘,55)) (X(3),A);
PUT SKIP;
DO K=-1TO 1 ;
PUT SKIP;
FUT SKIP EDIT( 'K=',K) (X(10) ,A,F(2,0));
PUT SKIP EDIT(REFEAT( %’ ,10)) (X(5) ,A);
FUT SKIP;
DON= -1 TO 1 ;
FUT SKIF EDIT('SREAL( " ,N, ", K, )=",SCATR(N,E),
‘SIMAGC N, ", "k, ")=",8CATI (N,k))
(X(3),2 (X(2),A,F(Z,0) A, F(2,0) ,A,E(12,9)));
END 3
END
RETURN:
END SCATTER;:
/+ COMPUTE COEFFICEINT MATRIX RTL, AND THE RHS VECTOR#*#%/
/% OF THE SYSTEM OF EQUATIONS TO SOLVE R,R’,T(0), AND %/
/% T(-1) */
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&0 .
691.
692,
693,
694.
6935.
&96.
697.
&98.
&99.
700.
701.
702,
703,
704.
703,
706.
707.
708.
709.
710.
711,
712,
713,
714.
715.
716.
717.
718.
719.
720.
721.
722.
723.
724.
725.
726.
727.
728.
729.
730.
731.
732.
733.
734.
73S.
36.
737.
738.
739.
740.
741.
742.
743Z.
744.
745.
746.
747.
748.
749.
750,
731,
752,
753.
754.

7355.

/o

RTL

*

/%

/*
/*

/%

/*
/ *

/*

/ *

wx/
FROC:
RTLR(1,1)=1.0
RTLR(Z2,2)=1.0
DO I =2 70 4
RTLR(I,1)=03
END ; ‘ /% RTLR(2,1)=RTLR{(3,1)=RTLR(4,1)=0 #/
DO I =1, ZTO 4 ; ’
RTLR(I,2)=03 /% RTLR(1,2)=RTLR(3,2)=RTLR(4,2)=0 %/
END
DO I =1 T0O 4 ;
RTLI(I,1)=0 ;
RTLI(I,2)=0 ;
END ; /% RTLI(T,1)=RTLI(1,2)=0,I=1,2,3,4 */
END OF DEFINING RTL MATRIX INITIALIZATION */
GAMAOH=GAMA (0) *H ;
GAMA_1H=GAMA (—1) #H
GAMA_ 1 2H=2*GAMA_1H
GAMAOZ2H=2#GAMAOH ;
GAMAOQ _1H=(GAMA (0) +GAMA (—1) ) #H ;
TO COMPUTE RTL(1,3) */
REAL & IMAGINARY FARTS OF S(1,0)#S(0,0) % S(1,-1)#5(-1,0) =%/
DOI =0 70 -1 BY -1 ;
AB(1-I)=SCATR(1,I)*SCATR(I,0)-SCATI(1,I)*SCATI(I,q)
CD(1-1)=SCATR(1,I)*SCATI(I M +SCATI(1,I)*SCATR(I,O)
END ; /% END OF DEFINING AE(1) ,AB(2),CD(1), % CD(2)
RTL(1,3) */
IF GAMAD (~1) > © THEN
Do ; /% RTLL(1,3), WHEN GAMA(-1) IS REAL =/
RTLR(1,3)=-(AB (1) *COS (GAMAOZH) ~CD (1) *SIN (GAMAOZH)
+ AR(2) #COS (GAMAO_1H) -CD(2) *SIN(GAMAO_1H) ) ;
RTLI(1,3)=-(AB(1)*SIN(GAMAOZH) +CD (1) ¥COS (GAMAO2H)
+ AB(2) *SIN(GAMAOC_1H) +CD(2) *COS(GAMAOQ_1H) ) ;

“an as cas

a3 cae

A cae e
~

END ;
ELSE
DO 3
RTLR(1,3)=CD (1) *SIN(GAMAOZH) ~AB (1) *COS (GAMAOZH)
+EXP (-GAMA (-1) ) *(CD (2) *SIN (GAMAOH) —AB (2) *
COS (GAMAOH) ) 3
RTLI(1,3)=-(AB (1) *SIN(GAMAOZH) +CD (1) *COS (GAMAOZH)
+EXP (-GAMA (—1)) # (CD (2) *SIN(GAMACOH) +AER (2) #C0S (GAMAOH) ) ) 3
END;
TO COMPUTE RTL(1,4) */
REAL % IMAGINARY PARTS OF S(1,0)%5(0,-1) & S(1,-1)*%S(~1,-1) %/
DO I =0 T0 -1 BY -1 ;
AB(3-1)=SCATR(1,1)*SCATR(I,-1)-SCATI(1,I)*SCATI(I,~1);
CD(3-1)=SCATR(1,1)*SCATI(I,-1)+8SCATI(1,I)*SCATR(I,~1);
END ;
RTL(1,4) */
IF GAMAD(~1) » O THEN
DO ; /7% RTL(1,4) WHEN GAMA(-1) IS REAL */
RTLR(1,4) =~ (AR (J) *COS (GAMAO_1H) —CD (3) *SIN (GAMAO _1H)
+AE (4) #*COS (GAMA_12H) —CD (4) #SIN(GAMA_12H) ) ;
RTLI(1,4)=-(AR(3)*SIN(GAMAOQ _1H) +CD (3) *COS (GAMAO _ 1 H)
+AEB (4) *SIN(GAMA_12H) +CD (4) #COS (GAMA_12H))
END .
ELSE
DO ; /* RTL(1,4) WHEN GAMA(-1) IS IMAGINARY */
RTLR (1,4)=EXF (~GAMA(—1) ) * (CD (3) *SIN (GAMAOH) —AK (T)
*COS (GAMADOH) ) ~AR(4) *EXP (-GAMA_12H) ;
RTLI(1,4)=-EXF (~GAMA (-1) ) * (AR () *SIN(GAMAOH) +CD (=)
*«COS(GAMAOH) ) -CD (4) #EXF (-GAMA_12H) 3
END ;
TO COMFPUTE RTL(2,3) AND RTL(2,4) *%/
RTLR(2,3)=—(SCATR(1,0) *COS (GAMAOH) —SCATI (1,0) *SIN(GAMAOH) ) ;
RTLI(Z2.3)=-(SCATR (1.0) *SIN(GAMAOH) +SCATI(1.0) *C0OS (GAMAOH) ) =
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754. IF GAMAD(—1) > O THEN

757. DO ; /% RTL(2,4) WHEN GAMA(-1) IS REAL #/
758. RTLR(2,4) =— (SCATR(1,-1) *COS (GAMA_1H) ~SCATI (1,-1) %

759. SIN(GAMA_1H) ) ;

760. RTLI(Z,4) == (SCATR(1,-1)*SIN(GAMA_1H) +SCATI {1,-1)#C0S (GAMA_1H))
761. END :

762. ELSE

763. DO ; /% RTL(2,4) WHEN GAMA(-1) IS IMAGINARY %/

764. RTLR(2,4) =—EXP (—GAMA_1H) *SCATR (1,-1) ;

765. RTLI(2,4)=—EXP (-GAMA_1H) *SCATI (1,-1);

766. END ;

767. /% TO COMFUTE RTL(3,3) %/

768. /% REAL % IMAGINARY PARTS OF S(0,0)#%¥2 % S(0,-1)*S(~1,0) =/
769. DO I = O TO -1 BY -1 ;

770. AR (S-1)=SCATR (0, I)*SCATR(I,0) —SCATI(0, ) *SCATI(I,O) ;

771. CD(S—1)=8SCATR(Q,I)*SCATI(I,0)+SCATI(O,I)*SCATR(I ,0);

772. END ; /% END OF COMPUTING REAL % IMAGINARY FARTS OF SCAT */
773. /% RTL(3Z,3)  */

774. IF GAMAD(-1) » O THEN

775. DO ; /% RTL(3,3) WHEN GAMA(-1) 1S5 REAL */

776. RTLR(3,3) =—AB (5) *COS (GAMAOZH) +CD (S) *SIN (GAMAOZH)

777. —AE (&) *COS (GAMAO_1H) +CD (&) *SIN (BAMAO_1H) +1 3

778. RTLI(3,3) =—(AB(S) *SIN (GAMAO2H) +CD (S) *COS (GAMAOZH)

779. +AB (6) #*SIN(BAMAC_1H) +CD (&) *COS (GAMAD_1H) )

780. END ;

781. ELSE

782. DO : /% RTL(3,3) WHEN GAMA(-1) IS IMAGINARY %/

783. RTLR(3,3) =1-AB(S) *COS (BAMAGZH) +CD (5) #*SIN (GAMAO2H) ~EXF (~GAMA_1H
784. * (AR (6) *CAS (GAMAOH) —CD (&) *SIN (GAMAOH? ) ;

78S. RTLI(3,3) =—AR (5) *SIN (GAMAOZH) —=CD (S) *COS (GAMAOZH)

786. ~EXP (=GAMA_1H) * (AE (&) *SIN (GAMAOH) +CD (&) #COS (GAMAGH) ) 3
797. END

788. /% TO COMPUTE RTL(3,4)  #/

789. /% REAL % IMAGINARY OARTS OF S(0,0)#5(0,-1) % S(Q,-1)*S(-1,-1) */
790. DO I =0 TO -1 BY -1 ;

791. AB(7-1)=SCATR (0, 1) *SCATR(I,~1)~-SCATI(Q,I)*SCATI(I,—1);
792. CD(7-1)=8SCATR(0,I)*SCATI(I,-1)+SCATI(0,I)*SCATR(I,~1);
793. END ;

794. /% RTL(3,4) %/

79S. IF GAMAD(-1) > O THEN

796. DO /% RTL(3,4) WHEN GAMA(-1) IS REAL */

797. RTLR(3,4) =~ (AB (7) #COS (GAMAO_1H) =CD (7) #*SIN (GAMAO_1H)

798. +AB (8) #COS (GAMA_12H) —CD (8) #*SIN (GAMA_12H)) ;

799. : RTLI(3,4)=—(AB(7) *SIN(GAMAO_1H) +CD (7) *COS (GAMAO_ 1 H)

800. +AB (8) *SIN (GAMA_12H) +CD (8) #C0OS (GAMA_12H) ) ;

801. END ;

802. ELSE

8073. DO ; /% RTL(3,4) WHEN GAMA(-1) IS IMAGINARY #/

804. RTLR (3,4) =EXP (~GAMA_1H) * (CD (7) *SIN(GAMAGH) —AB (7) *COS (GAMAOH) )
80S. -EXP (—GAMA_12H) *AR(8) ;

806. RTLI (3,4)=—EXP (~GAMA_1H) * (AB (7) #*SIN(GAMAOH) +CD (7) *

807. COS (GAMAOH) ) —CD (8) *EXP (-BAMA_12H) :

808. END ;:

809. /% TO COMPUTE RTL(4,3) %/

810. /% REAL % IMAGINARY PARTS OF S(=1,0)#5(0,0) % S(-1,-1)}%S(=1,0) */
811. DO I =0 TO -1 BY -1 ;

812. AE(9-1)=8CATR(~1,1) *SCATR(I,0)-SCATI (-1,1)*SCATI (I, ;
8173. CD(9-1)=BCATR(—1,1)*SCATI (I,0)+SCATI (1, 1) *SCATR(I,0) 3
814. END

81s. /% RTL(4,3)  #/

816, IF GAMAD(~1) » © THEN

817. DO ; /% RTL(4,3) WHEN GAMA(—-1) IS REAL */

a18. RTLR (4,3) =~ (AB(9) *COS (GAMAO2H) ~CD (9) *SIN (GAMAO2H)

819. +AE (10) *COS (GAMAO 1H) ~CD (10) *SIN(GAMAO 1H) ) :
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820, RTLI(4,2)=—(AB(9) *5IN (GAMADZH) +CD (F) *COS (GAMAOTH)

a821. +AE (10) *SIN (BAMAD_1H) +CD (10) #COS (BAMAO_1H) ) ;
a22. END ;

823, ELSE

824. DO ; /% RTL(4,3) WHEN GAMA(-1) IS IMAGINARY #*/

82s. RTLR (4 ,7) =—-AB (9) #C0OS (GAMAOZH) +CD (9) *SIN (GAMAOZH)

826. —EXF (-GAMA_1H) * (AE (10) *C0OS (BAMAOH) —CD (10) *SIN (BAMAGH) ) 3
827. RTLI(4,3)=—AB(9) *SIN (GAMAOZH) ~CD (9) *COS (GAMAOZH)

828. —EXP (~GAMA_1H) # (AR (10) *SIN (GAMAOH) +CD (10} *COS (BAMACH) ) 3
829. END ;

830. /% TO COMPUTE RTL(4,4) %/

831. /% REAL % IMAGINARY PARTS OF S(=1,0)#S(0,=1) & S(-1,-1)%%2 %/
832. DO I =0 TO -1 BY -1 ;

833. AB(11-1)=SCATR(~1,1) *#*SCATR(I,-1)-SCATI(~1,I)*8CATI(I,~1);
824. CD(11~1)=SCATR(~1,I1)*SCATI(I,~1)+SCATI (~1,I)*SCATR(I,—1);
83s. END ;

836. /% RTL(4,4) %/

8z7. IF GAMAD(-1) > O THEN

8. DO ; /% RTL(4,4) WHEN GAMA(-1) IS REAL %/

839. RTLR(4,4) =— (AB (11) *COS (BAMAO_1H) =CD (11) *SIN (BAMAG_1H)

840. +AR (12) *COS (GAMA_12H) ~CD (12) *SIN (BAMA_12H) ) +13;
841. RTLI(4,4)=—(AB(11)%*SIN(GAMAO_1H) +CD (11) *COS (GAMAO_1H)

B4z. +AR (12) *SIN(GAMA_12H) +CD (12) *COS (GAMA_12H) ) 5
843. END ;

844. ELSE

845. DO ; /% RTL(4,4) WHEN GAMA(-1) IS IMAGINARY %/

846. RTLR (4,4) =1-EXP (-GAMA_1H) * (AB(11) *COS (GAMAOH) —CD(11) #

847. SIN(GAMAOH) ) ~EXF (~GAMA_12H) *AB (12) ;

848. RTLI(4,4)=—EXP (~GAMA_1H) # (AB (11) *SIN (GAMAOH) +CD (11) *
849. COS (BAMAOH) ) ~EXP (~GAMA_12H) #CD (12) 3

850. END ;

851. /% END OF COMPUTING COEFFICIENT MATRIX RTL FOR SOLVING %/
g852. /% R AND RPRIME, T(0O) AND T(-1) IN A SYSTEM OF EQUATIONS %/
853. /% TO PRINT ELEMENTS OF RTL MATRIX %/

854. FUT SKIP ;

8ss. PUT SKIP EDIT(REPEAT('*°,55)) (X(3),A) 3

gseé. FUT SKIP EDIT( 'PRINT COEFFICIENT MATRIX RTL) (X(10),A);
857. PUT SKIP EDIT(REFEAT (% ,55)) (X(3),A) ;

8s8. PUT SKIP ;

8s9. DOI =1 TO 4 ;

860. . PUT SKIP;

861. PUT SKIP EDIT('I=",I) (X(10),A,F(2,0));

862. PUT SKIP EDIT(REPEAT('%°,10)) (X(S),A) ;

863. PUT SKIP ;:

864. DO J =1 TO 4 ;

865. PUT SKIP EDIT('RTLR(’,I,",",d, )=",RTLR(I,J), RTLIC',I,",",
866. J, )= RTLICI,d))

867. (X(5),2 (X(2),A,F(2,0),A,F(2,0) ,A,E(12,5)));
868. END ; /% END OF PRINTING RTL(I,J) FOR I,J = 1 TO 4 %/

868. 1 END ; /% END OF PRINTING RTL(I,J) FOR I,J = 1 TO 4 */
869. END RTL ;

898. /% TO COMPUTE R,RFRIME,T(0) ,AND T(-1) */

904. MM=8

905, NN= 83

906. PIVOT= 1;

907. RS=1 ;

08. AAII1: DO I=1 TO NN/Z;

909. AAJJ1: DO J= 1 TO MM/Z;

910. AA (I, J)=RTLR(I,J);

911. AA (T, J+NN/2) =—RTLI (I,J) 3

911.1 END AAJJL ;

912, END AAIIL;

914, AAIIZ: DO I= NN/2+1 TO NN ;

915. AAJJI2: DO J= 1 TO MM/2 ;

916. AA(L,J)=RTLI (I-NN/2,J);

917. AA(I.J+NN/2) =RTLR (I-NN/2.J) :
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918.

?19.

20,

?21.

P22,

Q2.

924,

2S.

P26.

927.

?28.

929.

230.
1042,
1044,
1045.
1046,
1047.
1048.
1049,
1050.
1051.
1052.
1053,
1054,
1055.
1086.
1057.
1088.
1059.
1060.
1061.
1062.
1063.
10464,
1065.
104664,
1067.
1068.
1069.
1070,
1071.
1072.
1073.
1074.
1078%.
1076.
1077.
1078.
1079.
1080.
1110.
1111.
1112,
1113,
1114,
11185.

1116.

END AAJJZ;

END AAIIZ;
/% RIHGT HAND VECTOR FOR THE SYSTEM OF EQUATIONS %/
/% TO SOLVE FOR R, RFRIME, T(0),% T(-1) */

AA(1,MM+1)=SCATR(1,1);
AA (S ,MM+1)=SCATI(1,1);
AA (2, MM+1) =0 3
AA (6,MM+1) =0 3
RHSCAT: DO I = 3 TO NN/2;

AA (T ,MM+1) =SCATR (3~1,1) ;

AA (I+NN/2,MM+1) =SCATI (3-1,1) ;

END RHSCAT

CALL GAUSS (AA,MM,NN,PIVOT,RS,X);

/% */
RREAL=X(1,1); /# REAL PART OF R */
RIMAG=X(1,5) : /% IMAGINARY PART OF R #/
RPRIMER=X(1,2); /% REAL PART OF R PRIME %/
RFRIMEI=X(1,6); /% IMAGINARY PART OF R FRIME %/
TOR = X(1,3); /* REAL PART OF (1,0) %/
TOI= X(1,7) ; /% IMAGINARY PART OF (1,0) %/
TMINUS1R=X(1,4); /% REAL PART OF (1,-1) #/
TMINUS1I=X(1,8); /% IMAGINARY PART OF (1,-1) %/
RAES=SART (RREAL #*2+RIMAG**2) ;
RPHASE=ATAND (RIMAG/RREAL): /% PHASE ANGLE OF R %/
RFRABS=SORT (RFRIMER**2+RFRIMEI #*2) 3
RFRPHASE=ATAND (RFRIMER/RPRIMEI); /#PHASE OF RPRIME */

/7% TO PRINT R */

FUT SKIP; FUT SKIP ;
PUT SKIF EDIT('REAL OF R =',RREAL, ' IMAGINARY OF R=',RIMAG)
(X(3),2 (X(2),A,E(12,5)));
FUT SKIF ;
PUT SKIF EDIT( AES(R)=',RABS, 'PHASE (R) =" ,RFHASE)
(X(3),2 (X(2),A,E(12,5)));

/% TO PRINT R FRIME %/

FUT SKIF;

PUT SKIP EDIT('REAL PART OF R PRIME=',RPRIMER,
*IMAGINARY PART OF R PRIME=',RFPRIMEI)
(X(3),2 (X(2),A,E(12,5)));

FUT SKIF;

PUT SKIF EDIT( ABRS(RPRIME)=',RPRABS, 'PHASE (RFRIME)=",
RPRPHASE) (X(3),2 (X(2),A,E(12,5)));

PUT SKIF;

/% TO PTINT T(0) =/

PUT SKIF;

PUT SKIF EDIT('REAL PART OF T(0)=',TOR,
“IMAGINARY PART OF T(0)=',TOI)
(X(3),2 (X(2),A,E(12,5)));

PUT SKIF ;

PUT SKIP EDIT( 'REAL PART OF T(-1)=‘,TMINUSIR,
*IMAGINARY PART OF T(-1)=°,TMINUSI1I)
(X(3) 4,2 (X(2),A,E(12,5)));

END TEMODE;

/*

//G0.SYSIN DD #
.54,.27,.27,2.56,1.44,1.000,45,1.1
-6,~5,-4,-3,-2,~1,0,1,2,3,4,5

/*
/77
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