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PROJECT SUMMARY 

This research was aimed at developing a novel concept for optimally designing output feedback 

controllers for plante whose dynamics exhibit gram changes over their operating regimes. This waa, 

essentially, to formulate the design problem in such a way that the implemented feedback gains 

vary aa the output of a dynamical system whom independent variable is a ecalar parameterization 

of the plant operating point. 

. 

The results of this effort include derivation of necessary conditions for optimality for the general 

problem formulation, and for several simplied cases. The question of existence of a solution to 

the design problem was also examined, and it was shown that the clase of gain variation schemes 

developed in this effort are capable of achieving gain variation histories which are arbitrarily close 

to the unconstrained gain solution for each point in the plant operating range. The theory was 

implemented in a feedback design algorithm, which was exercised in a numerical example. 

The results of the research undertaken under this contract are applicable to the design of 

practical high-performance feedback controllers for plants whose dynamics vary significantly during 

operation. Many aerospace  system^ fall into this category. 
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1. INTRODUCTION 

Linear control theory has provided m a n y  techniques for the design of feedback controllers for 

plants with linearizable dynamics. In most of these methods, the feedback synthesis is performed 

for a plant model obtained by linearizing about some ‘representative” setpoint. Modelling errors 

and minor parameter variations are accommodated by taking measures to ensure that the control 

design is ‘robust.” A robust controller, for our purposes, is one which performs adequately when 

implemented with plant dynamics which differ somewhat from the nominal design model, in the 

seme of their being a perturbation of the nominal plant. Robust design methods have been an 

active area of research in recent years [l - 41, and have been brought to a fairly high level of 

maturity. 

Many dynamical systems encountered in practice, however, exhibit gross, structured changes 

in their dynamics as they move about in their operating regimes. For these systems, it is difficult 

to design feedback controllen, with globally satisfactory performance using design theory intended 

to accommodate only local plant perturbations. Thia problem motivated work which led to a num- 

ber of approaches for using information about global plant parameter variations in designing the 

feedback gains. References [S - 71 develop a design procedure in which a vector-valued cost function 

reflecting the plant dynamics at a number of operating points is Pareteoptimized. Implementation 

of the method leads to a nonlinear programming algorithm. In [8,9] a design approach is described 

in which loci of permissible gain values are established for each of several operating points. Per- 

missibility, here, means that the gains for each model place its closed-loop poles in some specified 

region of the complex plane. The feedback design is performed through examining tradeoffs over 

the intersection of these loci. References (10, 111 describe quadratic optimization procedures for 

stabilizing the members of a discrete set of linear plants by using output feedback gains which 



minimize a scalar coat function reflecting the performance of all of the plants in the set. Finally, 

in (12 - 151, the problem of stabilizing a set of plants with a single compensator is examined in 

an algebraic context. A number of elegant results are derived, including global parameterization 

of stable compensators which stabilize a particular plant and, conversely, plants stabilizable by a 

given stable compensator [12, 131. This approach to the global feedback design problem does not, 

however, appear to be developed to quite the level of practical applicability seen in the methods 

based on quadratic optimization [14, 151. 

There is a serious practical difficulty with all of the work described above. The compromises 

required to make a fixed set of feedback gains perform adequately over a system’s entire operating 

range can result in less satisfactory closed-loop performance at any single operating point than that 

attainable using a feedback scheme which can vary to accommodate changes in the plant. These 

latter feedback schemes fall into two broad categories. The first includes self-tuning regulators 

[lS, 171 and controllers incorporating =online redesign” logic [18]. The second category consists of 

feedback structures whose gain elements are designed to have a particular functional dependence 

on parameters coordinatizing the instantaneous system operating point. The most typical of these 

latter approaches ia gain scheduling. 

In situations where the plant dynamics are relatively well-known, gain scheduling and similar 

gain variation strategies have an important conceptual advantage over those employing online tun- 

ing. The fact that the actual controller design is performed offline permits the designer as many 

testing and redesign iterations as are necessary to achieve the desired performance characteristics 

throughout the plant’s operating range. Another consideration, which becomes important when -, 

there is a premium on the controller implementation’s computational overhead, is that the structure 

of the gain’s dependence on the operating point parameterization is chosen by the designer. This 

permits further flexibility in deciding the tradeoff between the controller’s performance and the 

complexity of ita implementation. These considerations make this class of gain variation scheme es- 
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pecially websuited for aerospace applications and it is, in fact, the one most commonly encountered 

in aerospace industrial practice. 

Neither of the two gain scheduling approaches common in industrial practice exploit these 

advantages efficiently. The first approach consists simply of defining a grid over the domain of the 

plant parameterization and designing a set of feedback gains for each grid point. In implementation, 

the gains are obtained by interpolating to the current operating point from these grid points. This 

brute force approach can be very expensive in terms of the control computer’s memory requirements. 

The other approach is to implement the gain as some simple curve fit, often straight line, to 

gains calculated at selected parameterized operating points. This cures the problem of excessive 

computer storage requirements, but introduces grave difficulties of its awn. The feedback gains thus 

implemented are only approximations of the designed gain values, and there is no a priori guarantee 

that the approximate gains will perform well. The practical result of this is that designing gain- 

scheduled feedback in this piecemeal fashion characteristically involves a great deal of uncertainty 

and ‘cut-and-try.” 

Recently, the quadratic optimization procedure developed in [ll) has been extended to provide 

a much more orderly and rigorous procedure for designing scheduled-gain feedback (19, 2G]. Essen- 

tially, the extension consists of redefining the plant models reflected in the problem cost function 

in such a way 89 to embed the gain schedule structure in their input and/or output matrices. This 

method can accommodate any gain schedule structure expressible as a polynomial in the param- 

eters used to coordinatize the plant operating points. Reference [21] provides a full derivation of 

the procedure, and describes a nontrivial application to a self-repairing flight control problem. 

The principal - and significant - advantage of this approach over defining gain schedules though 

the use of approximate curve fitting methods is that the scheduled gain is ‘exactm at each designed- 

for operating point, in the sense that the optimization is based on the scheduled gain’s actual effect 

on the closed-loop dynamics of each plant model appearing in the design. Because of this, at 
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least at  the operating points used in designing the controller, the effect of the scheduled feedback 

in implementation will be exactly aa designed for, modulo effects due to modelling errors. The 

method's difficulties, on the other hand, are twofold. First, as in [lo, 111, a discrete set of linear 

plant models is used to represent the plant's global parametric variations. The choice of these 

models is, essentially, a matter of heuristics and experienced judgment. Second, although the 

method can be used to design polynomial gain schedules of arbitrary finite order, the number 

of free parameters to optimize increases at least linearly with polynomial order unless further 

restrictions, again based on heuristics and judgment, are imposed on the form of the schedule. 

This report develops an quadratic optimization-based approach for designing feedback gains 

which vary with system operating condition, applicable when the plant's location in its operating 

regime can be parameterized by a scalar function. The gain matrix is designed to be the output of 

a dynamical system having the plant operating point as its independent variable. This is a class of 

gain variation constraints which contains gain scheduling as a subset. In gain schedules, the gain 

is a function only of the independent variable; Le., the system operating condition. The approach 

developed in this report can be used to design gain variation schemes in which that restriction is 

relaxed, to permit functional dependence on the instantaneous gain %ate." Because of this, the 

gains can be designed to vary over the plant's operating regime in ways which would require infinite 

series representations, if implemented as polynomial gain schedules. On the other hand, the order 

and structure of the gain variation dynamics can be chosen by the designer in a tradeoff between 

computational overhead in the controller implementation, and the plant's requirement for complex 

gain variations. An additional positive feature of the theory developed in this report is that, as 

a direct consequence of the problem formulation, the design reflects the plant dynamics as they 

vary continuously across the operating regime, rather than only at an arbitrarily chosen collection 

of setpoints. In the sequel, we will refer to this class of gain variation schemes as PDGP schemes, 

short for Parameter-Dynamic Gain Propagation. 
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Section 2 first formulates the PDGP feedback optimization problem with only minimal as- 

sumptions made on the form of the gain propagation dynamics, then proposes and examines several 

candidate PDGP constraint expressions having features which make them attractive for practical 

implementation. The Section also briefly examines the question of existence of a solution to the 

general optimization problem. Section 3 derives necessary conditions for optimality for one of the 

PDGP constraint structures examined in Section 2, and uses these to develop a numerical design 

algorithm, which is exercised in a numerical example. Conclusions are presented in Section 4. 

A significant byproduct of the numerical algorithm development has been the formulation of 

a novel, efficient iterative procedure for solving discrete Lyapunov equations. A key feature of the 

theory leading to this method is a least-squares-optimal approximation to certain symmetric sums 

of Kronecker products. This development is documented in Appendix A. The Lyapunov equation 

algorithm &d its derivation are provided in Appendix B. 
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2. PDGP PROBLEM FORMULATION 

This Section formulates the general PDGP optimization problem on which the numerical design 

algorithm of Section 3 is based. We consider a plant with input u E R" and output y E RL described 

by 

-2 d = f(z, u, a) + C(t,a) 
dt 

Y = !I(%, 4 + q t ,  4 (2) 

where z E R" is the plant state, and 6 and G are white noise processes. The "plant parameter" a 

gives the location of the plant in its operating regime. It reflects quantities which vary slowly enough 

during plant operation to be modeled as constant in the feedback design, but whose values affect 

the plant's dynamic response. Examples of quantities which are often chosen as plant parameters 

include aging in process control, and Mach number in flight control problems. For this report, it 

is assumed that a varies on the domain a, 5 a 5 af. Assuming that the plant dynamics are 

linearizable throughout the domain of a, assign a locus of setpoints Z and ti as a function of a; that 

is, (z(a),ti(a)} : R -t R" x R". The plant perturbation dynamics are then described in discrete 

time by 
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where k is the t h e  sample index. In (3, 4), the variables w and v are discretiratioxu of Q and C 

with 

E{W(k,CY)VT(8, C Y ) )  = 0 

The plant is to be stabilized for all a E [a,,a/] by an output feedback control law 

(7) 

in which the feedback gain varies with a according to 

where the adot' notation on 8 denotes differentiation with respect to a rather than time. Free 

parameters are e(&), the value of 0 E R'J at some fixed in the domain of a. The PDGP feedback 

design problem, then, consists of choosing 6r and the functional form of r and n, then adjusting 

the value of e(&) to achieve the desired performance. The potential complexity of this problem 

motivates the use of optimization methods in the design process. 

A coet function commonly used in discrete-time optimal output feedback design at a given 

operating point [I11 is 
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N 
c ( a )  = l i i  E{zT(k  + 1, a)Q(a)z(k + 1, a) + UT&, a)R(a)u(k,  a)) (11) 

N4- 2(N + 1) k=O 

where Q(a) 2 0, R(a) 2 0. Reference Ill] develops a number of sufficiency conditions for the 

existence of a G which minimizes (11) at a given operating point. Thinking of c ( a )  as the “a 

- instantaneous” system performance, it is reasonable to define a global coet over the operating 

regime by 

8 
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In the interest of clarity, notation indicating dependence on a will be suppressed in the sequel. 

The problem of minimizing (12) subject to (3,4) and (9, 10) is more conveniently posed as that of 

minimizing a Lagrangian function. It is well known that, when the closed-loop dynamics defined 

by (3, 4) and (8) are asymptotically stable, c can be expressed as 

c = t r { K W }  + t r {GT(BTKB + R)GV} 

where K satisfies the constraint 

S(K,G)  = #T(G)K+(G) - K + Q + CTGTRGC = 0 (14) 

+(G) = A - BGC (15) 

The constraints (9,lO) and (14) are adjoined to J ,  using the expression (13), to form the Lagrangian 

where AK, AG and A, are Lagrange multipliers associated with the constrainta on K, G and 8.  



Denoting the integrand of (16) (LO U , the Euler-Lagrange equations for a stationary point of E 

are 

A, = - aupe e = r(e,a) 

Equations (17.a), expanded, are discrete Lyapunov equations: 

aM/aK = ~ A K $ ~  - A K +  W + BGVGTBT = 0 

all lab^ = S(K,G)  = 0 

Equations (17.b), expanded, are 

(17.8) 

(17.b) 

(17.c) 

(20.8) 

(20.b) 

(20.c) 



and the equation for i(o from (17.c) is 

(22) 
a 

i r  = -[tr{n(e, ae a)Az> - x;r(e, a)] 

There remains the problem of optimally assigning boundary conditions on B and 

terminal cost in this problem, 80 A e ( a f )  ia choaen as 

There is no 

The effect of the choice of e(a,,) on the cost is obtained by integrating A T i  by parts in (16), which 

leads to the necessary condition 

af!/a8(ao) = A&Yo) = 0 (24) 

In summary, then, once a structure for I’ and II is chosen, the PDGP optimization problem 

reduces to a matter of determining the optimal initial condition for 8. Since only the initial 

conditions are free in this problem, the key to effectively employing the above theory in designing 

a feedback gain variation scheme is to hold elements of 8 constant, thus assigning them the role 

of static free parameters in the optimization. For example, a typical single-variable gab  schedule 

takes the form 

G(a) = N + (a - a0)M 

This can be reexpressed as a PDGP scheme: 

G = M  G ( a o ) = N  

(25) 

With the above notation, one could choose 8 as 
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8 = uec[G : M ]  

where uec(.) ia the column-stacking operator, 80 that 

where mat(.) denotes column unstacking and I-1 in an identity matrix of dimension ml. Given the 

simplicity of (28, 29) however, it is easier to separate G and M ,  and assign Lagrange multipliers 

AG and AM. The Lagrangian for this problem, then, is 

c + tr{S(K,G)Az}  + t r ( [M - G]Ag} + tr{-AkAL}da (30) 

and the Euler-Lagrange equations are (18,19) and 

G = M  

M = O  

with boundary conditions 
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We now turn our attention to PDGP structures in which the gain matrix varies as a linear 

combination of states satisfying a system of linear homogeneous ordinary dif€erential equations 

(ODES). Two of the simplest I' structures suitable for implementation in a flight control computer 

are 

e = N O M  

~ = N O + O M  

where 0 E R p X q ,  N E R P X P  and M E RqxQ.  These are both special cases of 

The 

vecO = Fvec0 

implementational advantages over (39) lie in storage and compu 

(37) 

(38) 

(39) 

Btional considerations. In 

(39), F E RWxP4 and p'q' multiplications are required to calculate e. In (37) and (38), N and M 

occupy p' + q' locations, and the derivative calculation requires qp' + pq' multiplications. This 

difference becomes important for large-order PDGS schemes. A suitable choice of ll structure for 

either (37) or (38) is 

G = S 0 D + P  

The elements of S, D and P can be either free parametere in the optimization, or fixed. 
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The chief characteristic of linear PDGP structures such as those defined in (37 - 40) is their 

analytical simplicity. This by no means implies that these structures are limited in the level of 

closed-loop performance they can attain, however. The following lemma quantifies this issue. 

Lemma1 : Assume that A(a),  B(a) ,  C(a), Q(a), R(a),  W ( a )  and V ( a )  have continuous kth 

derivatives on the interval [ao,a/] for k > 0. Further, assume that the system (3,4) is stabilizable 

by output feedback and that for each a E [ao,a/] there exists a 

G*(a) = org min {c(a)) (41) QMa) 

for c(a) defined in (ll), and where 9(a) is the set of asymptotically stabilizing gains for the plant 

at the operating point parameterized by the current value of a. Then, for 8 E RQ given by (39) 

with q 1 2mlr for integer r > 0, and G given by 

vecG = Svec8 + P 

there exist F, S, P and 6(a,) such that 

(43) max 
Q ~ Q . , Q J I  

IlG*(a) - G(a)II < b/(r + 1)'+' 

where b >_ 0 is a constant. 

Proof : See Appendix C. 

The basic implication of this lemma ia that by specifying gain dynamics of sufficiently large 

dimension in a linear PDGP problem, one c a n  construct a gain variation which is arbitrarily close 

to the unconstrained variation of G' over the operating regime. We note that the bound (43) was 

obtained by constructing an individual Fourier series expansion for each element of G and is, thus, 

extremely conservative. 



In the next Section, the PDGP optimization problem will be solved for a slight simplification 

of the structure (38, 40). One of the attractive featurea of (38) is that it leads to a very simple 

transition expression: 

O(a + ~ a )  = eNAatJ(a)eMAa (44) 

This can be easily exploited to permit use of the theory developed thus far in designing controllers 

for systems whose operating regimes are best coordinatized by a vector-valued parameter. For 

example, consider the case of an operating regime parameterized by two variables, say, p1 and p2. 

Now, define a locua of p = (pl(p), pa(a)) in the operating regime forming a path, with arc length 

a as the independent variable. This situation is illustrated in Figure 1, for p chosen to be a spiral. 

In order to move from point A to point B, one simply integrates (38) between a(A) and a(B).  To 

move to point C, rather than laboriously propagate (38) around three revolutions of the spiral, it 

would be more economical to have eNAa and eMAa for Aa roughly corresponding to one full turn 

stored in the controller implementation. This would permit using (44) to “cut across” turns of the 

spiral to the turn containing C. The find correction in reaching C would then be performed, again 

using (38). 

14 
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3. A LINEAR PDGP SCHEME 

In this Section, necessary conditions for optkality in a simple linear PDGP structure are 

derived. These, in turn, are used in a computational algorithm for calculating locally optimal gain 

parameters. The algorithm is exercised in a numerical example. The class of gain propagation 

schemes considered take the form (38, 40) with S and D in (40) restricted to identity matrices, 

and P = 0; in other words, 

The Lagrangian for this problem is 

= ly c + t r { S ( K , G ) b z }  + t r { [NG + G M  - GJh;) 

+ t r { -  MAL} + tr{ - N A 5 ) d a  

and the Euler-Lagrange equations are (14) and (18), (45 - 47) and 

Aa = - aN/aG = - N ~ A ~  - A ~ M ~  - i i ~ h ~  + B ~ K A A ~ C ~  (49) 



AM = - ~ U / B M  = - G = A ~  

The boundary conditions to be satisfied are 

Solution of the necessary conditions for optimality in this problem consists, essentially, of 

determining G,, N and M such that Aa, AM and AN have null initial conditions. The simplest 

general solution approach is to exploit the fact, from (24), that 

Equations (55 - 57) suggest converting the problem of satisfying the costate boundary conditions to 

one of locally minimizing the Lagrangian using a descent algorithm. For example, a simple steepest 

descent algorithm takes the form: 

0. Determine an initial guess for G"(a/), Nu and Mo. Set k = 0. 

1. Integrate (49-51) backwards from a/ to a,, to obtain A$(a,) ,  A&(a,) and &(ao). 

17 



2. Increment Go, N and M as 

I 

. where & E (0,1] is chosen to ensure a satisfactory cost decrease for the iteration. One standard 

criterion, given in (221, for determining (k takes the following form for this problem: 

. where p is a fixed parameter in the interval (0,0.5], Jk is the value of J from (12) for the kth 

iteration's parameter values, and 

3. Set k = k + 1 and go to 1. 

In order to put the above theory in perspective, we now consider a feedback design problem 

for a simple linear system with variable dynamics, given by 

It = A, -k u + w 

y = Z  

where A, is 

18 

(63) 

(64) 



' I  = [ 4 ( a )  -.01 
0 

and w2 varies as 

w y a )  = .oOol+ (10 - .0001)a (66) 

for 0 5 a 5 1. The system is sampled at 10 Hz, and it is assumed that the discretized process 

noise covariances are W = I and V = 0. The penalty weights are Q = R = I. 

Feedback gains were calculated wing the PDGP formulation of this Section and, for compar- 

ison, the design approaches described in [ll] and [19 - 211. In [ll, 19 - 211, the cost function is 

defined for a discrete ccllection of plant models, which are chosen by the designer to represent plant. 

variation over the domain of a. The cost takes the form 

J = c(aj) 
j= 1 

where np is the number of models in the collection, and .(ai) is the quadratic regulation cost 

defined in (11). For the example problem, 11 plant models were chosen, spaced over 0 5 a I 1 at 

intervals of Aa = 0.1. 

The necessary conditions for optimality consist of satisfying (18, 19) at each of the aj and 

"r C RjG(Ax)j - BTKjAj(Ax)jCr = 0 (68) 
j=1 

where the i subscripts denote evaluation at CLj. Equation (68) can be viewed as a discrete-parameter 

analog of (20.a). In [ll], G does not vary with a. References [19 - 21) develop an extension of the 

theory in [ll] in which the gain schedule structure 

G(a) = G, + aG1 (69) 

19 



is embedded into the optimization problem formulation. It should be noted that the theory in [11, 

19 - 211 also accommodates vector-valued 01, in addition to  the scalar case. 

Optimal feedback solutions for the fixed-gain, scheduled-gain and PDGP formulations are given 

in Table 1. In order to represent unconstrained variation of the optimal gains, “pointwise” optimal 

output feedback gains (np = 1) were calculated for each of the plants in the fixed and scheduled- 

gain design model. The numerical calculations were considered converged when the 2-norm of the 

gradients Ao(0) or (68) dropped below one percent of the cost. In order to consistently compare the 

performance of the various feedback variation structures, the a-integral performances (12) of the 

fixed, scheduled and pointwise-optimal designs were calculated from their individual model costs, 

using Simpson’s rule. 

Unsuprisingly, the fixed-gain design gave the worst performance, 14.25, whereas the uncon- 

strained pointwise-optimal design returned a cost of 13.24. For this example, the PDGP and 

scheduled-gain designs returned 13.38 and 13.36, respectively. These values can be considered vir- 

tually the same, given the rather casual accuracy of the Simpson’s rule quadrature used to obtain 

the cost for the scheduled-gain design. The variatibn of the model cost e(01) for each of the gain 

solutions is displayed in Figure 2. The scheduled-gain design optimization apparently sacrificed the 

performance at a = 0 in order to achieve a good match to pointwise optimal performance across 

0.1 5 cu 5 1. The PDGP scheme, on the other hand, resulted in less severely degraded performance 

at Q: = 0, but allows the degradation to persist until approximately 01 = 0.12; thereafter, it very 

slightly outperforms the scheduled gain. 

Figure 3 displays the gain variation histories for the elements of G. It would appear that 

the 1,l element of G is bears primary responsibility for adding damping to the system as w’ in 

(65) increases. Both the PDGP and scheduled-gain solutions closely approximate the trajectory 

of this element. The scheduled-gain and PDGP histories for the other elements, however, are 

significantly different, particularly for the off-diagonal terms. It must be remembered that the goal 

20 
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TABLE 1. FEEDBACK GAIN VARIATION SOLUTIONS 

1.9149 - 0.14681 
G =  [-0.0845 0.6476 

SCHEDULED: 

PDGP: 

c = G, +aC1 

= [ 0.9263 0.0471 ] 
0.1670 0.9882 

cl = [ 1.7343 -0.29201 
- 0.8645 - 0.7316 

G(o) = [ 1.0693 0.0057 ] 
-0.0076 0.8944 

0.4188 - 0.2062 
N =  [0.1956 3.5646 

M =  [ 0.5246 0.33261 
- 0.0015 - 4.4935 
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FIGURE 2. VARIATION OF c ( a )  
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of the scheduled-goal of the scheduled-gain and PDGP methods considered here ia not necessarily 

producing gains which provide a "best-fit" to the unconstrained variation of optimal G, but rather, 

to optimize the system performance over the domain of a a, aubject to the gain schedule or PDGP 

dynamic constraints. O n  the other hand, as we know from Lemma 1, if a PDGP structure with 

more degrees of freedom had been chosen, the trajectory matchea between the unconstrained and 

PDGP gains would have been closer. 

24 



4. CONCLUSIONS 

Thia report has documented a research effort which developed and examined a novel optimization- 

based approach to designing multivariable output feedback gains which vary to accommodate 

changes in the plant dynamics being regulated: Parameter-Dynamic Gain Propagation, or PDGP. 

The key feature of the approach is that the designed gains vary as the output of a dynamical system 

which, as its independent variable, uses a parameter which coordinatizes the plant dynamics in a 

manner analogous to the parameter used in traditional gain scheduling schemes. 

The general optimization problem was formulated, and necessary conditions for optimality 

were derived. Conditions for the existence of a solution to the problem were also obtained. Several 

simplified PDGP structures were examined, with special attention being paid to a restricted version 

of the general linear structure, for which a numerical optimization algorithm was derived and 

implemented. This latter was tested and demonstrated in a numerical example. 



APPENDIX A 

The work described in this appendix was performed under NASA Contract NAS1-17493 and 

is included here for completeness. 
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APPENDIX A. 

LEAST SQUARES APPROXIMATION 

O F  SYMMETIUC KRONECKER PRODUCT SUMS 

A situation which occurs with some frequency in optimization analyses involving matrix-valued 

quantities is that of having to invert positive definite matrices having the general form 

n 

where >, 0, Bi >, 0 for i = 1, ..., 9 ,  and Cj, j = 1, ..., u are general square matrices. Numerical 

inversion of H is usually very cumbrous unless the terms in the Kronecker products are of relatively 

small dimension. Furthermore, one of the most common situations for which a requirement for 

H-' exists is in Newton or quasi-Newton iterative schemes, where H is the Hessian of a scalar cost 

function which is to be minimized. In these cases, the exact value of H-' b not actually needed, 

insofar as the inverse Hessian is only used to exploit "curvature" information and to provide scaling 

in modifying the gradient-based descent step in the problem's free parameters. This motivates the 

notion of approximating H by a quantity B, having the structure 

i l ' = S @ P  

so that its inverse is 

(A.3) il'-'= s-'@ p-1 

When the Cj are zero, a straightforward approach to solving this approximation problem is to 

calculate S and P to minimize the Euclidean norm of H - S @ P, given by 
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J = t r { H T H  - (ST @ P T )  H - HT(S  @ P) + S T S  @ P T P )  

The neceeeary conditions for a minimum in J are 

or 

Equations ’(A.6) and (A.7) can be solved iteratively, using the following simple algorithm: 

0.) Choose any P(O) > 0. Set k = 0. 

1.) Set k =  k+ 1. 

2.) From (A.7), evaluate 

3.) From (A.8), evaluate 

4.) Go to 1. 

Numerical experience [21] indicates that this algorithm is quite robustly convergent, and a formal 

proof of algorithmic convergence is under development. It can easily be seen from (A.6) and (A.7) 

that 
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a' J/avecPauecTP = I I S l l f l n ~ x n a  

80 that (A.8) and (A.9) are a quasi-Newton iteration. 

(A.lO) 

(A.ll) 

In order for the approximation (A.2) to be of practical value, it is important that S > 0 and 

P > 0,  80 that the inverse in (A.3) is positive definite. Furthermore, since the algorithm is only 

exercised through a finite number of iterations, it is desirable to know for what k one can guarantee 

that S ( k )  > 0 and P(k)  > 0. These issues are settled in the following lemma: 

Lcmmu2 : If H > 0 then S ( k )  > 0 and P(') > 0 for all k > 0. 

Proof : See Appendix C. 

Unfortunately, a direct extension of the above theory to the case where the Ci are not zero 

does not generally result in I? > 0. In order to treat this case, it is necessary to constrain S 2 0 

and P 2 0. This is done for Ai, Bi and C, E Rnxn by enforcing 

where 

a minimum of 

E R n X n e  and P E RnXn*, where n, and np may be freely chosen. For this case, we seek 

The necessary conditions for a local minimum of J are 
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i=l 
Y 

- 4 Ctr{PTC,P}(CjT + Cj)S = 0 
i=1 

n 

i= 1 
Y 

(A.14) * 

(A.15) 
j=1 

Equations (A.14) and (A.15) could be incorporated into a steepest descent algorithm for performing 

the minimization of J. This ia not particularly attractive, however, because of the known slow 

convergence of steepest descent methods. It ia preferable, instead, to seek a numerically inexpensive 

meana of incorporating some, if not all, of the second derivative information into the iterations. 

The simplest is to use the increments 

(A.16) 

where (.)ij is the i j th element of the matrix. This is equivalent to using the inverse of the main 

diagonals of a2 J/auecSauecTS and a' JJauecPauecTP in the step calculations. Thia approach has 

been used in other general optimization problems [23], and has provided a significant enhancement 

in algorithmic performance over eteepest descent in those applications. The main diagonal elements 

of the Hessian matrix are given by 
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n 

k s l  
Y 

-- - 4tr{(STs)')[(PTP)jj + (PPT)ii + P;j 
aP,l, 
a 2 J  

(1 

- 4 tr{STAkS)(Bk)ii 
k = l  

Y 

- 4 tr{S'CmS)(C: + Cm)ii 
m=l 

The algorithm for solving (A.14) and (A.15) then takes the form 

0.) Choose P(O) > 0, s ( O )  > 0. Set k = 0. 

1.) Set k = k + 1. 
2.) Evaluate 6S("), 6p(k) using (A.16). 

3.) Increment and P(') M 

(A.18) 

where & ia chosen to ensure that each iteration brings S(k+l) and P(k+l) closer to convergence. 

4.) Go to 1. 

We are deliberately vague in Step 3 of the above algorithm. It would be very straightforward 

to base the choice of t k  on achieving some improvement in the coat J; for example, choosing & to 

satisfy 
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Unfortunately, there is no information about the value of J directly available from the calculations 

in (A.16). Also, it can be seen by comparing (A.13) with (A.14 - A.18) that evaluation of (A.21) 

would add a very significant increment of numerical overhead to the algorithm, particularly when 

n is large, and no and np are relatively small. 

It would be much more efficient to base the teat for improvement on quantities such as gradient 

norms or, better yet, the gradient traces. Work is in progress for determining an efficient, but 

reliable, improvement test. In testing the above algorithm numerically on a 20”’-order problem (H 

was 400tk-order), Step 3 was omitted entirely and & was fixed at < = 0.25, with good success. 

Note that the numerical overhead for evaluating (A.16) varies significantly with no and np. 

From (A.14 - A.16) and no = np = n, we see that one pass through Step 2 of the algorithm 

requires 0(4(q + Y + 5/4)n3) multiplications. Unfortunately, when no < n or np < n, the resulting 

approximation (A.2, A.12) is rank deficient. For treating casea where a sequence {HI : k = 1, ...} 

must be approximated, in which H k  b “close” to Hk-1, an efficient algorithmic approach would 

consist of approximating H I  using no = np = n, then approximating subsequent members of the 

sequence for no = np << n by 

k 

j-1 

where 

(A.22) 

(A.23) 

(A.24) 
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and 0 < /3 < 1 is chosen to prevent the norm of s k  63 pk from growing larger than that of Hk. 

Note that, if & > 0 and F1 > 0, then each subsequent & > 0 and & > 0. This procedure can be 

approximated in a roundabout manner by sequentially combining the first and second algorithms in 

this Appendix, but a direct method of calculating &, pk would be much more satisfying. Although 

it unlikely that the derivation of such a method poses significant difficulty, t h e  and the scope 

of the project did not permit pursuing this issue. 

. 
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APPENDIX B. 

AN EFFICIENT ITERATIVE PROCEDURE FOR SOLVING 

DISCRETE LYAPUNOV EQUATIONS 

In the numerical algorithm described in Section 3, discrete Lyapunov equations (14) and (18) 

are solved for K and AK at each step in a over the integration interval [a/ ,a,] .  It can plainly be 

seen that, regardless of the solution procedure used, this is one of the dominant numerical overhead 

items in the algorithm. 

The most efficient procedure to date [24] for solving the equation 

A ~ X A  - X + C  = o 

where C = CT is to: 

1.) Transform A into upper real Schur form jI via 

d = UTAU 

2.) nansform c to Z. via 

3.) Partition 2 according to the dimensions of the nonzero main diagonal blocks. This naturally 

breaks the problem of solving 

iT22 - 2 + c = 0 

into 1 x 1 and 2 x 2 subproblems which can be solved sequentially. 
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4.) Back-transform 2 to X using 

The virtue of thie procedure is the operation in Step 3, since partition-wise solution of (B.4) 

requires only minimal numerical overhead, compared with solution of (B.l) as a linear system of 

order n(n + 1)/2. Unfortunately, Step 1 can be quite expensive, since generally, the QR algorithm 

is used to calculate U. Because of this, the overall algorithm requires 2(3 + 2tr)ns floating point 

multiplications, where Q is the number of QR iterations required for satisfactory convergence. This 

number tends to increase when the eigenvalues of A have similar magnitudes. Because of this, when 

a solution to (B.l) is required for A which is asymptotically stable in discrete time, as in feedback 

optimization problems, u can become large. Another drawback of the above algorithm becomes 

apparent when (B.l) must be solved repetitively for a series of similar, though not identical A 

matrices. In this case, new U matrices must be calculated for each A. 

. 

These considerations motivate investigating procedures which make use of "local" information. 

A successful algorithm of this type would exploit the fact that solution X ( A l ) ,  for A = A1 in (B.l), 

is uclose" to X(A3) when A1 is close to A1. A straightforward point-of-departure ia to consider a 

Newton algorithm for minimizing (driving to zero) the function 

J in (B.6) is the squared Euclidean norm of the error in (B.l) when X is not the solution. The 

gradient of J ie 

a J / a X  = 2[AATXAAT - A T X A  - AXAT + AQAT + x - SI 03-71 

or 
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a J / a  vcc X = 2 [ M T  @ AAT - AT @ AT - A @ A + r]  vcc X + vcc [AQAT - Q] (B.8) 

and ita Hessian 

= 2[AAT @ AAT -AT @ AT - A @  A +  r ]  a2J  
avecXavecTX (B.9) * 

The Newton algorithm for this problem consists of calculating a sequence ( x k }  of approximations 

to  the solution X, where 

(B.lO) 

and 0 < & 5 1 is a parameter chosen to ensure satisfactory improvement in J from iteration to 

iteration. The algorithm, based on a Taylor series for a J / a X  about zero, does satisfy the require- 

ment for exploiting local information, but is, nonetheless, quite impractical for all but very small 

problems. This is because, for A E Rnxn, mere construction of the Hessian matrix requires 2n‘ 

multiplications, and its inversion requires O(n6/3) multiplications. After inversion, an additional 

n1(n2 + 1)/2 multiplications are required to evaluate (B.lO). The 6na multiplications per iteration 

required to calculate a J / a X  (15na/2 on the first iteration) also impose an unattractively high 

computational burden if any significant number of iterations are anticipated. 

If we assume that solutions to (B.l) are required for a sequence of closely spaced A’s and C’s, 

a numerically inexpensive approximation to the Newton step (B.lO) can be constructed, based on 

the discuseion in Section A. Denote a* J / a  vec Xa vecT X for the kth A and C by HI in (A.22 - 
A.25). Given the form (A.22) of s k  and pk, and the fact that S;Jl and P;J1 are available, Sl l  

and Pcl can be calculated using the standard formula 

(B.ll) 
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(SC1)O = s& (B.12) 

where a i  is the jth column of s k ,  and similarly for P;'. Updating SL1 and Pcl in this manner 

requires only 0(3n,n2) multiplications. Since it is assumed that the Ak and C k  (and, hence, the 

Xk) are closely spaced, evaluation of the gradient i3 J / a X  can be accomplished via numerical differ- 

encing, eliminating 6n3 multiplications per iteration. Overall, then, one concludes that for small n,, 

rap, only some finite multiple of n2 multiplications per iteration are required. The decomposition 

giving Hk is not included in this estimate, since the derivation was not finalized, but, for small n,, 

np, should not affect the estimate materially. 
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APPENDIX C. 

PROOFS 

This Appendix contains proofs of assertions made in Section 2 and Appendix A. 

Proof of Lemma 1 : 

Consider the problem of minimizing J from (12) without any constraints on the a-dynamics 

of G. The Lagrangian for this problem is 
f 

Note that, in minimizing t, G assumes the role of a control variable. The Minimum principle gives 

the necessary condition 

The necessary conditions on K and AK are, again, (18) and (19). From (18,19) and the Lemma's 

assumptions, it is trivial to show that K and AK are k-times continuously differentiable functions 

of CY. Therefore, G'(ar), given by 

where (.)+ denotes the Moore-Penrose inverse, has a continuous kth derivative in a. 

Denote the i j th element of G'(a) by gt(a), which has the Fourier series representation 

with 
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over the interval [a , ,a~] .  One can form an approximation to gi’i(t) by truncating the series (C.4) 

at the rth term: 

r 

&j( t )  = 00 + a,coa(nat - On) 
n= 1 

so that 

00 

gi’i(t) - &j(t) = c u,cos(nlrt - On) 
n=r+l 

It is well known that the on in (C.4) approach zero at least a9 rapidly as 7/nk+l for some 

constant 7 . 2  0; therefore, 

00 

n=r+l 

Since k 2 0, (C.8) can be rewritten 

The truncated series (C.6) has a minimal realization as a linear system of order 2r, so that a 

linear system of order 2mlr suffices to realize the first r trigonometric terms in the Fourier expansion 

of each of the elements in G * ( t ) .  Therefore, (43) holds for 

(C.10) 
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Pro0 f of Lemma 2 : 

Denote a set of eigenvectors of A E R p X p  as vni, n = 1, ...,p and those of Bi RQxq as wmi, 

m = 1, ..., q. Suppose that 

but that 

Y 

d d { x  Ai} = 0 
i=l 

(C.11) 

(C.12) 

Since each Ai 2 0, (C.12) implies that there is some on such that 

A~u,, = 0 (C.13) 

for i = 1, ..., q; that is, all of the & share a zero eigenvalue with eigenvector u,,. Therefore, each 

Ai @ Bi satisfies 

Y 

i= 1 

which contradicts (C.ll), thus implying 

Y 

C A i  > 0 
i=l 

(C.14) 

(C.15) 

(C.16) 

Similar reasoning l e d  to 
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Y 

E B i > O  
i=l 

Note that if (C.16) holds, then for ai > 0, i = 1, ..., q ,  

Since P(O) > 0 by assumption, then 

(C.17) 

ai = tr{B;P(0)}/IIP(O))ll > 0 

which, from (A.9), implies that S(') > 0. This, in turn, implies that P(') > 0, from (A.lO). 

(C.18) . , 

(C.19) 
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