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ABSTRACT

An understanding of the interaction between a moving conductor and a plasma is very impor-

tant for the design of large structures in space, such as a space station or the tethered satellite
system. It is well known that very large conducting objects which move slowly across mag-

netic field lines radiate low frequency (Alfv_n) waves. In this paper we formulate the prob-

lem in such a way that the radiation in all frequency bands can be computed. We then quote
results of detailed calculations for spheres and cylinders of various sizes in the cold plasma

approximation. In general, we find that in a plasma for which cop2 >> o_e2 and V2 << c_ << c2,

there is radiation in three frequency bands: co < f_i, 0hh < co < £2e, COp< CO< O_uh,where V is
the speed of the body, ca is the Alfv_n speed, c is the speed of light in vacuum, co is the fre-

quency of the radiation, and £2i, 0hh, f2e, COp,and co, h are the ion cyclotron, lower hybrid, elec-
tron cyclotron, plasma, and upper hybrid frequencies, respectively.

1. Statement of the problem

We consider the problem of a conductor moving nonrelativistically through a magnetized

plasma with velocity V = V ex. We call the rest frame of the plasma E and the rest frame of

the conductor E'. We assume that in _ far from the conductor the plasma is uniform and iso-

tropic and has a magnetic field

and an electric field

Bo = B 0 e z (1)

Eo= 0

In Y.' the fields far from the body are given by

B' 0 = B 0 ez

and

(2)

(3)

V x Bo VB o

c c ey (4)

Inside the conductor, the electric field E' and the conduction current density Jc are related by

_ This paper is a shortened version of the paper of the same name that appeared in the Journal of Geophysical

Research, Vol 91, No A9, pages 10, 117-10, 135, September 1, 1986.
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In Z, Eq (5) takes the form

J'c = CE' (5)

VxB0 Jc
E - + m (6)

c (_

We consider here the special case where V is perpendicular to B 0. Our formulation can be

easily modified to include the general case. The coordinate system that we use is shown in

Fig. 1.

A conductor placed in an electric field in vacuum becomes polarized so as to shield out

the external field. The equipotential surfaces for a prolate spheroid embedded in an external

electric field directed along its axis is shown in Fig. 2. The field has azimuthal symmetry

about the axis of the spheroid.

If the conductor is embedded in a plasma, the above solution cannot apply, since the

component of the electric field parallel to the magnetic field will drive currents in the plasma.

In particular, for an object is much longer in the direction of the external field than in the

direction perpendicular to the field, such as the prolate spheroid shown in Fig. 2, the fields

near the tips are much stronger than the field at infinity.

Let L be a characteristic size of the body and cA the Alfv6n speed. If the body is large

enough and is moving slowly enough (V <<c A and V/L_ i << 1), then the MHD approximation

is applicable. The MHD model of the interaction between a moving conductor and a magnet-

ized is based on the work of Drell, Foley and Ruderman (1965), who used it to explain the

anomolously fast decay of the orbit of the Echo I weather satellite. The model did not gain

wide acceptance until it was confirmed by in situ observations by Voyager I of the Alfv6n

wing generated by the jovian satellite Io. Further theoretical work was done by Neubauer,

and good agreement to the model was obtained in analysis of the magnetic field data by

Acuna et al (1981) and of the plasma data by Barnett (1986). In this limit, the conductor

radiates Alfv6n waves. Viewed in Z', there is a standing wave pattern consisting of two

Alfv6n "wings" attached to the body. The wings have a cross-section determined by the

shape of the body, and they extend in the direction of the Alfv6n characteristics, V-_, defined

by

B0

= v +_"/ Trp (7)

where p is the plasma mass density. A side view of the Alfv6n wing for a perfectly conduct-

ing sphere is shown in Fig. 3. The electric field E' is zero inside the Alfv_n wings, while out-

side them the electric field resembles the field that surrounds a conducting infinite cylinder

emersed in a uniform electric field perpendicular to its axis. The external electric field is

shielded out by charges on the surface of the wing. In addition, electric current flows along B

on the surface of the wing. The current flows toward the sphere on the side of the wing that

is negatively charged, crosses the magnetic field through the sphere, and flows away from the

sphere on the side of the wing that is positively charged. A front view of the Alfv_n wing,

showing schematically the charge and current density, is shown in Fig. 4. The electric field in

a plane perpendicular to B through the center of the sphere is shown in Fig. 5. The plasma

bulk velocity V' resembles the flow of an incompressible fluid around and infinite cylinder.
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The streamlines in a plane perpendicular to B are shown in Fig. 6. An interesting property of

the Alfv6n wing system is that a three dimensional problem has effectively become a two

dimensional one. Instead of flowing around a spherical obstacle, the plasma must flow around

a cylindrical one.

Also shown in Figs. 3 and 4 is the direction of the Poynting vector S. Viewed in Z, the

conductor loses energy due to radiation. This radiation is analogous to classical Cherenkov

radiation, which occurs whenever a particle moves through a dielectric faster than the phase

speed of light in the dielectric. In the case of the Alfv6n wing, the conductor is moving

accross the magnetic field faster than the Alfv6n waves can propagate in that direction (the

phase velocity of Alfv6n waves perpendicular to B is zero). If the velocity of the conductor

were greater than the Alfv6n speed, a shock would form instead of the Alfv6n wing.

The question remains, are the MHD waves predicted by Drell et al the only waves gen-

erated by a conductor moving through a plasma, or are there waves of higher frequencies? If

other waves are possible, how does one compute the amount of energy radiated?

2. Mathematical Formulation

We now proceed to the formulation of the problem without the MHD frequency con-

straint. We solve the problem using Fourier transforms. Our method incorporates the boun-

dary conditions in an integral equation. We start by writing

1 _2E 4n _J
V x (V x E) + = (8)

c2 at 2 c2 _t

We now write J as a sum of two terms

J = Jp(1-H) + Jc H (9)

or

J = Jc - Js (lO)

where

Js(x,t) = (Jc(x,t) - Jp(x,t))H(x,t) (11)

and

10 inside the conductorH(x,t) = elsewhere
(12)

Jp is the current density in the plasma,while Jc is the current density in the conductor. We
now define the fourier transform f(k,m) of the function f(x,t) by

= If(x,t) e i(k'x - _)d3x dt (13)
f(k,c0) = _ x,t) (2pi)2

Jp(k,c0) is related to E(k,0)) through the dielectric tensor K by the relation

io3 [K(k,c0) - I].E(k,m) (14)Jp(k,o )=

where I is the identity matrix, and K is the dielectric tensor of the plasma. Although the
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computations that we quote at the end of this paper were performed using the cold plasma

dielectric tensor, which is derived from the linearized equztions of motion, any plasma model

can be used. Using (9) through (14), we can write the Fourier transform of (8) as

4_ico ....

T(k,c0) • E(k,o_) - _'_ as[K, co) (15)

where T is the so-called dispersion tensor, defined by

£O2

T = -k2I + kk + mc2 K (16)

Eq. (16) can be inverted to solve for E in terms of Js

E(k,c0) - 4_---__'°3T- 1(k,c0).Js(k,c0) (17)
c A

Once E(k,c0) is known, the magnetic field perturbation B, the plasma current density Jp, and
the electric charge density p can easily be found from the Fourier transforms of Maxwell's

equations. We seek an equation for Js. To derive it, we multiply Eq. (6) by H(x,t) and use

Eq. (11) to efirninate Jc- The result is in the linlearized approximation

V × B = V × B 0 is

Js(x,t) = (x,t) + - - Jp(x,t) + pc(X,t)¥ H(x,t) (18)
c

where we have linearized by writing B 0 instead of B. We note that the Fourier transforms of

the fields on the right side of Eq. (18) can be written in terms of the Fourier transform of Js-

The result is the desired integral equation for Js.

_-llJs(k,60)_=0 for x in the plasma (19a)

[ J

W s} VxB°
f -1 .J _ -

c
for x in the conductor (19b)

where the tensor W is defined by

W = --7 + -- k2 )I - kk • T -x(y c 2
(20)

We are led to an integral equation by the facts that the relation between E and Js is an alge-

braic relation in (k,c0) space, while the location of the conductor, as expressed by H(x,t), is

simple in ordinary (x,t) space. Notice that the boundary conditions are automatically included
in our formulation.

3. Properties of the solutions

The solution to (19) and (20) contains a complete description of the fields surrounding a

conductor moving through a magnetized plasma. Unfortunately, this integral equation is

difficult to solve. To obtain numerical estimates, we therefore take the alternate approach of

trying to study the properties of the solutions. If we assume that we know the source current

28O



Js, the electric field is given by the Fourier transform of (17). When one uses a complex con-

tour integration to evaluate the integral, the only contributions come from the poles of the

integrand, which occur at the zeros of the equation

det T -1 = 0 (21)

Equation (21) is the familiar dispersion relation for the plasma. In the present case, we seek a

solution which is independent of time in X', which implies that in E,

co = k.V (22)

For the geometry described in (1) - (4), (22) takes the form

co = _xV (23)

Furthermore, since we are primarily interested in the power radiated, we need to study the

behavior of the solutions far from the origin. In particular, we are interested only in those

modes for which k and co are both real, since only these modes can transport energy to

infinity. In low Earth equatorial orbit, the plasma and the orbital velocity obey the following

inequalities

0)2 >> f22 (24)

and

V 2 << c_ << c 2 (25)

For such conditions, (21) and (23) have solutions for real k and co in only three frequency
bands

°3 < f_i Band I

coth < co < f2e Band II (26)

fOp < '03 < fouh Band III

Band I is the MHD band discussed by Drell et al; bands II and III are new. This radiation is

analogous to classical Cherenkov radiation. We have already pointed out that a conductor

moving through a magnetized plasma only radiates plasma waves whose phase speed in some

direction is slower than the speed of the body. For a body that moves slowly compared to the

Alfvdn speed, this occurs only in the frequency bands described by (26). A polar plot of the

phase speed versus the angle between k and B 0 for the mode that is excited in each of these

three bands is shown in Figs. 7-9. Note that the phase velocity vanishes in some direction for
each of these three cases.

4. Calculation of radiated power

Having identified the frequency bands within whicla power is radiated, we now have to

estimate the amount of power that will be radiated into each band. To do this, we guess the

spatial dependence of the source current distribution and use Poynting's theorem to compute

its magnitude. Poynting's theorem can be written as follows

bUEM

Prad = -W _t (27)
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where

c

Prad-'_E fExB'da

W=_E • Jdx

1 _(E2 + B2 ) dx
UEM =

(28)

(29)

(30)

where Prad is the power radiated, UEM is the electro-magnetic energy, and W is the mechani-

cal work done by the fields. We choose for our volume of integration a large rectangular

prism with the conductor at its center, and we perform all of the calculations in frame Z. If
OUEM

we make the box large enough, the term _----_ can be neglected, due to the fact that the

solution we seek is independent of time in frame £'. To evaluate the remaining integrals, we

use the following ansatz; assume that the source current can be written as

J,(x) = - I f(x) ey (31)

where f(x) is a known function, the form of which one guesses from the geometry of the con-

ductor. Now consider (28). Since both E and B are linear functions of Js, Prad is proportional

to I 2. To evaluate (29), we use Ohm's law (6) for E. Since Jc is proportional to Js, (29)

results in two terms, one proportional to I and one proportional to I 2. We can therefore write

(27)-(29) as

12 Zra d "- I (0 - I2R) (32)

where q_has dimensions of electric potential, and we have assumed that Js = Jc- Zrad, R, and

can be computed using (31),(17),(13),(28) and (29). Equation (32) can be interpreted as an

electrical circuit analog, where _ is the voltage, I is the current, and Zra d and R are the

resistences of two resistors in series. The problem of computing the radiated power thus

reduces to evaluating Zrad, given by

Zrad =_ C f (E x B)'da (33)
4M 2

with E and B given by

and

E(x,t)=5_l( " 47_i03c2 T_l.f(k)ex}i (34)

(35)

We have evaluated (33) explicitlywhere f(k) is the Fourier transform off(x) defined in (31).

for two different geometries. The first case is a sphere of radius a. The second is a cylinder

of radius b and length L whose axis points in the ey direction. In both cases we have assumed

a current density of the form given in (31), with f(x) a constant inside the object and zero out-

side it. In both cases Zra d can be expressed as a sum of three terms
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Zrad = Z I + Zll + Zll I (36)

where Zb Zll, and ZH are the contributions from bands I, II, and III, respectively. Analytic

expressions for Z as a function of a and of b and L can be found for several limiting cases.

These cases are summarized in Table 1. The results of numerical calculations of Z I, Z m Z m

and Prad are shown in Figs. 10-13, and the plasma parameters used in the calculations are

given in Table 2. Of considerable interest are the results for a long, thin wire, since this might

have applications to tethered satellite systems. If one wants to estimate the power that can be

generated using a TSS, one can simply consider R to be the load resistence. Due to the con-

tributions from band II, the impedence is much higher than expected in this case. A cylinder

with L = 10krn and b = lcrn has a radiation impedence of nearly 105 ohms! These results

suggest that previous power estimates for passive TSS systems might be much too high. One

must use care when applying these results to the TSS, however. In particular, effects due to

the size of the subsateUite and local plasma clouds from "plasma contactors" can be mocked

up by using an "effective" b.

Our formulation can also be used to estimate the radiated power for active systems. One

must then consider I in (31) as a known source strength Some calculations of that sort are dis-

cussed in the article by Hastings et al.

5. Summary

We have considered the problem of the interaction between a moving conductor and a

magnetized plasma. We have shown that steady state solutions exist for which the body is

surrounded by a system of standing waves. Wave modes are excited for which the phase
speed in some direction is less than the speed of the conductor. The process is analogous to

Cherenkov radiation, or to the formation of a shock wave surrounding a body in supersonic

motion through a gas. We have extimated the powcr radiated for spherical and cylindrical

bodies moving perpendicular to the background magnetic fie!d. Our results suggest that, due

to the high radiation impedence in band II, a passive electrodynamic tethered satellite system

will not draw large currents.
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TABLE 1. Radiation Impedence of Conductors bloving Through a

Plasma Perpendicular to the Magnetic Field

Size Impedence

V

a>>i2-
Region I V

a<<fi_

V

tO/..//

• Region II V V

1"2,, tOt.a

V

fl,

Region III Vc._

tOL,,.t C'

Cylinder of Length

Sphere of Radius

Z 1 =

Z 1 =

ZII =

Zl ! '_._m

Zll =

a

.--Zo
C o

4naf_ Z
73-7 °

4_Vc A _

2nc_
Zo

3_Tatat.n

3c4
Zo

4 V¢A

Z m=lSa,w zZo

L and Radius b With Axis Perpendicular

to Both V and Bo
V V nL.q_

b<<_ L<<_ Zt = -_- Zo

Regionl V V [ (.__) ]b<<_ L>>_ Zl= In +0.27 Zo

Region II L >> b <<_. Z,, = In + 1.06 Zo

Y Y V2c42
Region III L >>-- b >>-- Z,, = c(ba_ta) a Z o

¢./.)p tOp

We have expressed the impede.ace in terms of Z o -- 2cffc: in Gaus-
sian units. For conditions typical of low earth orbit, Zo = 6.7

x 10-'" s/cm = 0.060. If tr = (m,,/m_)v2 = 1/172 (oxygen plasma).

ca -- 300 Icm,'s and B o = 0.33 G.

TABLE 2. Plasma Paramete= Used in.Numerical Calculations

Parameter Value

B 0.33 G

n, 3.6 x I05 cm ":_
/7 1/172
K 73 km/s
CA 300 km/s
M,4 0.024
tO, 3.4 x I0: s "t
D, 5.9x I0 '_s-J
_ 3.5 x I0" s" t
O_ 2.0x I02 s" t
Ilk, 1.2 mm
I/k_ 21 cm

I/ki 36 m
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are given in Table 2.
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