COMPUTATIONS FOR THE 16-FOOT TRANSONIC TUNNEL NASA, LANGLEY RESEARCH CENTER

REVISION 1

```
(NASA-TM-8631G-REv-1) CCMEUTATICAS FOR THE
N87-2C294 16-FOCT TRANSCAIC TUNNEL, NASA, LANGLEY EESEARCH CENTER, EEVISICN 1 (AASA) 204 p
CSCL 14B
Unclas
G3/09
45006
```

Charles E. Mercer Bobby L. Berrier Fancis J. Capone Alan M. Grayston C. D. Sherman

January 1987

National Aeronautics and Space Administration

Langley Research Center

Hampton. Virginia 23665

CONTENTS

INTRODUCTION 1
WIND TUNNEL PARAMETERS 2
JET EXHAUST MEASUREMENTS 2
SKIN FRICTION DRAG 2
BALANCE LOAD AND MODEL ATTITUDES 3
INTERNAL DRAG (OR EXIT-FLOW DISTRIBUTIONS) 3
PRESSURE COEFFICIENTS AND INTEGRATED FORCES 3
THRUST REMOVAL 3
TURBOPROP OPTIONS 3
APPENDIXES 7
Module A, Tunnel Parameters Calculations
Module A, Tunnel Parameters Calculations A A
Module B, Jet Exhaust Measurements Calculations 15 15
B
C Module C, Skin Friction Drag Calculations 43
53
D Module D, Balance Loads and Model Attitudes Calculations
135
E Module E, Internal Drag (or Exit-Flow Distributions)
159
F Module F, Pressure Coefficients and Integrated Forces Calculations
169
G Module G, Thrust Removal Options205

INTRODUCTION

This document describes the Langley Research Center 16-Foot Transonic Tunnel standard set of equations. The engineering units necessary for these equations are computed on site from the raw data millivolts or counts. These quantities with additional constants are used as input to the program for computing the forces and moments and the various coefficients.

This document is intended to be a companion document to NASA Technical Memorandum 83186, A User's Guide to the Langley 16-Foot Transonic Tunnel, August 1981.

The equations are grouped into modules, so that only the required modules need be used. The modules are as follows:
A. Wind Tunnel Parameters
B. Jet Exhaust Measurements
C. Skin Friction Drag
D. Balance Loads and Model Attitudes
E. Internal Drag (or Exit-Flow Distributions)
F. Pressure Coefficients and Integrated Forces
G. Thrust Removal Options
II. Turboprop Options

Individual customizing of these equations for a specific job application is permitted through the use of code constants. These equations do not cover all possible jobs; however, they are coded so that modifications of selected equations may be easily carried out.

The format of this document is arranged so that the module designations correspond to the Appendix designations in which the respective calculations equations are given.

WIND TUNNEL PARAMETERS

The wind tunnel parameters are computed from the required static and total pressure measurements. The Reynolds number, dynamic pressure and tunnel total temperatures are computed. When the tunnel Mach number is computed, a lookup table from an earlier wind tunnel calibration is used to correct the ratio of static pressure to total pressure used in the Mach number calculation. These wind tunnel parameters are stored for use by other modules. Refer to Appendix A for calculations.

JET EXHAUST MEASUREMENTS

Jet exhaust information is calculated for the primary, secondary and tertiary flow conditions.

The primary flow conditions for each engine, up to a maximum of four, are calculated. The various parameters that are computed are mass flow and ideal thrust for each engine. The average nozzle pressure ratio and average total temperature over all the engines is obtained. The total mass flow is derived from chamber and/or venturi measurements. Discharge coefficients for the total system are computed as well as the ideal thrust.

For the secondary and tertiary flows, the mass flows and other parameters are computed. Refer to Appendix B for calculations.

SKIN FRICTION DRAG

The skin friction drag for the model is computed in addition to any empennage skin friction drag. Refer to Appendix C for calculations. Information from the wind tunnel parameters is used. Drag from the various components as well as total drag is computed.

BALANCE LOAD AND MODEL ATTITUDES

The balance computations for the force and moment coefficients for up to three balances may be computed from this module. Allowances for the method of attaching the balances are made. The measured forces and moments are corrected for balance interactions. Then an allowance is made for high order interactions and momentum tares. The forces and moments are rotated to the desired axis and the final correct coefficients are computed as well as the angle of attack and sideslip angles. Refer to Appendix D for calculations.

INTERNAL DRAG (or EXIT-FLOW DISTRIBUTIONS)

The internal drag and various forces on the engines are computed using the equations given in Appendix E. The result of these computations are used in the balance computations of module D to correct the force measured by the balances.

PRESSURE COEFFICIENTS AND INTEGRATED FORCES

Pressure coefficients are computed by using the equations given in Appendix F. Various integrated forces due to the pressures are calculated including hinge moment coefficients.

THRUST REMOVAL

Various thrust removal coefficients may be computed according to specified flags which specify the model setup. Various configurations are permitted which may include two balances. Reference Appendix G for calculations.

TURBOPROP OPTIONS

The drag and thrust coefficients due to the propeller and jet engine are computed as well as the combined totals. Horsepower and efficiency of the engines are derived with other quantities. Reference Appendix H for calculations.

APPENDIX A

Tunnel Parameters

Nomenclatures A-1
Required Constants A-3
A tmospheric Pressure A-3
Mach Number A-3
Tunnel Static Pressure A-4
Tunnel Total Pressure A-5
Tunnel Dynamic Pressure A-5
Dew Point A-6
Tunnel Total Temperature A-6
Reynolds Number A-6

MODULE A TUNNEL PARAMETERS

SYMBOL
MACH
MCODE

PO

PO/PTO
PTANKG
PTANKH
PTG
PTH
PTKSON
PTO
PTSON

QO
REFL

RN

RN/FT
RT(J)
$T(J)$

TTO

NOMENCLATURE

Free stream Mach number.
Mach number calculation code.
$=1$, PTANKG and PTH are needed.
=2, PTANKH and PTH are needed.
$=3$, PTANKG and PTG are needed.
=4, PTANKH and PTG are needed.
$=5$, PTKSON and PTSON are needed.
Tunnel static pressure, lbs/sq. in.
Ratio of tunnel static pressure to total pressure.
Tunnel tank pressure measured by gage, lbs/sq. in.
Tunnel tank pressure measured by Ruska, lbs/sq. in.
Tunnel total pressure measured by gage, lbs/sq. in.
Tunnel total pressure measured by Ruska, lbs/sq. in.
Tunnel tank pressure measured by Digiquartz, lbs/sq. in.
Tunnel total pressure, lbs/sq. in.
Tunnel total pressure measured by sonar manometer, lbs/sq.
in.
Dynamic pressure, lbs/sq. in.
Reference length, feet.
Reynolds number based on reference length.
Reynolds number per foot.
Tunnel total temperature measurements, ${ }^{\circ} \mathrm{F}$, where $\mathrm{J}=$ probe number.
Constants required from project engineer (0.0 or 1.0)
where $J=$ probe number.
Tunnel total temperature, ${ }^{\circ} \mathrm{F}$.

APPENDIX A
 Module A
 Tunnel Parameters

A. Required Constants

1. MCODE (default value $=2$) must be provided if values other than PTKSON and PTSON are used to compute Mach number.
2. The constants used in determining tunnel total temperature are T2, T3, T4 and T 5 which must equal 0.0 or 1.0 .

One-tunnel temperature measurement
$\mathrm{T} 2=1.0, \mathrm{~T} 3=\mathrm{T} 4=\mathrm{T} 5=0.0$

Two-tunnel temperature measurements

$$
\begin{equation*}
\mathrm{T} 2=\mathrm{T} 3=1.0, \mathrm{~T} 4=\mathrm{T} 5=0.0 \tag{Eq.A-2}
\end{equation*}
$$

Note that the numbers 2 through 5 correspond to resistance thermometer numbers normally used.
3. A reference model length, REFL, must be given in units of feet to compute model Reynolds number.

B. Atmospheric Pressure

Atmospheric pressure calculation may be handled in the standard program for quantities. Its inclusion (if required) and method of obtaining (dialed-in optional digital channel or measured by gauge in analog channel) is left optional to the project engineer. However, measuring atmospheric pressure with a gauge is recommended rather than entering this pressure reading into an analog channel since it is possible for significant variations to occur during the course of a tunnel run.

C. Mach Number

1. MCODE indicates which measurements are to be used for Mach number calculation (see nomenclature on page A-1). The default value of MCODE
is 2. Multiple options are provided to allow for the possibility of instrument failure during a test. If the digital MCODE input is 1 to 5 , then digital value overrides the C -card value. If the digital value is zero, then the " C " value overrides. The reference pressures may also change.

If $\mathrm{MCODE}=1$

$$
\begin{equation*}
\text { PO/PTO }=(\text { PTANKG/PTH }) \mathrm{K}+\mathrm{I} \tag{Eq.A-3}
\end{equation*}
$$

If $\mathrm{MCODE}=2$

$$
\begin{equation*}
\mathrm{PO} / \mathrm{PTO}=(\mathrm{PTANKH} / \mathrm{PTH}) \mathrm{K}+\mathrm{I} \tag{Eq.A-4}
\end{equation*}
$$

If $\mathrm{MCODE}=\mathbf{3}$
PO/PTO = (PTANKG/PTG)K + I

If $\mathrm{MCODE}=4$

$$
\begin{equation*}
\text { PO/PTO }=(\text { PTANKH } / \mathrm{PTG}) \mathrm{K}+\mathrm{I} \tag{Eq.A-6}
\end{equation*}
$$

If $\mathrm{MCODE}=5$

$$
\begin{equation*}
\text { PO/PTO = (PTKSON } / \mathrm{PTSON}) \mathrm{K}+1 \tag{Eq.A-7}
\end{equation*}
$$

where K and I are from 1965 16-ft TT calibration

$$
\begin{equation*}
\mathrm{MACH}=\sqrt{5\left((\mathrm{PO} / \mathrm{PTO})^{-2 / 7}-1\right)} \tag{Eq.A-8}
\end{equation*}
$$

D. Tunnel Static Pressure

PO calculation automatically depends on MCODE. No input is required from the project engineer. The normal procedure (internal constant MCODE = 5) uses PTSON for computation.

```
If MCODE \leq 2
    PO = (PO/PTO)PTH
    (Eq. A-9)
If MCODE = 3 or 4
    PO = (PO/PTO)PTG
    If MCODE = 5
    PO=(PO/PTO)PTSON
If \(\mathrm{MCODE}=5\)
\[
\begin{equation*}
\mathrm{PO}=(\mathrm{PO} / \mathrm{PTO}) \mathrm{PTSON} \tag{Eq.A-11}
\end{equation*}
\]

\section*{E. Tunnel Total Pressure}

PTO to calculation automatically depends on MCODE. No input is required from the project engineer. The normal procedure (MCODE \(=5\) ) uses PTSON.

If \(M C O D E \leq 2\)
\(\mathrm{PTO}=\mathrm{PTH}\)
If MCODE \(=3\) or 4
\[
\begin{equation*}
\mathrm{PTO}=\mathrm{PTG} \tag{Eq.A-13}
\end{equation*}
\]

If \(\mathrm{MCODE}=5\)
(Eq. A-12)
(Eq. A-13)
\[
\begin{equation*}
\mathrm{PTO}=\mathrm{PTSON} \tag{Eq.A-14}
\end{equation*}
\]

\section*{F. Tunnel Dynamic Pressure}

Tunnel dynamic pressure is computed as follows:
\[
\begin{align*}
\text { If } \mathrm{MACH} & <.1 \\
\mathrm{QO} & =\mathrm{PO} \tag{Eq.A-15}
\end{align*}
\]
\[
\begin{equation*}
\mathrm{QO}=0.7 * \mathrm{PO}^{*} \mathrm{MACH}^{2} \tag{Eq.A-16}
\end{equation*}
\]

\section*{G. Dew Point}

Dew point calculation may be handled in the standard program for quantities. Its inclusion, channel location, and name are left optional to the project engineer; however, TDP is suggested as a name.
H. Tunnel Total Temperature
1. Provision is made for four individual tunnel total temperature measurements. They may be either thermocouples or resistance thermometers; however, the appropriate equation must be specified for the standard program for quantities. Note that resistance thermometer one (1) (strut head) should not be used. If resistance therometers are used, their calibrations are included internal to the program.
2. The constants required from the project engineer are \(T 2, T 3, T 4\), and \(T 5\) (0.0 or 1.0).
\[
\begin{equation*}
\mathrm{TTO}=\frac{(\mathrm{RT} 2 * \mathrm{~T} 2)+(\mathrm{RT} 3 * \mathrm{~T} 3)+(\mathrm{RT} 4 * \mathrm{~T} 4)+(\mathrm{RT} 5 * \mathrm{~T} 5)}{\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4+\mathrm{T} 5} \tag{Eq.A-17}
\end{equation*}
\]
I. Reynolds Number
1. The constant required from the project engineer is REFL.
\[
\begin{equation*}
\mathrm{RN} / \mathrm{FT}=\frac{1.81193 * 10^{8} * \mathrm{PTO} * \mathrm{MACH}\left(\mathrm{TTO}+658.27+39.72 \mathrm{MACH}^{2}\right)}{(\mathrm{TTO}+459.67)^{2}\left(1 .+0.2 \mathrm{MACH}^{2}\right)^{5 / 2}} \tag{Eq.A-18}
\end{equation*}
\]
\[
\begin{equation*}
\mathrm{RN}=\mathrm{RN} / \mathrm{FT} * \mathrm{REFL} \tag{Eq.A-19}
\end{equation*}
\]

\section*{APPENDIX B}

\section*{Jet Exhaust Measurements}
Nomenclatures ..... B-1
Required Constants ..... B-9
Test for Exhaust Model ..... B-10
Compute Common Constants ..... B-10
Individual Engine Measurements ..... B-11
Total Exhaust System Properties ..... B-16
Secondary Flow Measurements ..... B-21
Tertiary Flow Measurements ..... B-23

SYMBOL
AENG(I)

AREF
AT(I)
AVRI(L)

C*
\(\operatorname{CDSI}(\mathrm{L})\)
CFI
CFICHR

FI

FICHR

FIENG(I)

FM1
FMS
FVRI(I)

GAMJ
ICH(I)

INTFM1
INTF MS
KAE(I)

\section*{NOMENCLATURE}

Flow area to be used for determining each engine mass-flow rate from plenum chamber measurements, where I = engine number. This area is generally based on the area of the plenum orifice nozzles (AENG(I) = (orifice area)/2 for twin engines), sq. in.
Model reference area used for coefficients, sq. in.
Throat area of each engine, where \(I=\) engine number, sq. in. Area of throat of in-line (not MCV) venturi, where \(L=\) venturi number, sq. in.

Critical area, sq. in.
Discharge coefficient, where \(L=\) venturi number. Ideal thrust coefficient based on measured mass-flow rate. Ideal thrust coefficient based on mass-flow rate obtained from plenum chamber measurements.

Ideal thrust of total primary exhaust system based on measured mass-flow rate, lbs.

Ideal thrust of total primary exhaust system based on massflow rate obtained from plenum chamber measurements, lbs. Ideal thrust of individual engines (where \(I=\) engine number (up to 4)) based on mass-flow rate obtained from individual plenum chamber measurements, lbs.

Primary exhaust flow air flowmeter frequency, hertz.
Secondary flow air flowmeter frequency, hertz.
Ideal thrust based on in-line (not MCV) venturi mass flow, where \(I=\) engine number, lbs.
Ratio of specific heats for primary exhaust flow.
Intercept to be used for determining each engine mass-flow rate from plenum chamber measurements, where I = engine number.
Flowmeter number for primary flow air flowmeter. Flowmeter number for secondary flow air flowmeter.
Constant used in chamber mass-flow calculation, used if second order curve fit is required, where \(I\) = engine number.

SYMBOL
KBL
\(\mathrm{KCH}(\mathrm{I})\)

KIn
KI
KI
KJ1
KJ2
KJ3
KJ4
KJ5
KPAV(I)

KPBL(J)

KPCH(I)

KP
KPS(J)

KP T(I,J)

KPTBL(J)

KPTS(J)

\section*{NOMENCLATURE}

If set to 1 , tertiary flow computation is done.
If set to 0 , tertiary flow computation is omitted.
Slope to be used for determining each engine mass-flow rate from plenum chamber measurements, where \(I=\) engine number.
Internally computed constant.
Internally computed constant.
Internally computed constant.
Internally computed constant (function of GAMJ).
Constants used to determine average primary jet total pressure ratio from all engines, where \(I=\) engine number these constants must equal 0.0 or 1.0 .
Constants used to determine average static pressure in tertiary duct, where \(\mathrm{J}=\) probe number. Must equal 0.0 or 1.0.

Break pressure for calculation of WPENG(I) for second order equations, lbs/sq. in.
Secondary flowmeter constant (Internally computed).
Constants used to determine average static pressure in secondary air duct, where \(\mathrm{J}=\) probe number. Must equal 0.0 or 1.0.
Constants used in computing jet total pressure, where \(\mathrm{I}=\) engine number and \(J=\) probe number. These constants must equal 0.0 or 1.0 .
Constants used to determine average total pressure in tertiary duct, where \(J=\) probe number. Must equal 0.0 or 1.0 .

Constants used to determine average total pressure in secondary air duct, where \(J=\) probe number. Must equal 0.0 or 1.0.

SYMBOL KR(I,J)

KSEC

KSW

KTAV(I)

KTT(I,J)

KV

KVA(I)

KVARI(L)

KVARI(L,I)

MBLDOT
MCV
MDOT

NOMENCLATURE
Rake constant for each probe in each engine, where I = engine number and \(J=\) probe number. If no correction is to be made to total pressure probe, then its value should be set to 1.0 . If probe is bad or does not exist, then its value should be set to 0.0 .
If set to 1 , secondary flow computation is done. If set to 0 , secondary flow computation is omitted.
Switch for chamber, venturi or flowmeter.
\(=-1\), Venturi mass-flow calculation.
\(=0\), Flowmeter mass-flow calculation.
\(=1\), Chamber mass-flow calculation.
\(=2\), In -line venturis.
Constants used to determine average primary jet total temperature from all engines, where \(I=\) engine number. These constants must equal 0.0 or 1.0 .
Constants used in determining primary jet total temperature, where \(I=\) engine number and \(J=\) probe number. These constants must equal 0.0 or 1.0 .
Venturi constant, used to account for different venturi calibrations. It includes venturi throat area and discharge coefficient.
Constants used to determine average static pressure of multiple critical venturi, where I = probe number.
Constants used in the computation of in-line (not MCV) venturi weight flow rate, where \(L=1\) to 4 represents values of \(P_{t} / P\) at \(A / A *\) of venturi to convert measured static pressure at throat to a total pressure and \(L=5\) to 8 represents averaging factors (must be 0.0 or 1.0 ).
Constants used to associate which in-line (not MCV) venturi weight flow rate is related to proper engine, where \(L=\) venturi number and \(\mathrm{I}=\) engine number.
Tertiary mass-flow rate, slugs/sec.
Venturi meter number.
Primary mass-flow rate as measured by flowmeter, slugs/sec.

SYMBOL
MDOTCH

MSDOT
NPTE

NTTE

NUMENG

PBL(J)

PBLAVE
PCH(I)

PCHOKE
PFM
PFMS
PS(J)

PSEC

PTBL(J)

PTBLAV
PTB/PTJ

PTB/PTO

PTENG(I)

PTENG(I)/PO

PTENGO(I)

\section*{NOMENCLATURE}

Primary mass-flow rate as computed from plenum chamber measurements, slugs/sec.
Secondary flow mass-flow rate, slugs/sec.
Number of total pressure probes in each engine, where I = engine number. (Internally computed).
Number of total temperature probes in each engine, where I = engine number. (Internally computed).

Number of engines in model (maximum of 4). NUMENG \(=0\) for aerodynamics model (no other constants required).
Static pressure measurements in the tertiary duct (up to 4 ), where \(\mathrm{J}=\) probe number, lbs/sq. in.
Average static pressure in the tertiary duct, lbs/sq. in.
Individual engine-plenum-chamber total pressure, \(\mathrm{I}=\) engine number, lbs/sq. in.

Primary jet-total-pressure ratio for choked flow.
Pressure measured at primary flow flowmeter, lbs/sq. in.
Pressure measured at secondary flow flowmeter, lbs/sq. in.
Static pressure measurements in the secondary flow duct (up to 4 ), where \(\mathrm{J}=\) probe number, lbs/sq. in.
Average static pressure in the secondary flow duct, lbs/sq. in.

Total pressure measurements in the tertiary duct (up to 4), where \(\mathrm{J}=\) probe number, lbs/sq. in.

Average total pressure in the tertiary duct, lbs/sq. in.
Ratio of tertiary total pressure to primary jet total pressure.
Ratio of tertiary total pressure to free-stream total pressure.

Average primary jet total pressure in each engine, where I = engine number, lbs/sq. in.
Ratio of average primary jet total pressure in each engine to tunnel static pressure, where \(I=\) engine number.
Ratio of average primary jet total pressure in each engine to tunnel static pressure, where \(\mathrm{I}=\) engine number.
\begin{tabular}{|c|c|}
\hline SYMBOL & NOMENCLATURE \\
\hline PTJ(I,J) & Individual primary jet total pressure measurements, where I \(=\) engine number and \(\mathrm{J}=\) probe number, lbs/sq. in. \\
\hline PTJ/PO & Average primary jet total pressure ratio (all engines). \\
\hline PTS(J) & Total pressure measurements in the secondary flow duct, where \(\mathrm{J}=\) probe number, lbs/sq. in. \\
\hline PTS/PTJ & Ratio of secondary flow total pressure to primary jet total pressure. \\
\hline PTS/PTO & Ratio of secondary flow total pressure to free-stream total pressure. \\
\hline PTSEC & Average total pressure in the secondary flow duct, lbs/sq. in. \\
\hline PTV & Tertiary venturi total pressure, lbs/sq. in. \\
\hline PV & Tertiary venturi static pressure, lbs/sq. in. \\
\hline PV1 & Averaged multiple critical venturi static pressure upstream of venturi throat, lbs/sq. in. \\
\hline PV2 & Averaged multiple critical venturi static pressure downstream of venturi throat, lbs/sq. in. \\
\hline PV/PTV & Ratio of tertiary venturi static pressure to tertiary total pressure. \\
\hline PVEN(1) & Multiple critical static pressure, where \(\mathrm{I}=1\) and 3 are upstream and \(I=2\) and 4 are downstream of venturi throat, lbs/sq. in. \\
\hline PVRI(L) & In-line (not MCV) venturi static pressure, where \(L=\) venturi number, lbs/sq. in. \\
\hline RJ & Gas constant for primary flow, ft/degree Rankine. \\
\hline RS & Gas constant for secondary flow, ft/degree Rankine. \\
\hline RV & Gas constant for tertiary flow, ft/degree Rankine. \\
\hline TCH(I) & Individual engine-plenum chamber total temperature, \(\mathbf{I}=\) engine number, \({ }^{\circ} \mathrm{F}\). \\
\hline TFM & Temperature at primary flowmeter, \({ }^{\circ} \mathrm{F}\). \\
\hline TFMS & Temperature at secondary flowmeter, \({ }^{\circ} \mathrm{F}\). \\
\hline THETBL & Tertiary flow corrected mass-flow ratio. \\
\hline THETSE & Secondary flow corrected mass-flow ratio. \\
\hline TTBL & Total temperature of tertiary flow, \({ }^{\circ} \mathrm{F}\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline B-6 & \\
\hline SYMBOL & NOMENCLATURE \\
\hline TTENG(I) & Average primary jet total temperature in each engine where \(\mathrm{I}=\) engine number, \({ }^{\circ} \mathrm{F}\). \\
\hline TTJ(I,J) & Individual primary jet total temperature measurements where \(\mathrm{I}=\) engine number and \(\mathrm{J}=\) probe number, \({ }^{\circ} \mathrm{F}\). \\
\hline TTJAVG & Average primary jet total temperature (all engines), \({ }^{\circ} \mathrm{F}\). \\
\hline TTSEC & Secondary flow total temperature, \({ }^{\circ} \mathrm{F}\). \\
\hline TTV & Temperature at the tertiary venturi, \({ }^{\circ} \mathrm{F}\). \\
\hline TV & Multiple critical venturi temperature, \({ }^{\circ} \mathrm{F}\). \\
\hline TVRI(L) & Temperature at the in-line (not MCV) venturi, where \(L=\) venturi number, \({ }^{\circ} \mathrm{F}\). \\
\hline VRATIO & Ratio of multiple critical venturi static pressures (should be less than 0.93). \\
\hline WI & Ideal weight flow of primary flow, lbs/sec. \\
\hline WIENG(I) & Ideal weight flow of each individual engine primary flow, where \(\mathrm{I}=\) engine number, \(\mathrm{lbs} / \mathrm{sec}\). \\
\hline WMCV & Multiple critical venturi weight flow rate, lbs/sec. \\
\hline WMCV/WI & Ratio of multiple critical venturi weight flow rate to ideal weight flow rate. \\
\hline WP & Measured weight flow of air primary flow flowmeter or venturi, lbs/sec. \\
\hline WPBL & Tertiary weight flow rate obtained from venturi, lbs/sec. \\
\hline WPCHR & Total primary flow weight flow rate obtained from plenum chamber measurements, lbs/sec. \\
\hline WPCHR/WI & Discharge coefficient of total primary flow system as obtained from plenum chamber measurements for entire system. \\
\hline WPENG(I) & Primary flow weight flow rate of each engine obtained from plenum-chamber measurements, where I = engine number, lbs/sec. \\
\hline WPSEC & Secondary flow weight flow rate, lbs/sec. \\
\hline WP/WI & Primary flow discharge coefficient using flowmeter or venturi weight flow rate for entire system. \\
\hline WPE/WIE(I) & Discharge coefficient of each individual engine as obtained from plenum-chamber measurements, where \(I=\) engine number. \\
\hline
\end{tabular}
\begin{tabular}{ll} 
SYMBOL & NOMENCLATURE \\
WPVRI & Sum of in-line (not MCV) venturi weight flow rates, lbs/sec. \\
WPVRI/WI & \begin{tabular}{l} 
Ratio of summation of in-line (not MCV) venturi weight flow \\
rate to ideal weight flow rate.
\end{tabular} \\
WV/WI(I) & \begin{tabular}{l} 
Ratio of in-line (not MCV) venturi weight flow to ideal \\
weight flow of each engine, where I = engine number.
\end{tabular} \\
WVRI(L) & \begin{tabular}{l} 
In-line (not MCV) venturi weight flow rate, where \(L=\) \\
venturi number, lbs/sec.
\end{tabular} \\
\(Z\) & \begin{tabular}{l} 
Primary flowmeter constant. (Internally computed).
\end{tabular} \\
ZS & Secondary flowmeter constant. (Internally computed).
\end{tabular}

\author{
APPENDIX B \\ Module B \\ Jet Exhaust Measurements
}

\section*{A. Required Constants}
1. All constants are initialized to a value of zero. The project engineer needs to supply only those constants which are required for the quantities to be computed. In addition, by logical use of combinations of these constants, several options are available to the project engineer. One of these options is discussed later.
2. NUMENG - number of engines in model. NUMENG \(=0\) for aerodynamics model (no other constants are required).
3. \(\quad K R(I, J)\) - Rake constant for each probe in each engine, where \(I=\) engine number and \(\mathrm{J}=\) probe number.

If no correction is to be made to the total pressure probe, then its value is set equal to 1.0. If the probe is faulty or does not exist, then its value is set equal to \(\mathbf{0 . 0}\).

Example: Two engines; five probes in the first, and three probes in the second.

Engine 1 is corrected to integrated rake values, engine 2 probes are uncorrected.
\(K R(1,1)=1.051\)
\(K R(1,2)=.986\)
\(K R(1,3)=.972\)
\(K R(1,4)=.987\)
\(K R(1,5)=1.058\)
\(K R(2,1)=1.0\)
\(K R(2,2)=1.0\)
\(K R(2,3)=1.0\)

Note that there is no need to supply those constants which equal zero since they are assumed to be zero if not supplied.
4. Special Case: A twin-engine configuration with only one set of chamber measurements is not uncommon. The following constants are used.

NUMENG \(=2\)
AENG(1) \(=\) total orifice nozzle area
\(\operatorname{AENG}(2)=0.0\)

This combination of constants yields the following, nonstandard, results:

WPENG(1) = total weight flow based on pressure and temperature measurements of engine 1.
WPENG(2) \(=0.0\)
WPE/WIE(1) and WPE/WIE(2) are meaningless
FIENG(1) \(=\) total ideal thrust based on pressure and temperature measurements of engine 1.
\(\operatorname{FIENG}(2)=0.0\)
WPCHR, MDOTCH, WPCHR/WI, FICHR, and CFICHR are based on pressure and temperature measurements in engine 1 rather than on the average values of both engines.
B. Test for Exhaust Model
1. The constant required from the project engineer is NUMENG (0 to 4).

IF NUMENG \(=0\), skip module \(B\).
C. Compute Common Constants
1. The constants required from the project engineer are GAMJ and RJ.
\[
\mathrm{KJ} 1=\left(\frac{2}{\mathrm{GAMJ}+1}\right)^{\frac{\mathrm{GAMJ}+1}{2(\mathrm{GAMJ}-1)}} \sqrt{\frac{\text { GAMJ } * 32.174}{\text { RJ }}}
\]
\[
\begin{equation*}
\mathrm{KJ} 2=\frac{\text { GAMJ * } 64.348}{(\mathrm{GAMJ}-1) R J} \tag{Eq.B-2}
\end{equation*}
\]
\(\mathrm{KJ} 3=\sqrt{\frac{2 *(\mathrm{GAMJ}) *(\mathrm{RJ})}{(\mathrm{GAMJ}-1) * 32.174}}\)
\(\mathrm{KJ4}=\frac{\text { GAMJ }-1}{\text { GAMJ }}\)
\(K J 5=\quad \frac{1}{\text { GAMJ }}\)

PCHOKE \(=\left[1+\left(\frac{\text { GAMJ }-1}{2}\right)\right]^{\frac{\text { GAMJ }}{\text { GAMJ }-1}}\)

\section*{D. Individual Engine Measurements}
1. This permits computation for four separate engines with the following instrumentation in each engine:
a. jet total pressures
b. jet total temperatures
c. chamber pressure
d. chamber temperature
2. Jet total pressure
a. Jet total pressure will always be called \(\operatorname{PTJ}(\mathrm{I}, \mathrm{J})\), where \(\mathrm{I}=\) engine number and \(J=\) probe number.
b. An example of representing the third measurement (probe 3) of jet total pressure in engine 2 is named \(\operatorname{PTJ}(2.3)\).
c. The constants required from the project engineer are \(K R(I, J)\) and \(\operatorname{KPT}(\mathrm{I}, \mathrm{J})\).
\begin{tabular}{|c|c|c|c|}
\hline \multirow{4}{*}{\(\operatorname{PTENG}(\mathrm{I})=\)} & NPTE(I)
\[
\Sigma
\] & \(\operatorname{PTJ}(\mathrm{I}, \mathrm{J}) * \mathrm{KR}(\mathrm{I}, \mathrm{J})\) & \multirow{4}{*}{(Eq. B-7)} \\
\hline & \[
\frac{\mathrm{J}=1}{\mathrm{NPTE}(\mathrm{~T})}
\] &  & \\
\hline & \(\Sigma\) & KPT(I,J) & \\
\hline & \(\mathrm{J}=1\) & & \\
\hline PTENGO(I) \(=\) & \[
\frac{\text { PTENG(I) }}{\mathrm{PO}}
\] & & (Eq. B-8) \\
\hline
\end{tabular}
3. Jet total temperature
a. Jet total temperature measurements are always called \(\mathrm{TT} \mathrm{J}(\mathrm{I}, \mathrm{J})\), where \(\mathrm{I}=\) engine number and \(\mathrm{J}=\) probe number.
b. An example of the first measurement (probe 1) of jet total temperature in engine 3 is named TTJ(3.1).
c. The constants required from the project engineer are KTT(I, J) and NTTE(I).
\[
\sum^{\operatorname{NTTE}(\mathrm{I})} \operatorname{TTJ}(\mathrm{I}, \mathrm{~J}) * \operatorname{KTT}(\mathrm{I}, \mathrm{~J})
\]
\[
\operatorname{TTENG(I)=} \frac{\frac{\mathrm{J}=1}{\sum_{\mathrm{JTTE}(\mathrm{I})}} \quad \operatorname{KTT}(\mathrm{I}, \mathrm{~J})}{}
\]
4. Chamber weight flow for each engine.
a. The constants required from the project engineer are \(\mathrm{KCH}(\mathrm{I})\), \(\operatorname{ICH}(\mathrm{I}), \mathrm{KAE}(\mathrm{I}), \operatorname{AT}(\mathrm{I}), \operatorname{AENG}(\mathrm{I})\) and \(\mathrm{KPCH}(\mathrm{I})\).

If \(\mathrm{PCH}(\mathrm{I}) \leq \mathrm{KPCH}(\mathrm{I})\)

\section*{then}
\[
\left.\operatorname{WPENG}(\mathrm{I})=\frac{\operatorname{AENG}(\mathrm{I}) * \mathrm{PCH}(\mathrm{I}) * \mathrm{KJ1} *[\mathrm{ICH}(\mathrm{I})+\mathrm{KCH}(\mathrm{I}) * \mathrm{PCH}(\mathrm{I})+\mathrm{KAE}(\mathrm{I}) * \mathrm{PCH}(\mathrm{I})}{}{ }^{2}\right]
\]

If \(\mathrm{PCH}(\mathrm{I})>\mathrm{KPCH}(\mathrm{I})\) then
\[
\operatorname{WPENG}(\mathrm{I})=\frac{\operatorname{AENG}(\mathrm{I}) * \operatorname{PCH}(\mathrm{I}) * \mathrm{KJ1} *\left[\mathrm{ICH}(\mathrm{I}+4)+\mathrm{KCH}(\mathrm{I}+4) * \mathrm{PCH}(\mathrm{I})+\mathrm{KAE}(\mathrm{I}+4) * \mathrm{PCH}(\mathrm{I})^{2}\right]}{\sqrt{\mathrm{TCH}(\mathrm{I})+459.67}}
\]
(Eq. B-10)
5. Ideal weight flow for each engine.
a. The nozzle choke total pressure ratio is calculated internally and is called PCHOKE.
b. The constant required from the project engineer is AT(I).

If PTENGO(I) is greater than PCHOKE, use equation B-11.
\[
\begin{equation*}
\operatorname{wIENG}(\mathrm{I})=\frac{[\mathrm{KJ1}] *[\operatorname{PTENG}(\mathrm{I})]}{\sqrt{\operatorname{TTENG}(\mathrm{I})+459.67}} \tag{Eq.B-11}
\end{equation*}
\]

If PTENGO(I) is less than or equal to PCHOKE, use equation B-12.
\[
\mathrm{KI1}=\quad \frac{\mathrm{KJ} 2}{(\operatorname{TTENG}(\mathrm{I})+459.67)} \quad\left[1-\left(\frac{1}{\mathrm{PTENGO}(\mathrm{I})}\right)\right]
\]

If KII is less than \(0, \mathrm{KI1}=.0001\)
(Eq. B-12)
then
WIENG(I) \(=\sqrt{\mathrm{KII}} * \operatorname{AT}(\mathrm{I}) * \operatorname{PTENG}(\mathrm{I}) *\left(\frac{1}{\text { PTENGO(I) }}\right) \quad \mathrm{KJ5}\)

Note to the project engineer: If the engine is shrouded, then a local static pressure in the nozzle shroud should be used rather than PO. The engineer must supply a new equation for KI1 and WIENG(I).
6. Discharge coefficient for each engine based on chamber weight flow.
\[
\begin{equation*}
\text { WPE/WIE(I) }=\frac{\text { WPENG(I) }}{\operatorname{WIENG}(\mathrm{I})} \tag{Eq.B-14}
\end{equation*}
\]

If \(\operatorname{WIENG}(\mathrm{I})=0, \operatorname{WPE} / \operatorname{WIE}(\mathrm{I})=0\)
7. Ideal thrust for each engine based on chamber weight flow.
\[
\mathrm{K} 12=\left[\begin{array}{ll}
\operatorname{TTENG}(\mathrm{I})+459.67
\end{array}\right] *\left[\begin{array}{ll}
1- & \frac{1}{\text { PTENGO(I) }}
\end{array}\right]
\]
(Eq. B-15)
If K 12 is less than \(0, \mathrm{KI} 2=.0001\)
\[
\begin{equation*}
\operatorname{FIENG}(\mathrm{I})=[\mathrm{KJ} 3] *[\mathrm{WPENG}(\mathrm{I})] *[\sqrt{\mathrm{~K} 12}] \tag{Eq.B-16}
\end{equation*}
\]
8. In-line venturi: weight flow for each engine. The equations given below are for critical flow venturi and are intended to be very general.
\[
\begin{aligned}
\mathrm{A}(\mathrm{I})= & \{[\operatorname{VKRI}(\mathrm{I}, 4) *(\operatorname{TVRI}(\mathrm{~L})+459.67)+\operatorname{VKRI}(\mathrm{I}, 3)] * \\
& (\operatorname{TVRI}(\mathrm{L})+459.67)+\operatorname{VKRI}(\mathrm{I}, 2)\} *(\operatorname{TVRI}(\mathrm{~L})+459.67)+\operatorname{VKRI}(\mathrm{I}, 1)
\end{aligned}
\]

A(I) where \(I=1\) to 4 are constants which go into the compressibility term, C*. As seen, a 3rd order equation capability exists. Values of VKRI(I,1) to VKRI \((1,4)\) can be input using ' \(T\) ' cards to allow use of most any critical venturi.
\[
\begin{aligned}
& \mathrm{C} *=[(\mathrm{A}(4) * \operatorname{PVRI}(\mathrm{~L})+\mathrm{A}(3)) * \operatorname{PVRI}(\mathrm{~L})+\mathrm{A}(2)] * \operatorname{PVRI}(\mathrm{~L})+\mathrm{A}(1) \\
& \mathrm{TS}=0.8333 * \operatorname{TVRI}(\mathrm{~L})+459.67 \\
& \mathrm{VIS}=6.086248 * 10^{-8} *(\mathrm{TS})^{1.5} /(\mathrm{TS}+198.6)
\end{aligned}
\]

Individual venturi mass flow is then computed using
\[
\operatorname{WVRI}(\mathrm{L})=\frac{\operatorname{PVRI}(\mathrm{L}) * \operatorname{KVARI}(\mathrm{~L}) * \operatorname{AVRI}(\mathrm{~L}) * \mathrm{~g} * \mathrm{C}^{*} * \operatorname{CDSI}(\mathrm{~L})}{\sqrt{\mathrm{g} * \operatorname{RJ} *(\operatorname{TVRI}(\mathrm{~L})+459.67)}}
\]

NOTE: CDSI(L) represents the discharge coefficient of individual venturi. It is obtained using an iterative scheme based on venturi throat Reynolds number. A table of \(C D\) versus RDUCT is required for each venturi. RDUCT is computed using
\[
\operatorname{RDUCT}(\mathrm{L})=\mathrm{WVRI}(\mathrm{~L}) /(\operatorname{AVRI}(\mathrm{L}) * \operatorname{VIS})
\]

Because of the complexity of this computation, an example is included. The following information is contained within the data reduction program when using the twin critical venturis which measure total mass flow in the groundstand (B1234).
\[
\begin{array}{ll}
\operatorname{VKRI}(1,4)=0.0 & \operatorname{VKRI}(3,4)=0.0 \\
\operatorname{VKRI}(1,3)=-1.43545 \mathrm{E}-8 & \operatorname{VKRI}(3,3)=1.64438 \mathrm{E}-13 \\
\operatorname{VKRI}(1,2)=1.36243 \mathrm{E}-5 & \operatorname{VKRI}(3,2)=-1.90568 \mathrm{E}-10 \\
\operatorname{VKRI}(1,1)=0.68166 & \operatorname{VKRI}(3,1)=5.4424 \mathrm{E}-8 \\
\operatorname{VKRI}(2,4)=0.0 & \operatorname{VKRI}(4,4)=0.0 \\
\operatorname{VKRI}(2,3)=4.49456 \mathrm{E}-10 & \operatorname{VKRI}(4,3)=0.0 \\
\operatorname{VKRI}(2,2)=-6.06496 \mathrm{E}-7 & \operatorname{VKRI}(4,2)=0.0 \\
\operatorname{VKRI}(2,1)=2.14835 \mathrm{E}-4 & \operatorname{VKRI}(4,1)=0.0
\end{array}
\]
\[
\begin{array}{lll}
\operatorname{KVARI}(1)=1.0040 & \operatorname{AVRI}(1)=.272009 & \operatorname{KVARI}(5)=1.0 \\
\operatorname{KVARI}(2)=1.0039 & \operatorname{AVRI}(2)=.264481 & \operatorname{KVARI}(6)=1.0
\end{array}
\]

Only the KVARI and AVRI constants are required to be input by an engineer. Both venturis use the same CD versus RDUCT relationship, which is not a table lookup but simply a second order equation. Of course a table lookup could be used in lieu of the equation.

The CDSI equation for twin critical venturis in groundstand:
\[
\operatorname{CDSI}(\mathrm{L})=0.993507+3.5062 \mathrm{E}-4(\operatorname{RDUCT}(\mathrm{~L}))-1.1269 \mathrm{E}-5\left(\mathrm{RDUCT}(\mathrm{~L})^{2}\right)
\]
where \(\operatorname{RDUCT}(\mathrm{L})=\mathrm{WVRI}(\mathrm{L}) /(\operatorname{AVRI}(\mathrm{L}) * \operatorname{VIS} * 1.0 \mathrm{E} 06)\)
9. Discharge coefficient for each engine based on in-line venturi weight flow.
\(\mathrm{WV} / \mathrm{WI}(\mathrm{I})=\mathrm{WVRI}(\mathrm{I}) / \mathrm{WIENG}(\mathrm{I})\)
10. Ideal thrust for each engine based on in-line venturi weight flow.
\(\operatorname{FVRI}(\mathrm{I})=\operatorname{WVRI}(\mathrm{I}) * \operatorname{KJ3} * \sqrt{\mathrm{~K} 12}\)
(Eq. B-17)
E. Total Exhaust System Properties
1. Average total pressure ratio.
a. The constant required from the project engineer is KPAV(I).
\[
\mathrm{PTJ} / \mathrm{PO}=\frac{\sum_{\mathrm{I}=1}^{\text {NUMENG }}[\mathrm{KPAV}(\mathrm{I}) * \operatorname{PTENGO}(\mathrm{I})]}{\mathrm{I}]} \underset{\substack{\mathrm{I}=1}}{\sum \operatorname{KPAV}(\mathrm{I})}
\]
2. Average total temperature.
a. The constant required from the project engineer is KTAV(I).
\[
\begin{gathered}
\text { NUMENG } \\
\sum \quad[\operatorname{KTAV}(\mathrm{I}) * \operatorname{TTENG}(\mathrm{I})] \\
\frac{\mathrm{I}=1}{\mathrm{NUMENG}} \quad \mathrm{KTAV}(\mathrm{I}) \\
\mathrm{I}=1
\end{gathered}
\]
3. Total weight or mass flow.
a. The total system weight flow is in units of \(\mathrm{lb} / \mathrm{sec}\).
b. The total system mass flow is in units of slugs/sec.
c. The constants required from the project engineer are:
(1) INTFM1 and MCV
(2) KSW selects mass flow computation
\(=1\); chamber flow
= 0 ; flowmeter
\(=-1\); MCV venturi
\(=2\); in-line venturis

If \(\mathrm{KSW}=1\) (chamber mass flow calculation)

NUMENG
\(\begin{array}{ll}\text { WPCHR }=\sum_{\mathrm{I}=1} \text { WPENG(I) } \\ \text { MDOTCH }=\frac{\text { WPCHR }}{32.174} & \text { (Eq. B-20) } \\ \text { (Eq. B-21) }\end{array}\)

If KSW \(=0\) (air model with flowmeter)

Z and KP are determined from standardized flowmeter tables
\[
\begin{equation*}
\mathrm{WP}=\frac{(\mathrm{FM} 1) *(\mathrm{PFM}) *(144 .)}{(\mathrm{RJ}) *(\mathrm{Z}) *(\mathrm{KP}) *(\mathrm{TFM}+459.67)} \tag{Eq.B-22}
\end{equation*}
\]
\[
\begin{equation*}
\text { MDOT }=\frac{W P}{32.174} \tag{Eq.B-23}
\end{equation*}
\]

If \(\mathrm{KSW}=-1\) (venturi mass flow calculation), the venturi code, MCV , is decoded to derive those venturi present
\[
\begin{align*}
& \mathrm{PV} 1=\frac{\text { KVA1 * PVEN1 + KVA3 * PVEN3 }}{\text { KVA1 + KVA3 }} \\
& \mathrm{PV} 2=\frac{\text { KVA2 * PVEN2 + KVA4 * PVEN4 }}{\text { KVA2 }+ \text { KVA4 }} \\
& \text { VRATIO }=\frac{\mathrm{PV} 2}{\mathrm{PV} 1} \\
& \mathrm{~A}(\mathrm{I})=((\mathrm{VK}(\mathrm{I}, 4) * \mathrm{TV}+\mathrm{VK}(\mathrm{I}, 3)) * \mathrm{TV}+\mathrm{VK}(\mathrm{I}, 2)) * \mathrm{TV}+\mathrm{VK}(\mathrm{I}, 1) \quad \text { (Eq. } \mathrm{B}-24) \\
& \mathrm{C} *=((\mathrm{A}(4) * \mathrm{PV} 1+\mathrm{A}(3)) * \mathrm{PV} 1+\mathrm{A}(2)) * \mathrm{PV} 1+\mathrm{A}(1) \\
& \mathrm{TS}=0.8333 *(\mathrm{TV}+459.67) \\
& \mathrm{VIS}=6.086248 * 10^{-8} *(\mathrm{TS})^{1.5} /(\mathrm{TS}+198.6) \\
& \mathrm{WMCV}=\sum \mathrm{PV} 1 * \operatorname{AREAV}(\mathrm{I}) *\left(\mathrm{C}^{*}\right) *\left(\frac{32.174}{(\mathrm{TV}+459.67) \mathrm{RJ}}\right)^{1 / 2} * \mathrm{CD}(\mathrm{I}) \\
& \text { I }  \tag{Eq.B-28}\\
& \operatorname{ARMCV}=\sum \operatorname{AREAV}(\mathrm{I}) \tag{Eq.B-29}
\end{align*}
\]

The above summations are over the venturi present. \(C D(1)\) is computed by linear interpolation from a table of \(C D\) vs RNMCV
where
RNMCV = WMCV/(ARMCV*VIS)
(Eq. B-30)

An iterative scheme is used until successive computations of WMCV differ by a desired accuracy.
4. If \(\mathrm{KSW}=2\) (in-line venturis)
\[
\mathrm{WPVRI}=\sum_{\mathrm{L}=1}^{4} \quad \operatorname{WVRI}(\mathrm{~L}) * \operatorname{KVARI}(\mathrm{~L}+4)
\]
5. Ideal weight flow (total).
a. Ideal weight flow of the total system is computed

NUMENG
WI \(=\sum_{\mathrm{I}=1} \quad\) WIENG(I)
(Eq. B-32)
6. Discharge coefficient for the entire system.
a. The discharge coefficient using weight flow from a flowmeter or a venturi and the discharge coefficient using weight flow from chamber measurements are computed.

If \(\quad \mathrm{KSW}=2 \quad \mathrm{WP}=\mathrm{WPVRI}\)
\(K S W=1 \quad W P=W P C H R\)
\(K S W=0 \quad W P=W P\)
\(K S W=-1 \quad W P=W M C V\)

MDOT \(=\frac{W P}{32.174}\)
(Eq. B-33)
\(W P / W I=\frac{W P}{W I}\)
(Eq. B-34)
WPCHR/WI \(=\frac{\text { WPCHR }}{\text { WI }}\)
\[
\begin{aligned}
\mathrm{WMCV} / \mathrm{WI} & =\frac{\mathrm{WMCV}}{\mathrm{WI}} \\
\mathrm{WPVRI} / \mathrm{WI} & =\frac{\mathrm{WPVRI}}{\mathrm{WI}} \\
\text { If } \mathrm{WI}=0 ; \mathrm{WP} / \mathrm{WI} & =\mathrm{WPCHR} / \mathrm{WI}=\mathrm{WMCV} / \mathrm{WI}=\mathrm{WPVRI} / \mathrm{WI}=0
\end{aligned}
\]
(Eq. B-36)

\section*{7. Ideal thrust for the entire system.}
a. The ideal thrust, FICHR, and ideal thrust coefficient CFICHR are obtained from chamber weight flow.
b. The ideal thrust, FI, and ideal thrust coefficient CFI are obtained from flowmeter or venturi measured weight flow.
c. Note that MACH, PO and QO are from Module A.
d. The constant required from project engineer is AREF

NUMENG
FICHR \(=\sum_{I=1} \quad\) FIENG( I\()\)
(Eq. B-37)

If \(\mathrm{MACH}<.1\),
\[
\begin{equation*}
\text { CFICHR }=\frac{\text { FICHR }}{(\mathrm{PO})^{*}(\mathrm{AREF})} \tag{Eq.B-38}
\end{equation*}
\]

If MACH>.1,
\[
\begin{equation*}
\text { CFICHR }=\frac{\text { FICHR }}{(\text { QO) }} \text { (AREF) } \tag{Eq.B-39}
\end{equation*}
\]
\[
\begin{equation*}
\mathrm{KI} 3=(\mathrm{TTJAVG}+459.67) *\left[1-\frac{1}{\mathrm{PTJ} / \mathrm{PO}} \mathrm{KJ4}\right] \tag{Eq.B-40}
\end{equation*}
\]

If \(\mathrm{KI} 3<0 ; \mathrm{KI} 3=.0001\)
\(\mathrm{FI}=(\mathrm{KJ} 3) *(\mathrm{WP}) *(\sqrt{\mathrm{~K} 13})\)
(Eq. B-41)
WP from flowmeter if KSW \(=0\)
WP from venturi if KSW \(=-1\)
\(W P=W P C H R\) if \(K S W=1\)
\(\mathrm{WP}=\mathrm{WPVRI}\) if \(\mathrm{KSW}=2\)
If \(\mathrm{MACH}<.1\),
\[
\mathrm{CFI}=\frac{\mathrm{FI}}{(\mathrm{PO}) *(\mathrm{AREF})}
\]
(Eq. B-42)

If \(\mathrm{MACH}>.1\),
\[
\mathrm{CFI}=\frac{\mathrm{FI}}{(\mathrm{QO}) *(\mathrm{AREF})}
\]
(Eq. B-43)

If \(K S E C=0\), skip equations B-44 through B-50.
F. Secondary Flow Measurements
1. Secondary passage total pressure.
a. The total pressure measurements PTS(J) in the secondary air passage (up to 4) are used to compute the average secondary passage total pressure.
b. The constant required from the project engineer is KPTS(J).
\(\operatorname{PTSEC}=\)\begin{tabular}{ll}
4 \\
& \(\sum \operatorname{KPTS}(\mathrm{~J}) * \operatorname{PTS}(\mathrm{~J})\) \\
4 \\
\(\sum \operatorname{KPTS}(\mathrm{~J})\) \\
\(\mathrm{J}=\mathrm{i}\)
\end{tabular}\(\quad\) (Eq. B-44)
2. Secondary passage static pressure.
a. Static pressure measurements \(\operatorname{PS}(J)\) in the secondary air passage (up to 4) are used to compute the average static pressure in the secondary air passage.
b. The constant required from the project engineer is KPS(J)
\[
\operatorname{PSEC}=\quad \begin{align*}
& 4 \\
& \sum \mathrm{KPS}(\mathrm{~J}) * \operatorname{PS}(\mathrm{~J}) \\
& \frac{\mathrm{J}=1}{4}  \tag{Eq.B-45}\\
& \sum \mathrm{KPS}(\mathrm{~J}) \\
& \mathrm{J}=1
\end{align*}
\]
3. Secondary duct total temperature.
a. The total temperature TTSEC in the secondary duct is handled in the standard program for quantities.
4. Secondary mass flow.
a. The constants required from the project engineer are RS, KPS, ZS, INTFMS. KPS and ZS are determined internally from INTF MS constant.
\[
\begin{equation*}
\mathrm{WPSEC}=\frac{(\mathrm{FMS}) *(\mathrm{PFMS}) *(144.0)}{(\mathrm{RS}) *(\mathrm{ZS})^{*}(\mathrm{KPS})^{*}(\mathrm{TFMS}+459.67)}, \mathrm{lbs} / \mathrm{sec} \tag{Eq.B-46}
\end{equation*}
\]
\[
\begin{equation*}
\text { MSDOT }=\frac{\text { WPSEC }}{32.174}, \text { slugs } / \text { sec } \tag{Eq.B-47}
\end{equation*}
\]
5. Pumping characteristics
\[
\begin{equation*}
\mathrm{PTS} / \mathrm{PTJ}=\frac{\mathrm{PTSEC}}{(\mathrm{PTJ} / \mathrm{PO})^{*}(\mathrm{PO})} \tag{Eq.B-48}
\end{equation*}
\]
\[
\begin{equation*}
\mathrm{PTS} / \mathrm{PTO}=\frac{\mathrm{PTSEC}}{\mathrm{PTO}} \tag{Eq.B-49}
\end{equation*}
\]
6. Corrected mass flow ratio
\[
\text { THETSE }=\frac{\text { MSDOT }}{\text { MDOT }} \sqrt{\frac{(\text { TTSEC }+459.67) * \mathrm{RS}}{(\text { TTJAVG }+459.67)^{*} \mathrm{RJ}}}
\]
(Eq. B-50)
If \(\mathrm{KBL}=0\), skip equations \(\mathrm{B}-51\) through B-57.
G. Tertiary Flow Measurements
1. Tertiary duct total pressure.
a. The total pressure measurements \(\operatorname{PBL}(\mathrm{J})\) in the tertiary duct (up to 4) are used to compute the average tertiary duct total pressure.
b. The constant required from the project engineer is KPTBL(J).
\[
\operatorname{PTBLAV}=\begin{align*}
& \frac{4}{\mathrm{~J}=1} \operatorname{KPTBL}(\mathrm{~J}) * \operatorname{PTBL}(\mathrm{~J}) \\
& \frac{\mathrm{J} \operatorname{KPTBL}(\mathrm{~J})}{\mathrm{J}=1} \tag{Eq.B-51}
\end{align*}
\]
2. Tertiary duct static pressure.
a. Static pressure measurements PBL(J) in the tertiary duct (up to 4) are used to compute the average static pressure in the tertiary duct.
b. The constant required from the project engineer is KPBL(J).

(Eq. B-52)
3. Tertiary duct total temperature.
a. Total temperature in the tertiary duct TTBL is handled in the standard program for quantities.
4. Tertiary mass flow.
a. Venturi total pressure, PTV, and venturi static pressure, PV, are required.
b. Tertiary weight flow is in units of lbs/sec.
c. Tertiary mass flow is in units of slugs \(/ \mathrm{sec}\).
d. The constants required from the project engineer are \(\mathrm{RV}, \mathrm{KV}\).
\(\mathrm{PV} / \mathrm{PTV}=\frac{\mathrm{PV}}{\mathrm{PTV}}\)
\(W P B L=K V\left(\frac{\rho_{0}}{\rho_{0} a_{0}}\right)\left(\frac{P T V}{\sqrt{T T V+459.67}}\right)\)
(Eq. B-53)
where \(\frac{\rho_{0} V}{\rho_{0}{ }_{0}}\) is a function of \(P V / P T V\) and is
determined from slopes and intercepts supplied by the 16 -foot transonic tunnel personnel.
\[
\text { MBLDOT }=\frac{\text { WPBL }}{32.174}, \text { slugs } / \mathrm{sec}
\]
(Eq. B-54)
5. Pumping characteristics.
\[
\begin{align*}
& \mathrm{PTB} / \mathrm{PTJ}=\frac{\mathrm{PTBLAV}}{(\mathrm{PTJ} / \mathrm{PO})}  \tag{Eq.B-55}\\
& \text { PTB } / \mathrm{PTO}=\frac{\text { PTBLAV }}{\text { PTO }}
\end{align*}
\]
(Eq. B-56)
6. Corrected mass flow ratio.
\[
\text { THETBL }=\frac{\text { MBLDOT }}{\text { MDOT }} \quad \sqrt{\frac{(T T B L+459.67) * R V}{(T T J A V G+459.67)^{*} \mathrm{RJ}}}
\]
(Eq. B-57)

\section*{APPENDIX C}

\section*{Skin Friction Drag}
Nomenclatures ..... C-1
Required Constants ..... C-3
Test for Skin Friction Calculation ..... C-3
Fuselage Skin Friction Drag ..... C-4
Empennage Skin Friction Drag ..... C-4
Total Skin Friction Drag ..... C-5

\section*{MODULE C SKIN FRICTION DRAG}

SYMBOL
AREF

AWET(I)

CDF
CDFAFT
CDFF
CDFHT
CDFNOZ
CDFR(I)
CDFVT
CDFW
FL(I)

FORMF(I)

\section*{NOMENCLATURE}

Model reference area used for coefficients, sq. in. If module \(B\) is used, this constant is already specified.
Model wetted areas, sq. in.
Where \(\operatorname{AWET}(1)=\) total fuselage wetted area.
AWET(2) = fuselage wetted area up to metric break.
AWET(3) = fuselage wetted area up to nozzle connect station.
AWET(4) = wing wetted area.
AWET(5) = vertical tail wetted area.
AWET(6) = horizontal tail wetted area.
A WET(7) = optional, for additional body.
Total skin friction drag coefficient.
Afterbody plus nozzle skin friction drag coefficient.
Total fuselage skin friction drag coefficient.
Horizontal tails (canards) skin friction drag coefficient.
Nozzle skin friction drag coefficient.
Individual skin friction drag coefficients calculations.
Vertical tails(s) skin friction drag coefficient.
Wing skin friction drag coefficient.
Model reference lengths, feet.
Where \(\mathrm{FL}(1)=\) fuselage length.
FL(2) = fuselage length up to metric break.
FL(3) = fuselage length up to nozzle connect station.
FL(4) = wing mean aerodynamic chord.
FL(5) = vertical tail mean aerodynamic chord.
FL(6) = horizontal tail mean aerodynamic chord.
FL(7) = optional.
Form factors
Where \(\operatorname{FORMF}(1)=\) fuselage.
FORMF(2) = wing.
FORMF(3) = vertical tãil.
FORMF(4) = horizontal tail.
FORMF(5) = optional.

\section*{NOMENCLATURE}

KFAFT

\section*{KFF}

KFNOZ

Constant used to include proper terms in total skin friction drag term, CDF. Must equal 0.0 or 1.0 .

\section*{See KFAFT.}

See KFAFT.

> APPENDIX C
> Module C
> Skin Friction Drag

Skin friction drag is computed by the method of Frankl and Voishel \({ }^{1}\) for compressible, turbulent flow on a flat plate.
A. Required Constants

All constants are initialized to a value of 0.0 except FORMF(I) which is initialized to a value of 1.0 .
1. AWET(I)
2. FORMF(I)

Form factors may be obtained from LWP - 1120.
Fuselage: \(\operatorname{FORMF}(\mathrm{I})=1.0+1.5(\mathrm{~d} / \mathrm{l})^{1.5}+7(\mathrm{~d} / \mathrm{l})^{3}\)
Empennage: \(\overline{\operatorname{FORMF}(\mathrm{I})}=1.0+1.44(\mathrm{t} / \mathrm{c})+2(\mathrm{t} / \mathrm{c})^{2}\)
3. The model reference lengths (FL(I)), are given in the nomenclature section.
4. The model reference area (AREF) is used for coefficients, in \({ }^{2}\). If jet exhaust measurements are used, this constant is already specified.
5. The constants (KFF, KFAFT, KFNOZ) used to include proper terms in total skin friction drag term, CDF, must equal 0 or 1.
B. Test for Skin Friction Calculation If \(\operatorname{AWET}(1)=0\), skip the calculations for the skin friction drag in this module.

\footnotetext{
\({ }^{1}\) Franki, F., and Voishel, V. Friction in the turbulent boundary layer of a compressible gas at high speeds. TM NACA No. 1032, 1942.
}

\section*{C. Fuselage Skin Friction Drag}
1. The constants required from the project engineer are AWET(1), AWET(2), AWET(3), FL(1), FL(2), FL(3), AREF, and FORMF(1).
\[
\mathrm{J}=\mathbf{3}
\]

If \(\operatorname{AWET}(2)=0\) and \(\operatorname{AWET}(3)=0, \mathrm{~J}=1\)

If \(\operatorname{AWET}(2) \neq 0\) and \(\operatorname{AWET}(3)=0, \mathrm{~J}=2\)

Calculate \(\operatorname{CDFR}(\mathrm{I})\) for \(\mathrm{I}=1, \mathrm{~J}\)
\(\operatorname{CDFR}(\mathrm{I})=\frac{.472 * \operatorname{AWET}(\mathrm{I}) * \operatorname{FORMF}(1)}{\left(1+.2 \mathrm{MACH}^{2}\right)^{.467} *\left\{\log _{10}[(\mathrm{RN} / \mathrm{FT}) * \mathrm{FL}(\mathrm{I})]\right\}^{2.58} \begin{array}{r}* \operatorname{AREF} \\ \text { (Eq. C-3) }\end{array}}\)

If \(\mathrm{MACH}<.1, \operatorname{CDFR}(\mathrm{I})=0.0\)
\[
\begin{equation*}
\operatorname{CDFF}=\operatorname{CDFR}(1) \tag{Eq.C-4}
\end{equation*}
\]

If \(\operatorname{AWET}(2) \neq 0\),
\[
\begin{equation*}
\operatorname{CDFAFT}=\operatorname{CDFR}(1)-\operatorname{CDFR}(2) \tag{Eq.C-5}
\end{equation*}
\]

If AWET(3) \(=0\),
\[
\begin{equation*}
\operatorname{CDFNOZ}=\operatorname{CDFR}(1)-\operatorname{CDFR}(3) \tag{Eq.C-6}
\end{equation*}
\]

\section*{D. Empennage Skin Friction Drag}
1. The constants required from the project engineer are AWET(4), AWET(5), AWET(6), FL(4), FL(5), FL(6), AREF, FORMF(2), FORMF(3), FORMF(4), KFF, KFAFT, and KFNOZ.

\section*{Calculate CDFR(I) for \(I=4,7\)}
\[
\begin{aligned}
& \mathrm{J}=\mathrm{I}-2 \\
& \operatorname{CDFR}(\mathrm{I})=\frac{.472 * \operatorname{AWET}(\mathrm{I}) * \operatorname{FORMF}(\mathrm{~J})}{\left(1+.2 \mathrm{MACH}^{2}\right)^{.467} *\left\{\log _{10}[(\mathrm{RN} / \mathrm{FT}) * \mathrm{FL}(\mathrm{I})]\right\}^{2.58} * \text { AREF }} \begin{array}{r}
(\text { Eq. C-7) }
\end{array}
\end{aligned}
\]
IF \(\mathrm{MACH}<.1, \operatorname{CDFR}(\mathrm{I})=0\)
CDFW = CDFR(4)
CDFVT \(=\operatorname{CDFR}(5)\)
CDFHT \(=\) CDFR( 6 )

\section*{E. Total Skin Friction Drag}
1. Skin friction drag of the entire model is computed.
\[
\begin{aligned}
\mathrm{CDF}= & (\mathrm{KFF} * \mathrm{CDFF})+(\mathrm{KFAFT} * \mathrm{CDFAFT})+(\text { KFNOZ } * \mathrm{CDFNOZ}) \\
& +\mathrm{CDFW}+\mathrm{CDFVT}+\mathrm{CDFHT}+\mathrm{CDFR}(7)
\end{aligned}
\]

\section*{APPENDIX D \\ Balance Loads and Model Attitudes Calculations}
Nomenclatures ..... D-1
Required Constants ..... D-13
Test for Balance Loads and Model Attitudes ..... D-17
Balance Component Naming System ..... D-17
Uncorrected Balance Quantities ..... D-18
Tunnel Support Pitch Angle ..... D-19
Balance Quantities Corrected for Interactions, Weight Tares and ..... D-19
Momentum Tares
Balance Quantities Corrected for Method of Attachment ..... D-28
Angle of Attack and Sideslip Angle ..... D-28
Body Axis Components; Rotation and Translation ..... D-31
from Balance-to-Model Axis
Pressure Corrections to Body Axis Components ..... D-32
Stability Axis Components ..... D-34
Wind Axis Components ..... D-35
Alternate Reference Axis Components ..... D-35
Base Force and Moment Tare Coefficients ..... D-37
Base Pressure Coefficients ..... D-38
Model (Body) Axis Coefficients ..... D-38
Stability Axis Coefficients ..... D-39
Wind Axis Coefficients ..... D-39
Alternate Reference Axis Coefficients ..... D-40
Miscellaneous Equations ..... D-40
Calculation of Initial Weight Tares and Attitude Load Constants ..... D-41
Calculation of Initial Weight Tares and Attitude Load Tares (Strain Gage Balance) ..... D-41
Calculation of Attitude Load Constants by Method I ..... D-44
Calculation of Attitude Load Constants by Method II ..... D-50
Balances Without Six Components ..... D-51
Initial Weight Tare Calculations ..... D-51
New Values of Initial Weight Tares ..... D-52
Point Calculations ..... D-52

\section*{APPENDIX D}

\section*{Contents Continued}
Figures
D-1 Definition of gravity and balance axes showing positive directions and rotation angles for gravity-to-balance transformations ..... D-53
D-1(a) Gravity-to-tunnel support axes ..... D-53
D-1(b) Tunnel support to undeflected balance axes ..... D-54
D-1(c) Illustrations of knuckle angles ..... D-55
D-1(d) Undeflected balance-to-balance axes ..... D-56
D-1(e) Final balance orientation; gravity-to-balance axes ..... D-57
D-1(f) Illustration of primary balance to undeflected secondary balance rotations ..... D-58
D-1(g) Definition of initial or wind-off balance attitude ..... D-59
D-2 Model-balance orientation stings ..... D-60
D-2(a) Case 1, normal balance arrangement ..... D-60
D-2(b) Case 1A, case 1 held by opposite end ..... D-61
D-2(c) Case 2, balance rolled \(90^{\circ}\) (clockwise) ..... D-62
D-2(d) Case 2A, same as case 2 held by opposite end ..... D-63
D-2(e) Case 3, balance rolled \(180^{\circ}\) (inverted) ..... D-64
D-2(f) Case 3A, case 3 held by opposite end ..... D-65
D-2(g) Case 4, balance rolled \(90^{\circ}\) (counterclockwise) ..... D-66
D-2(h) Case 4, held by opposite end ..... D-67
D-2(i) Case 5, balance yawed \(180^{\circ}\) or (pitched \(180^{\circ}\) and rolled \(180^{\circ}\) )-reversed ..... D-68
D-2(j) Case 5A, case 5 held by opposite end ..... D-69
D-2(k) Case 6, balance yawed \(180^{\circ}\) and rolled \(90^{\circ}\) clockwise (reversed and rolled \(90^{\circ}\) clockwise), or pitched \(180^{\circ}\) and rolled \(90^{\circ}\) counterclockwise ..... D-70
D-2(1) Case 6A, case 6 held by opposite end ..... D-71
D-2(m) Case 7, balance yawed \(180^{\circ}\) and rolled \(180^{\circ}\) (reversedand inverted), or pitched \(180^{\circ}\)D-72
D-2(n) Case 7A, case 7 held by opposite end ..... D-73
D-2(o) Case 8, balance yawed \(180^{\circ}\) and rolled \(90^{\circ}\) counterclockwise (reversed and rolled \(90^{\circ}\) counterclockwise), or pitched \(180^{\circ}\) and rolled \(90^{\circ}\) clockwise ..... D-74
D-2(p) Case 8A, case 8 held by opposite end ..... D-75
APPENDIX D
Contents Continued
Figures
D-3 Definition of gravity and wind axes showing positive directions and rotation angles for wind-to-gravity transformations ..... D-76
D-4 Definition of balance and body axes showing positive directions and rotation angles for balance-to-model (body) transformations ..... D-77
D-4(a) Rotation ..... D-77
D-4(b) Translation ..... D-78
D-5 Definition of angle of attack and angle of sideslip ..... D-79

\section*{SYMBOL NOMENCLATURE}

The arrays F0 through F20 are forces and moments whose units are lbs and in. lbs.
\begin{tabular}{|c|c|}
\hline AF(I, J) & Axial force, lbs., where \(\mathrm{I}=\) balance number and \(\mathrm{J}=\) correction number. \\
\hline AF0(I) & Initial axial load, lbs., where I = balance number. \\
\hline AFT(I) & Total axial load, lbs., where I = balance number. \\
\hline AFTARE(I) & Axial weight tares, lbs., where \(\mathrm{I}=\) balance number. \\
\hline ALPHA & Model angle of attack, degrees. \\
\hline AMOM( \({ }^{\text {( }}\) & Axial force momentum correction, lbs., where I = balance number. \\
\hline ARB(II,K) & Areas or momentum arms * areas used with PBASE(II) for computing base force and base moment tares. Care should be used to insure proper tare force signs. Area and arm units must be consistent with units of base pressures and balance components. Second balance, sq. in., where \(K=\) component number and II = orifice number. \\
\hline ARP(II, K) & Areas or momentum arms * areas used with PBASE(II) for computing base force and base moment tares. Care should be used to insure proper tare force signs. Area and arm units must be consistent with units of base pressures and balance components. Third balance, sq. in., where \(K=\) component number and \(\mathrm{II}=\) orifice number. \\
\hline ARPB(II, K) & Areas or momentum arms * areas used with PBASE(II) for computing base force and base moment tares. Care should be used to insure proper tare force signs. Area and arm units must be consistent with units of base pressures and balance components. First balance, sq. in., where \(K=\) component number and \(\mathrm{II}=\) orifice number. \\
\hline \(\mathrm{A}_{0}\) & Initial balance loads, axial force, lbs. (Weight Tares) \\
\hline \(\mathrm{A}_{3}\) & Balance component quantity corrected for high interactions coupled with high model restraints, axial force, lbs. (Weight Tares) \\
\hline
\end{tabular}

\section*{Preceding page blank not flimed}

D-2
SYMBOL
\(\mathrm{A}_{4}\)

\section*{BETA}

BSPAN(I)

CA(I)

CABASE(1)
CAREF(I)

CC(I)
\(C D(I)\)
CDBASE(I)
CDS(I)

CHORD(I)

CL(I)
CLS(I)

CLSQR(I)
CMX(I)

CMXREF(I)

CMXS(I)

CMXW(I)

CMY(I)

CMYREF(I)

NOMENCLATURE
Balance component quantities corrected for balance orientation to gravity axis, axial force, lbs. (Weight Tares) Angle of sideslip, degrees.
Roll and yaw moments reference length. Normally wing span, inches, where \(I=\) balance number.

Axial force coefficient in the body axis, where I = balance number.
Base axial force coefficient, where I = balance number.
Axial force coefficient in the reference axis, where I = balance number.

Crosswind coefficient in the wind axis, where I = balance number.

Drag coefficient in the wind axis, where I = balance number. Base drag coefficient, where I = balance number.

Drag coefficient in the stability axis, where I = balance number.
Pitching moment reference length. Normally wing mean aerodynamic chord, inches, where \(I=\) balance number. Lift coefficient in the wind axis, where I = balance number. Lift coefficient in the stability axis, where \(I=\) balance number.

Lift coefficient squared, where I = balance number.
Rolling moment coefficient in the body axis, where I = balance number.
Rolling moment coefficient in the reference axis, where I = balance number.
Rolling moment coefficient in the stability axis, where I = balance number.
Rolling moment coefficient in the wind axis, where \(1=\) balance number.

Pitching moment coefficient in the body axis, where I = balance number.
Pitching moment coefficient in the reference axis, where I = balance number.
\begin{tabular}{ll} 
SYMBOL & \begin{tabular}{l} 
NOMENCLATURE
\end{tabular} \\
CMYS(I) & Pitching moment coefficient in the stability axis, where I = \\
balance number.
\end{tabular}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { D-4 } \\
& \text { SYMBOL } \\
& \hline
\end{aligned}
\] & NOMENCLATURE \\
\hline \(\Delta \ell_{2}\) & WZ(RM), rolling moment weight tares, in. lb. \\
\hline \(\Delta \mathrm{m}_{1}\) & WX(PM), pitching moment weight tares, in. lb . \\
\hline \(\Delta m_{2}\) & WZ(PM), pitching moment weight tares, in. lb. \\
\hline \(\Delta \mathrm{N}\) & W(NF), normal force weight tares, lbs. \\
\hline \(\Delta n_{1}\) & WX(YM), yawing moment weight tares, in. lb. \\
\hline \(\Delta n_{2}\) & WY(YM), yawing moment weight tares, in. lb. \\
\hline DPBASE(II) & Differential base pressures, where II = orifice number. \\
\hline \(\Delta \mathrm{W}(\mathrm{I})\) & Half weight of balance, lbs., where I = balance number. Used in weight tares program. \\
\hline \(\Delta \mathrm{Y}\) & W(SF), side force weight tares, lbs. \\
\hline FA & Axial force, lb . \\
\hline FA(I) & Final body axis axial force, lbs., where I = balance number. \\
\hline FA(1,L) & Balance axial force rotated ( \(L=1\) ) and translated ( \(L=2\) ) to body axis, where \(I=\) balance number. \\
\hline FABASE(I) & Base axial force, lbs., where I = balance number. \\
\hline FAMAX & Maximum absolute value of axial force, lbs. \\
\hline FAMOM( \({ }^{\text {( }}\) & Axial force due to momentum of flow, lbs., where \(I=\) balance number. \\
\hline FAREF'(I) & Axial force rotated to reference axis, lbs., where \(I=\) balance number. \\
\hline FAREF(I) & Axial force translated to reference axis, lbs., where I = balance number. \\
\hline FC(l) & Crosswind force in the wind axis, lbs., where I = balance number. \\
\hline FD(I) & Drag force in the wind axis, lbs., where I = balance number. \\
\hline FDS(I) & Drag force in the stability axis, lbs., where I = balance number. \\
\hline FL(I) & Lift force in the wind axis, lbs., where I = balance number. \\
\hline FLS(I) & Lift force in the stability axis, lbs., where I = balance number. \\
\hline FN & Normal force, lb. \\
\hline FNBASE(I) & Base normal force, lbs., where I = balance number. \\
\hline FN(I) & Final body axis normal force, lbs., where \(1=\) balance number. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline SYMBOL & NOMENCLATURE D-5 \\
\hline FN(1,L) & Balance normal force rotated ( \(L=1\) ) and translated ( \(L=2\) ) to body axis, where \(I=\) balance number. \\
\hline FNMAX & Maximum absolute value of normal force, lbs. \\
\hline FNREF'(1) & Normal force rotated to reference axis, lbs., where I = balance number. \\
\hline FNREF(I) & Normal force translated to reference axis, lbs., where \(I=\) balance number. \\
\hline FP & All product combinations of vector FT. \\
\hline FT & Corrected total loads. \\
\hline FTARE & Tare loads. \\
\hline FUT & Uncorrected total loads. \\
\hline FY & Side force, lbs. \\
\hline FY(I) & Final body axis side force, lbs., where I = balance number. \\
\hline FY(I,L) & Balance side force rotated ( \(L=1\) ) and translated ( \(L=2\) ) to body axis, where \(I=\) balance number. \\
\hline F YBASE(I) & Base side force, lbs., where \(\mathrm{I}=\) balance number. \\
\hline FYMAX & Maximum absolute value of side force, lbs. \\
\hline FYREF'( \({ }^{\text {( }}\) ) & Side force rotated to reference axis, lbs., where \(I=\) balance number. \\
\hline FYREF(1) & Side force translated to reference axis, lbs., where \(I=\) balance number. \\
\hline FYS(I) & Side force in the stability axis, lbs., where \(\mathrm{I}=\) balance number. \\
\hline F0 & Initial loads. \\
\hline F1 & Uncorrected balance quantities. \\
\hline F2 & Balance component quantities corrected for interactions. \\
\hline F3 & Vector representing balance component quantities corrected for high interactions coupled with high model restraints. \\
\hline F4 & Vector representing balance quantities corrected for balance orientation to gravity axis, attitude loads, and weight tares. \\
\hline F5 & Vector representing balance quantities corrected for method of attachment. \\
\hline F6 & Balance components rotated to the model (body) axis. \\
\hline
\end{tabular}

\section*{NOMENCLATURE}

Balance components rotated and translated to the model (body) axis.
Differential base pressure forces.
Base force and moment tares.
Final body axis components.
Stability axis components.
Wind axis components.
Rotation from body axis to reference axis.
Alternate reference axis coefficients.
Reference axis coefficients.
Base force and moment tare coefficients.
Base pressure coefficients.
Model (body) axis coefficients.
Stability axis coefficients.
Wind axis coefficients.
Corrections for the effect of having a model with high restraints coupled with high interactions, where XX is the balance component (AF, SF, NF, RM, PM, YM) and I = balance number.
Axial momentum correction term.
\(=0\), no correction.
\(=1\), applies nonblowing correction only and automatically computes FAMOM(I)
\(=2\), applies nonblowing and blowing corrections
A units conversion factor, initialized at 1.
If PBASE is in PSF and PO is in PSI, KPP \(=144.0\)
If PBASE is in PSI and PO is in PSF, KPP \(=0.00694\)
If PBASE is differential (PBASE-PO), KPP \(=0.0\)
If PBASE is absolute, KPP = 1.0 (Standard).
Constant for correcting balance quantities for grounding by wrong end, where I = balance number.
KSIGN = 1 for normal balance attachment.
KSIGN \(=-1\) for grounding balance by wrong end.
\begin{tabular}{|c|c|}
\hline SYMBOL & NOMENCLATURE \\
\hline \(\mathrm{K}_{\mathrm{A}, 1}\) & \(\operatorname{COS}(\mathrm{THETAO}\) ) \(* \operatorname{COS}(\mathrm{PHIO})\) \\
\hline \(\mathrm{K}_{\mathrm{A}, 2}\) & SIN(THETAO) \\
\hline \(\mathrm{K}_{\mathrm{A}, 3}\) & COS(THETAO) * SIN(PHIO) \\
\hline L/D(I) & Lift over drag ratio in the wind axis, where \(I=\) balance number. \\
\hline LS/DS(I) & Lift over drag ratio in stability axis, where I = balance number. \\
\hline \(\ell_{0}\) & Initial balance loads, roll moment, in. lb. \\
\hline \(\ell_{3}\) & Balance component quantity corrected for high interactions coupled with high model restraints, roll moment, in. lb. \\
\hline \(\ell_{4}\) & Balance component quantities corrected for balance orientation to gravity axis, roll moment, in. lb. \\
\hline METHOD & Method to be used. \\
\hline MX(I) & Final body axis rolling moment, in. lb., where I = balance number. \\
\hline MX \((1, L)\) & Balance rolling moment rotated ( \(L=1\) ) and translated ( \(L=\) 2) to body axis, where \(I=\) balance number. \\
\hline MXREF \({ }^{\prime}(\mathrm{I})\) & Rolling moment rotated to reference axis, in. lb., where I = balance number. \\
\hline MXREF(I) & Rolling moment translated to reference axis, in. lb., where I = balance number. \\
\hline M XS(I) & Rolling moment in the stability axis, in. lb., where \(\mathrm{I}=\) balance number. \\
\hline MXW(I) & Rolling moment in the wind axis, in. lb., where I = balance number. \\
\hline M Y \({ }^{\text {( }}\) ) & Final body axis pitching moment, in. lb., where I = balance number. \\
\hline M Y \(\mathbf{( 1 , L )}\) & Balance pitching moment rotated ( \(\mathrm{L}=1\) ) and translated ( \(\mathrm{L}=\) 2) to body axis, where \(I=\) balance number. \\
\hline MYREF'(I) & Pitching moment rotated to reference axis, in. lb., where I = balance number. \\
\hline M YREF(I) & Pitching moment translated to reference axis, in. lb., where \(\mathrm{I}=\) balance number. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline D-8 & \\
\hline SYMBOL & NOMENCLATURE \\
\hline MYS(1) & Pitching moment in the stability axis, in. lb., where I = balance number. \\
\hline MYW(1) & Pitching moment in the wind axis, in. lb., where \(I=\) balance number. \\
\hline MZ(I) & Final body axis yawing moment, in. lb., where I = balance number. \\
\hline MZ \((1, \mathrm{~L})\) & Balance yawing moment rotated ( \(\mathrm{L}=1\) ) and translated ( \(\mathrm{L}=\) 2) to body axis, where \(I=\) balance number. \\
\hline MZREF \({ }^{\prime}(\mathrm{I})\) & Yawing moment rotated to reference axis, in. lb., where \(\mathrm{I}=\) balance number. \\
\hline MZREF(I) & Yawing moment translated to reference axis, in. lb., where I = balance number. \\
\hline MZS(I) & Yawing moment in the stability axis, in. lb., where \(\mathrm{I}=\) balance number. \\
\hline MZW(1) & Yawing moment in the wind axis, in. lb., where \(I=\) balance number. \\
\hline \(\mathrm{m}_{0}\) & Initial balance loads, pitch moment, in. lb. \\
\hline \(\mathrm{m}_{3}\) & Balance component quantity corrected for high interactions coupled with high model restraints, pitch moment, in. lb. \\
\hline \(\mathrm{m}_{4}\) & Balance component quantities corrected for balance orientation to gravity axis, pitch moment, in. lb. \\
\hline NF(I, J) & Normal force, lbs., where \(I=\) balance number and \(J=\) correction number. \\
\hline NFO(I) & Initial normal load, lbs., where I = balance number. \\
\hline NFT(I) & Total normal load, lbs., where I = balance number. \\
\hline NFTARE(I) & Normal weight tares, lbs., where I = balance number. \\
\hline NUBAL & Number of balances in the model. \\
\hline \(n_{0}\) & Initial balance loads, yaw moment, in. lb. \\
\hline \(\mathrm{n}_{3}\) & Balance component quantity corrected for high interactions coupled with high model restraints, yaw moment, in. lb. \\
\hline \(\mathrm{n}_{4}\) & Balance component quantities corrected for balance orientation to gravity axis, yaw moment, in. lb. \\
\hline \(\mathrm{N}_{0}\) & Initial balance loads, normal force, lbs. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline SYMBOL & NOMENCLATURE \\
\hline \(\mathrm{N}_{3}\) & Balance component quantity corrected for high interactions coupled with high model restraints, normal force, lbs. \\
\hline \(\mathrm{N}_{4}\) & Balance component quantities corrected for balance orientation to gravity axis, normal force, lbs. \\
\hline PBASE(II) & Base pressure, lbs/sq. in., where II = orifice number. \\
\hline PHI & Model Euler roll angle, degrees. \\
\hline PHIB & Euler roll rotation angle between primary balance and model, degrees. \\
\hline PHIB2 & Euler roll rotation angle between secondary balance and model, degrees. \\
\hline PHIB3 & Euler roll rotation angle between tertiary balance and model, degrees. \\
\hline PHID & Roll deflection of primary balance, degrees. \\
\hline PHID2 & Roll deflection of secondary balance, degrees. \\
\hline PHID3 & Roll deflection of tertiary balance, degrees. \\
\hline PHIDX(I) & Deflection roll angle constants, where \(X\) is balance component ( \(\mathrm{A}, \mathrm{S}, \mathrm{N}, \mathrm{R}, \mathrm{P}, \mathrm{Y}\) ) and \(\mathrm{I}=\) balance number. \\
\hline PHIK & Euler roll angle to account for knuckle and/or primary balance angles in relation to tunnel support, degrees. \\
\hline PHIK2 & Euler roll angle to account for orientation of undeflected secondary balance in relation to primary balance, degrees. \\
\hline PHIK3 & Euler roll angle to account for knuckle and/or tertiary balance angles in relation to tunnel support, degrees. \\
\hline PHIR & Euler roll rotation angle between model (body) axis and reference axis, positive in same direction as PHIB, degrees. \\
\hline PHIO,I & Wind off zero attitude of each balance, degrees, where I = balance number. \\
\hline PM & Pitching moment, in. lb . \\
\hline PM(I,J) & Pitching moment, in. lb., where \(\mathrm{I}=\) balance number and \(\mathrm{J}=\) correction number. \\
\hline PMBASE(I) & Base pitching moment, in. lb., where I = balance number. \\
\hline PMMAX & Maximum absolute value of pitch moment, in. lb . \\
\hline PM0(I) & Initial pitching moment, in. lb., where I = balance number. \\
\hline PMT(I) & Total pitching moment, in. lb., where I = balance number. \\
\hline
\end{tabular}

SYMBOL
PMTAREI
PSI
PSIB

PSIB2

PSIB3

PSID
PSID2
PSID3
PSIDX(I)

\section*{PSIK}

PSIK2

PSIK 3

PSIR

PSIU
R(I,J)
RGB
RM
R M (I, J)

RMBASE(I)
RMMAX
RM0(I)
RMT(I)
RMTARE(I)
SAREA(I)

\section*{NOMENCLATURE}

Pitching weight tares, in. lb., where I = balance number. Model yaw angle, degrees.
Euler yaw rotation angle between primary balance and model, degrees.
Euler yaw rotation angle between secondary balance and model, degrees.
Euler yaw rotation angle between tertiary balance and model, degrees.
Yaw deflection of primary balance, degrees.
Yaw deflection of secondary balance, degrees.
Yaw deflection of tertiary balance, degrees.
Deflection yaw angle constants, where X is the balance component ( \(\mathrm{A}, \mathrm{S}, \mathrm{N}, \mathrm{R}, \mathrm{P}, \mathrm{Y}\) ) and \(\mathrm{I}=\) balance number.
Euler yaw angle to account for knuckle and/or primary balance angles in relation to tunnel support, degrees. Euler yaw angle to account for orientation of undeflected secondary balance in relation to primary balance, degrees. Euler Yaw angle to account for knuckle and/or tertiary balance angles in relation to tunnel support, degrees.
Euler yaw rotation angle between model (body) axis and reference axis, positive in same direction as PSIB, degrees. Tunnel sideflow angle, degrees. I'th row and J'th column in rotation matrix.

Gravity to balance rotation matrix.
Rolling moment, in. lb.
Rolling moment, in. lb., where \(\mathrm{I}=\) balance number and \(\mathrm{J}=\) correction number.
Base rolling moment, lbs., where \(\mathrm{I}=\) balance number.
Maximum absolute value of roll moment, in. lb .
Initial rolling moment, in. lb., where I = balance number.
Total rolling moment, in. lb., where I = balance number.
Rolling weight tares, in. lb., where I = balance number.
Reference area for balance coefficients. Normally wing area, sq. in., where \(I=\) balance number.

SYMBOL
SF(1,J)

SF0(I)
SFT(I)
SFTARE(I)
TAREA
TAREN
TAREP
TARER
TARES
TAREY
THEDX(I)

THETA
THETAB

THETAB2

THETAB3

THETAD
THETAD2
THETAD3
THETAK

THETAK2

THETAK3

THETAR

THETAS
THETAU

\section*{NOMENCLATURE}

Side force, lbs., where I = balance number and \(\mathrm{J}=\) correction number.

Initial side load, lbs., where I = balance number.
Total side load, lbs., where I = balance number.
Side weight tares, lbs., where I = balance number.
Axial momentum tare correction term.
Normal momentum tare correction term.
Pitching momentum tare correction term.
Rolling momentum tare correction term.
Side momentum tare correction term.
Yawing momentum tare correction term.
Deflection pitch angle constants, where X is the balance component ( \(\mathrm{A}, \mathrm{S}, \mathrm{N}, \mathrm{R}, \mathrm{P}, \mathrm{Y}\) ) and \(\mathrm{I}=\) balance number.
Model euler pitch angle, degrees.
Euler pitch rotation angle between primary balance and model, degrees.

Euler pitch rotation angle between secondary balance and model, degrees.
Euler pitch rotation angle between tertiary balance and model, degrees.
Pitch deflection of primary balance, degrees.
Pitch deflection of secondary balance, degrees.
Pitch deflection of tertiary balance, degrees.
Euler pitch angle to account for knuckle and/or primary balance angles in relation to tunnel support, degrees.
Euler pitch angle to account for orientation of undeflected secondary balance in relation to primary balance, degrees.
Euler pitch angle to account for knuckle and/or tertiary balance angles in relation to tunnel support, degrees.
Euler pitch rotation angle between model (body) axis and reference axis, positive in same direction as THETAB, degrees.

Strut pitch angle, degrees.
Tunnel upflow angle, degrees.

D-12
SYMBOL
THETA0,(I)

W
x
XBAR(I)
\(\mathrm{XICH}(\mathrm{I})\)
XK
\(\mathrm{XKCH}(\mathrm{I})\)
XREF
y
YBAR(I)
YM
Y M (I, J)

YMBASE(I)
YMMAX
YMO(I)
YMT(I)
YMTARE(I)
YREF
\(Y_{0}\)
\(\mathrm{Y}_{3}\)
\(Y_{4}\)

Z
ZBAR(I)
ZREF

\section*{NOMENCLATURE}

Wind off zero attitude of each balance, degrees, where \(\mathrm{I}=\) balance number.

\section*{Weight tares.}

Distance of center of gravity to balance center, inches. Moment transfer distance measured in the body force axis system from the balance moment center to the desired moment center, positive in the direction of positive model thrust, side and normal force respectively, inches, where \(\mathrm{I}=\) balance number.
Intercept for momentum term, where \(I=\) balance number.
Constants used in calculating momentum correction terms.
Slope for momentum term, where \(I=\) balance number.
Moment transfer distance. Measured relative to and in the same direction as XBAR, inches.
Distance of center of gravity to balance center, inches.
See XBAR.
Yawing moment, in. lb.
Yawing moment, in. lb., where \(\mathrm{I}=\) balance number and \(\mathrm{J}=\) correction number.
Base yawing moment, lbs., where I = balance number. Maximum absolute value of yaw moment, in. lb .
Initial yawing moment, in. lb., where I = balance number.
Total yawing moment, in. lb., where I = balance number.
Yawing weight tares, in. lb., where \(I=\) balance number.
Moment transfer distance. Measured relative to and in the same convention as YBAR, inches.
Initial balance loads, side force, lbs.
Balance component quantity corrected for high interactions coupled with high model restraints, side force, lbs. Balance component quantities corrected for balance orientation to gravity axis, side force, lbs.
Distance of center of gravity to balance center, inches.
See XBAR.
Moment transfer distance. Measured relative to and in the same convention as ZBAR, inches.

\title{
APPENDIX D \\ Module D \\ Balance Loads and Model Attitude
}

\section*{A. Required Constants}

Required constants are defined in the nomenclatures.
1. Primary balance deflection constants \(-\Delta\) angle/ \(\Delta\) load
\begin{tabular}{lll} 
PSIDA1 & \(=\Delta \operatorname{PSID} / \triangle \operatorname{AF}(1,3)\) & \\
THEDA1 & \(=\Delta \operatorname{THETAD} / \triangle \operatorname{AF}(1,3)\) & See related \\
PHIDA1 & \(=\Delta \operatorname{PHID} / \triangle \operatorname{AF}(1,3)\) & items 2. and 3. \\
PSIDN1 & \(=\Delta \operatorname{PSID} / \triangle \operatorname{NF}(1,3)\) & \\
THEDN1 & \(=\Delta \operatorname{THETAD} / \triangle \operatorname{NF}(1,3)\) & \\
etc. & &
\end{tabular}
2. Primary balance deflection angle names - PSID, THETAD, PHID. These names are optional as shown in item 3. However, they are suggested and extreme care should be used if changed since this is based on these names. No values are required for these angles since they are computed internally from the constants supplied under item 1 as follows:
\[
\begin{align*}
\text { PSID }= & (\text { PSIDA1 }) \mathrm{AF}(1,3)+(\text { PSIDN } 1) \mathrm{NF}(1,3) \\
& +(\operatorname{PSIDS} 1) \mathrm{SF}(1,3)+(\text { PSIDR1 }) \mathrm{RM}(1,3) \\
& +(\text { PSIDP1 }) \mathrm{PM}(1,3)+(\text { PSIDY1 }) \mathrm{YM}(1,3) \tag{Eq.D-1}
\end{align*}
\]

THETAD \(=(\) THEDA1 \() \mathrm{AF}(1,3)+\ldots\).
(Eq. D-2)
\[
\begin{equation*}
\text { PHID }=(\text { PHIDA1 }) \mathrm{AF}(1,3)+\ldots . \tag{Eq.D-3}
\end{equation*}
\]
3. Input of items 1 and 2 - Deflection angle names and constants are input from C-card images (which may be modified) stored on magnetic storage disks. A maximum of six deflections is permitted.

Therefore, the six values assigned in the yaw plane (PSI) for example are PSIDA1, PSIDS1, PSIDN1, PSIDR1, PSIDP1, and PSIDY1 as defined in item 1.
4. Input of rotations from gravity to primary balance - Rotations from gravity to primary balance axis system (see Figure D-1(a) to D-1(e)) are input from the \(R\)-card image names stored on magnetic storage disks.
5. Secondary balance deflection constants - \(\Delta\) angle/ \(\Delta\) load
PSIDA2 \(\quad=\triangle \operatorname{PSID} 2 / \triangle \operatorname{AF}(2,3)\)
THEDA2 \(\quad=\triangle\) THETAD2 \(/ \triangle \operatorname{AF}(2,3) \quad\) See related

PHIDA2 \(\quad=\triangle\) PHID2/ \(\triangle \mathrm{AF}(2,3) \quad\) Items 6. and 7 .
PSIDN2 \(\quad=\triangle\) PSID2/ \(\triangle \mathrm{NF}(2,3)\)
THEDN2 \(\quad=\triangle\) THETAD2 \(/ \triangle \mathrm{NF}(2,3)\)
etc.
6. Secondary balance deflection angle names - PSID2, PSID3, THETAD2, PHID2. These names are optional as shown in item 7. However, they are suggested and extreme care should be used if changed since this description is based on these names. No values are required for these angles since they are computed internally from the constants supplied under item 5 as follows:
\[
\begin{align*}
& \text { PSID2 } \quad=\quad(\text { PSIDA2 } 2) \mathrm{AF}(2,3)+(\operatorname{PSIDN} 2) \mathrm{NF}(2,3) \\
& + \text { (PSIDS2)SF }(2,3)+\text { (PSIDR2)RM(2,3) } \\
& + \text { (PSIDP2) } \mathrm{PM}(2,3)+(\text { PSIDY2 }) \mathrm{YM}(2,3) \\
& \text { (Eq. D-4) } \\
& \text { THETAD2 }=(\text { THEDA2 }) \mathrm{AF}(2,3)+\ldots \\
& \text { (Eq. D-5) } \\
& \text { PHID2 }=\text { (PHIDA2)AF }(2,3)+\ldots . \tag{Eq.D-6}
\end{align*}
\]
7. Input of items 5. and 6. - Deflection names and constants are input from C-card image names stored on magnetic disks. Six is the maximum number of deflections permitted.
8. Tertiary balance deflection angles are handled in a manner similar to primary and secondary balance constants.
9. Input of rotations (THETAK2, PSIK2, THETAD2, etc.) from primary balance to secondary balance - Rotations from the primary balance to the secondary balance are input from R -card images stored on magnetic disks. See Figure D-1(f).
10. Wind-off-zero attitude of each balance - Input PHIO, THETA0, from card images stored on magnetic disks for each balance. This option is normally used as a result of problems associated with option 2. It is also used when data zeros are not used in the force data reduction scheme. If data zeros are not taken and values are not input from the disk, PHIO \(=\) THETA0 \(=0\) is assumed. See Figure D-1(g).
11. Weight tares and attitude loads - Tares are determined automatically from a 700 series weight-shift run made immediately before each model configuration tunnel run. Do not input \(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W}(\mathrm{AF}), \mathrm{W}(\mathrm{SF}), \ldots\), etc.
12. HIRAFI, HIRNFI, HIRSFI, HIRPMI, HIRYMI, HIRRMI where I = balance number - These constants correct for the effect of having a model with high restraints (HIR) coupled with a balance with high interactions (AF, NF, etc.). Thus, the name HIRAFI, HIRNFI, etc. These constants are obtained for each balance component by the following equation.
\[
\begin{equation*}
\operatorname{HIR}_{\underline{x}}(\mathrm{I})=\frac{\text { Tunnel balance xx calibration }}{\underline{x} \operatorname{span} \text { check }}-1 \tag{Eq.D-7}
\end{equation*}
\]
where \(\underline{x x}=\) balance component

Note that when this correction is applied, the balance spans should be used in the standard program for quantities (EU) and not in-tunnel calibration. These constants are input from the C-card images stored on the magnetic disks for each balance.
13. KSIGN(I) - Constant for correcting balance quantities for grounding by the wrong end, where \(I=\) balance number. As shown in Figure D-2, grounding the balance by the wrong end ("A" cases) rather than the taper end results in a change of each balance component sign. Therefore
\(\operatorname{KSIGN}(\mathrm{I})=1\) for normal balance attachment
KSIGN \((\mathrm{I})=-1\) for grounding balance by wrong end.
14. THETAU - Tunnel upflow angle, see Figure D-3.
15. PSIU - Tunnel sideflow angle, see Figure D-3.
16. Input of items 14. and 15. - THETAU and PSIU are the required rotations for the wind-to-gravity transformation and are input from the T-card images (tables as function of MACH) stored on magnetic disks.
17. Euler yaw, pitch and roll rotation angles (PSIB, THETAB, PHIB) between balance and model, are shown in Figure D-4(a).
18. Input of - \(\operatorname{PSIB}(\mathrm{I})\), THETAB(I), and \(\operatorname{PHIB}(\mathrm{I})\) - Required rotations for the balance-to-model transformation are input from C-card images stored on magnetic disks.
19. XBAR(I), YBAR(I), ZBAR(I) - Moment transfer distances are measured in the body force axis system from the balance moment center to the desired moment center, positive in the direction of positive model thrust, side and normal force, respectively (see Figure \(\mathrm{D}-4(\mathrm{~b})\) ). Input from C card images stored on magnetic disks, where \(\mathrm{I}=\) balance number.
20. ARPB(II,K) - Areas or momentum arms * areas used with PBASE(II) for computing base force and base moment tares, where II = orifice number. Use care to insure proper tare force signs. Area and arm units must be consistent with units of base pressures and balance components. \(\operatorname{ARB}(I I, K)\) is the same but for the second balance. \(\operatorname{ARP}(I I, K)\) is the same but for the third balance.
21. Input of item 20. - Areas and arm \(x\) areas are input from C-card images stored on magnetic disks. A maximum of 20 may be used.
22. KPP - Units conversion factor, initialized at 1.

If PBASE is in PSF and PO is in PSI, KPP = 144
If PBASE is in PSI and PO is in PSF, KPP \(=.0069444\)
If PBASE is differential (PBASE-PO), KPP = 0
If PBASE is absolute, KPP = 1 (standard)
Input from C-card images stored on magnetic disks if not equal to 1.0 .
23. Input of items - PSIR, THETAR, and PHIR are the required rotations for the model (body) to reference axis transformation and are input from C card images stored on magnetic disks.
24. XREF, YREF, ZREF - Moment transfer distances are measured relative to and in the same convention as XBAR, YBAR and ZBAR. Input from Ccard images stored on magnetic disks.
B. Test for Balance Loads and Model Attitudes If \(\operatorname{NUBAL}=0\), skip module \(D\).
C. Balance Component Naming System
1. In general, the balance component naming system follows the format of WX(Y,Z), where
\[
\begin{aligned}
\mathrm{WX}= & \text { component name is as follows: } \\
\mathrm{AF} & =\text { Axial force } \\
\mathrm{NF} & =\text { Normal force } \\
\mathrm{SF} & =\text { Side force } \\
\mathrm{PM} & =\text { Pitching moment } \\
\mathrm{YM} & =\text { Yawing moment } \\
\mathrm{RM} & =\text { Rolling moment }
\end{aligned}
\]
\[
\begin{aligned}
\mathrm{Y}= & \text { balance number associated with component } \\
& 1=1 \text { st balance } \\
& 2=2 \text { nd balance } \\
& \text { etc. } \\
\mathrm{Z}= & \text { number of corrections applied to component } \\
& \text { (uncorrected quantity }=1 \text { ). }
\end{aligned}
\]

\section*{D. Uncorrected Balance Quantities}
1. Signs on component quantities are uncorrected and thus are a strict function of model-balance orientation and the manner in which the modelbalance attachment is made. Figure D-2 provides sketches showing the eight most frequent cases of model-balance orientation and the corresponding component signs. Each case is shown for grounding the balance taper end and for grounding the balance opposite end ("A" cases).
2. For normal NASA type balances, the component quantities are obtained directly from the standard program for quantities. The balance components for this type of balance are always named as follows:
\(\left[\begin{array}{ll}\text { Axial force }-\operatorname{AF}(\mathrm{I}, 1) \\ \text { Normal force }-\operatorname{NF}(\mathrm{I}, 1) \\ \text { Side force }-\operatorname{SF}(\mathrm{I}, 1) \\ \text { Pitch moment }-\operatorname{PM}(\mathrm{I}, 1) \\ \text { Yaw moment }-\mathrm{YM}(\mathrm{I}, 1) \\ \text { Roll moment }-\mathrm{RM}(\mathrm{I}, 1)\end{array}\right]=[\mathrm{F} 1]\)
(Eq. D-8)
where \(\mathrm{I}=\) balance number
3. For TASK type balances, the component quantities are also obtained directly from the standard program for quantities (EU), but additional equations must be supplied since axial force and rolling moment are generally the only two components obtained directly with TASK type balances. The following equations and names are suggested for the engineering units program. The following equations assume the axes origin is at the center of the balance.
\[
\begin{align*}
& \mathrm{NF}(\mathrm{I}, 1)=\mathrm{N} 1(\mathrm{I}, 1)+\mathrm{N} 2(\mathrm{I}, 1)  \tag{Eq.D-9}\\
& \mathrm{PM}(\mathrm{I}, 1)=\mathrm{N} 1(\mathrm{I}, 1)-\mathrm{N} 2(\mathrm{I}, 1)  \tag{Eq.D-10}\\
& \mathrm{SF}(\mathrm{I}, 1)=\mathrm{S} 1(\mathrm{I}, 1)+\mathrm{S} 2(\mathrm{I}, 1)  \tag{Eq.D-11}\\
& \mathrm{Y} M(\mathrm{I}, 1)=\mathrm{S} 1(\mathrm{I}, 1)-\mathrm{S} 2(\mathrm{I}, 1) \tag{Eq.D-12}
\end{align*}
\]

The names shown for the final quantities are mandatory.

\section*{E. Tunnel Support Pitch Angle}

The tunnel support pitch angle is used in gravity to balance transformations.
1. The tunnel support pitch angle is THETAS. See Figure D-1(a).
2. THETAS is computed in the standard program for quantities. It may be obtained from the strut helipot or from a "dangle" meter in the model or input as a constant.
F. Balance Quantities Corrected for Interactions, Weight Tares and Momentum Tares
1. Balance component quantities corrected for interactions are named as follows:
Axial force -
Normal force -
Side force -
Pitch moment -
Yaw moment -
Roll moment \(-\left[\begin{array}{l}A F(I, 2) \\ N F(I, 2) \\ P M(I, 2) \\ Y M(I, 2) \\ R M(I, 2)\end{array}\right]=[F 2]\),
2. Balance component quantities corrected for high interactions coupled with high interactions coupled with high model restraints are named as follows:
\begin{tabular}{|c|c|c|}
\hline Axial force & AF(1,3) \(]\) & \\
\hline Normal force & NF( \((1,3)\) & \\
\hline Side force & SF( 1,3\()\) & \(=\mathrm{F} 3\) \\
\hline Pitch moment & P M \((1,3)\) & \\
\hline Yaw moment & YM \((1,3)\) & \\
\hline Roll moment & [RM(1,3) & \\
\hline
\end{tabular}
3. Balance component quantities corrected for balance orientation to gravity axis, attitude loads and weight tares are named as follows:
\begin{tabular}{|c|c|}
\hline Axial force & [ \(\mathrm{AF}(1,4)]\) \\
\hline Normal force & NF(1,4) \\
\hline Side force & \(\mathrm{SF}(\mathrm{I}, 4)\) \\
\hline Pitch moment & PM \((1,4)\) \\
\hline Yaw moment & YM(1,4) \\
\hline Roll moment & [RM(1,4) \\
\hline
\end{tabular}
4. Initial balance loads or weight tares are named as follows: where \(\mathrm{I}=\) balance number.
\[
\left[\begin{array}{l}
\mathrm{AFO}(\mathrm{I}), \mathrm{NFO}(\mathrm{I}), \mathrm{SFO}(\mathrm{I})  \tag{Eq.D-16}\\
\mathrm{PMO}(\mathrm{I}), \mathrm{YM0}(\mathrm{I}), \mathrm{RM0}(\mathrm{I})
\end{array}\right]=[\mathrm{F0}]
\]
5. Total balance loads (AF(I,1) + AF0(I), \(\mathrm{NF}(\mathrm{I}, 1)+\mathrm{NFO}(\mathrm{I})\), etc. are named as follows:
\(\left[\begin{array}{l}\operatorname{AFT}(\mathrm{I}), \operatorname{NFT}(\mathrm{I}), \operatorname{SFT}(\mathrm{I}) \\ \operatorname{PMT}(\mathrm{I}), \operatorname{YMT}(\mathrm{I}), \operatorname{RMT}(\mathrm{I})\end{array}\right]=[\mathrm{FT}]\)
(Eq. D-17)
6. First order interactions are represented by a matrix C ; second order interactions are represented by a matrix C2.
7. Attitude weight tares are named as follows:
\[
\left[\mathrm{F}_{\mathrm{TARE}}\right]=\left[\begin{array}{l}
\operatorname{AFTARE}(\mathrm{I}),  \tag{Eq.D-18}\\
\operatorname{PMTAREARE}(\mathrm{I}), \operatorname{SFTARE}(\mathrm{I}) \\
\operatorname{MMTARE}(\mathrm{I}), \operatorname{RMTARE}(\mathrm{I})
\end{array}\right]
\]
8. Constants required from the project engineer are:
a. For gravity-to-primary-balance rotations, see Figure D-1(e). For gravity-to-tunnel-strut rotation, see Figure D-1(a).

THETAS is already supplied from E.

For tunnel strut-to-undeflected-primary balance rotations, see Figure D-1(b) and D-1(c).

PSIK, THETAK, PHIK

For undeflected balance-to-deflected-balance rotations, see Figure D-1(d).

> PSIDA1, THEDA1, PHIDA1
> PSIDS1, THEDS1, PHIDS1
> PSIDN1, THEDN1, PHIDN1
> PSIDR1, THEDR1, PHIDR1
> PSIDP1, THEDP1, PHIDP1
> PSIDY1, THEDY1, PHIDY1
b. Primary-to-secondary-balance rotations

For primary balance-to-undeflected-secondary balance rotations, see Figure D-1(f).
```

PSIK2, THETAK2, PHIK2

```

Undeflected secondary balance-to-deflected-secondary balance rotations (with respect to primary balance).

\author{
PSIDA2, THEDA2, PHIDA2 \\ PSIDS2, THEDS2, PHIDS2 \\ PSIDN2, THEDN2, PHIDN2 \\ PSIDR2, THEDR2, PHIDR2 \\ PSIDP2, THEDP2, PHIDP2 \\ PSIDY2, THEDY2, PHIDY2
}

The third balance is similar to the above but with the number 3 replacing the number 2 in the second balance.

For wind-off-zero attitude of each balance (See Figure D-1(a))

PHIO, I, THETAO, I,
c. High restraint and interaction constants

HIRAFI, HIRNFI, HIRSFI
HIRP MI, HIR YMI, HIR R MI
9. The following description on correcting balance quantities for interactions and weight tares does not provide the exact equations for computing corrected balance quantities. The PAB balance check point program or the contractor's user manual must be consulted for these. However, this does provide the general outline for computing corrected balance quantities.

Determine uncorrected total loads, [FUT]
\[
[F U T]=[\mathrm{F}]+[\mathrm{F} 0]=\left\{\begin{array}{l}
\mathrm{AF}(\mathrm{I}, 1)+\mathrm{AFO}(\mathrm{I}) \\
\mathrm{SF}(\mathrm{I}, 1)+\mathrm{SFO}(\mathrm{I})  \tag{Eq.D-19}\\
\mathrm{NF}(\mathrm{I}, 1)+\mathrm{NFO}(\mathrm{I})
\end{array}\right.
\]
a. \([\mathrm{FUT}]=\left[\mathrm{C}_{1}\right] *[\mathrm{FT}]+\left[\mathrm{C}_{2}\right] *[\mathrm{FP}]\)
\[
\text { where }\left[\mathrm{C}_{1}\right] \text { and }\left[\mathrm{C}_{2}\right] \text { are balance interaction constants }
\]
b. Therefore
\[
\begin{equation*}
[\mathrm{FT}]=\left[\mathrm{C}_{1}\right]^{-1} *[\mathrm{FUT}]-\left[\mathrm{C}_{1}\right]^{-1} *\left[\mathrm{C}_{2}\right]^{*}[\mathrm{FP}] \tag{Eq.D-21}
\end{equation*}
\]

Compute corrected delta balance loads, [F2]
\([\mathrm{F} 2]=[\mathrm{FT}]-[\mathrm{F} 0]=\left[\begin{array}{l}\mathrm{AF}(\mathrm{I}, 2 \\ \mathrm{SF}(\mathrm{I}, 2) \\ \mathrm{NF}(\mathrm{I}, 2) \\ \mathrm{RM}(\mathrm{I}, 2) \\ \mathrm{PM}(\mathrm{I}, 2) \\ \mathrm{YM}(\mathrm{I}, 2)\end{array}\right]=\left[\begin{array}{l}\mathrm{AFT}(\mathrm{I})-\mathrm{AF0}(\mathrm{I}) \\ \mathrm{SFT}(\mathrm{I})-\mathrm{SF0(I)} \\ \mathrm{NFT}(\mathrm{I})-\mathrm{NFO}(\mathrm{I}) \\ \mathrm{RMT}(\mathrm{I})-\mathrm{RM0}(\mathrm{I}) \\ \mathrm{PMT}(\mathrm{I})-\mathrm{PM0(I)} \\ \mathrm{YMT}(\mathrm{I})-\mathrm{YM0}(\mathrm{I})\end{array}\right]\)
10. Correct forces and moments for high model restraints coupled with high balance interactions
\([F 3]=[F 2]+K[F 1]=\left[\begin{array}{l}A F(I, 3) \\ S F(I, 3) \\ \mathrm{NF}(\mathrm{I}, 3) \\ \mathrm{RM}(\mathrm{I}, 3) \\ \mathrm{PM}(\mathrm{I}, 3) \\ \mathrm{YM}(\mathrm{I}, 3)\end{array}\right]=\left[\begin{array}{l}\mathrm{AF}(\mathrm{I}, 2)+(\operatorname{HIRAF}) \mathrm{AF}(\mathrm{I}, 1) \\ \mathrm{SF}(\mathrm{I}, 2)+(\operatorname{HIRSF}) \mathrm{SF}(\mathrm{I}, 1) \\ \mathrm{NF}(\mathrm{I}, 2)+(\operatorname{HIRNF}) \mathrm{NF}(\mathrm{I}, 1) \\ \mathrm{RM}(\mathrm{I}, 2)+(\operatorname{HIRRM}) \mathrm{RM}(\mathrm{I}, 1) \\ \mathrm{PM}(\mathrm{I}, 2)+(\operatorname{HIRPM}) \mathrm{PM}(\mathrm{I}, 1) \\ \mathrm{YM}(\mathrm{I}, 2)+(\operatorname{HIRYM}) \mathrm{YM}(\mathrm{I}, 1)\end{array}\right]\)
(Eq. D-23)
11. Depending on the value of the constant KMOM, balance components are further corrected for balance/bellows interactions and momentum flow effects.

If \(\mathrm{KMOM}=0\),
(Eq. D-24)
no further balance corrections are applied and equations \(\mathrm{D}-29\) to \(\mathrm{D}-\) 35 are skipped.

If \(\mathrm{KMOM}=1\),
nonblowing balance corrections are applied and FAMOM(I) is atuomatically computed.
\(\mathrm{APCH}=0.0\)
\(\operatorname{AMOM}(\mathrm{I})=0.0\)
Equations D-28 to D-38 are executed.

FJCON \(/ \mathrm{FI}=\mathrm{f}(\mathrm{PTJ} / \mathrm{PO})\) Table lookup
\(\operatorname{FAMOM}(\mathrm{I})=\mathrm{AF}(\mathrm{I}, 4)-\mathrm{FI}[\mathrm{FJCON} / \mathrm{FI}]\)
(Eq. D-25)

The values of FJCON/FI are obtained from an input table which results from averaged Stratford choke nozzle data obtained over many years. Typical table values are given below:
\begin{tabular}{cccc} 
PTJ/PO & FJCON/FI & PTJ/PO & FJCON/FI \\
1.0 & 0.0 & 5.0 & 0.9700 \\
1.3 & 0.9820 & 6.0 & .9600 \\
1.5 & .9905 & 7.0 & .9500 \\
2.0 & .9960 & 8.0 & .9425 \\
3.0 & .9920 & 10.0 & .9300 \\
4.0 & .9815 & 14.0 & .9125 \\
4.5 & .9760 & &
\end{tabular}

A maximum of 15 values can be input to the computer as a T table.

If \(\mathrm{KMOM}=2\) and \(\operatorname{PCH}(\mathrm{I})<25\),
(Eq. D-26)
the jet is assumed to be off and only nonblowing balance corrections are applied.
\(\mathrm{APCH}=0.0\)
\(\mathrm{AMOM}(\mathrm{I})=0.0\)
Equations D-28 to D-38 are executed.

If \(\mathrm{KMOM}=2\) and \(\mathrm{PCH}(\mathrm{I}) \geq 25\),
the jet is assumed to be operating and all balance corrections are applied.
\(\mathrm{APCH}=\mathrm{PCH}(\mathrm{I})\)
Equations D-27 to D-38 are executed.

Double second-order curve capability for computation of \(\operatorname{AMOM}(\mathrm{I}) . \quad \mathrm{I}=\) balance number
\[
\begin{align*}
& \text { If } \mathrm{APCH}<\mathrm{XK}_{73}, \mathrm{I} \\
& \mathrm{AMOM}(\mathrm{I})=\mathrm{XKCH}(\mathrm{I}) * \mathrm{APCH}+\mathrm{XICH}(\mathrm{I})+\mathrm{XK}_{74, \mathrm{I}} * \mathrm{APCH}^{2} \\
& \text { If } \mathrm{APCH} \geq \mathrm{XK}_{73, \mathrm{I}} \text { then } \\
& \text { AMOM(I) }=\mathrm{XKCH}(\mathrm{I}+3) * \mathrm{APCH}+\mathrm{XICH}(\mathrm{I}+3)+\mathrm{XK}_{75, \mathrm{I}} * \mathrm{APCH}^{2} \tag{Eq.D-27}
\end{align*}
\]
\(\left[\begin{array}{c}A F \\ \mathrm{SF} \\ \mathrm{NF} \\ \mathrm{RM} \\ \mathrm{PM} \\ \mathrm{YM}\end{array}\right]=\left[\begin{array}{l}\mathrm{AF}(\mathrm{I}, 3) \\ \mathrm{SF}(\mathrm{I}, 3) \\ \mathrm{NF}(\mathrm{I}, 3) \\ \mathrm{RM}(\mathrm{I}, 3) \\ \mathrm{PM}(1,3) \\ \mathrm{YM}(\mathrm{I}, 3)\end{array}\right]\)

Balance/bellows interactions and momentum flow effects on the balance are computed after high restraint corrections.
\[
\begin{align*}
& \text { TAREA }=\operatorname{AMOM}(\mathrm{I})+\mathrm{XK}_{1, \mathrm{I}} * \mathrm{SF}+\mathrm{XK}_{2, \mathrm{I}} * \mathrm{FN}+\mathrm{XK}_{3, \mathrm{I}} * \mathrm{RM}  \tag{Eq.D-29}\\
& +\mathrm{XK}_{4, \mathrm{I}} * \mathrm{PM}+\mathrm{XK}_{5, \mathrm{I}} * \mathrm{YM}+\mathrm{XK}_{6, \mathrm{I}} * \mathrm{APCH} \\
& +\mathrm{XK}_{7, \mathrm{I}}  \tag{Eq.D-30}\\
& \left.+\mathrm{XK}_{24, \mathrm{I}}{ }^{*} \mathrm{RM}+\mathrm{XK}_{25, \mathrm{I}}{ }^{*} \mathrm{PM}+\mathrm{XK}_{26, \mathrm{I}}{ }^{*} \mathrm{YM}\right]  \tag{Eq.D-31}\\
& +\left(\mathrm{APCH}-\mathrm{XK}_{27, \mathrm{I}}\right) * \mathrm{XK}_{28, \mathrm{I}}+\mathrm{XK}_{29, \mathrm{I}} * \mathrm{SF} \\
& +\mathrm{XK}_{30, \mathrm{I}} * \mathrm{FN}+\mathrm{XK}_{31, \mathrm{I}} * \mathrm{RM}+\mathrm{XK}_{32, \mathrm{I}} * \mathrm{YM} \\
& +\mathrm{XK}_{33, \mathrm{I}} \\
& \text { TARES }=\left(\mathrm{APCH}-\mathrm{XK}_{34, \mathrm{I}}\right) *\left[\mathrm{XK}_{35, \mathrm{I}} * \mathrm{SF}+\mathrm{XK}_{36, \mathrm{I}} * \mathrm{FN}\right.  \tag{Eq.D-32}\\
& \left.+\mathrm{XK}_{37, \mathrm{I}}{ }^{*} \mathrm{RM}+\mathrm{XK}_{38, \mathrm{I}}{ }^{*} \mathrm{PM}+\mathrm{XK}_{39, \mathrm{I}} * \mathrm{YM}\right] \\
& +\left(\mathrm{APCH}-\mathrm{XK}_{40, \mathrm{I}}\right) * \mathrm{XK}_{41, \mathrm{I}}+\mathrm{XK}_{42, \mathrm{I}} * \mathrm{FN} \\
& +\mathrm{XK}_{43, \mathrm{I}}{ }^{*} \mathrm{RM}+\mathrm{XK}_{44, \mathrm{I}} * \mathrm{PM}+\mathrm{XK}_{45, \mathrm{I}} * \mathrm{YM} \\
& +\mathrm{XK}_{46, \mathrm{I}} \\
& \text { TAREY }=\left(\mathrm{APCH}-\mathrm{XK}_{47, \mathrm{I}}\right) *\left[\mathrm{XK}_{48, \mathrm{I}} * \mathrm{SF}+\mathrm{XK}_{49, \mathrm{I}} * \mathrm{FN}\right.  \tag{Eq.D-33}\\
& \left.+\mathrm{XK}_{50, \mathrm{I}} * \mathrm{RM}^{2}+\mathrm{XK}_{51, \mathrm{I}} * \mathrm{PM}+\mathrm{XK}_{52, \mathrm{I}}{ }^{*} \mathrm{YM}\right] \\
& +\left(\mathrm{APCH}-\mathrm{XK}_{53, \mathrm{I}}\right) * \mathrm{XK}_{54, \mathrm{I}}+\mathrm{XK}_{55, \mathrm{I}} * \mathrm{SF} \\
& +\mathrm{XK}_{56, \mathrm{I}} * \mathrm{FN}+\mathrm{XK}_{57, \mathrm{I}}{ }^{*} \mathrm{RM}+\mathrm{XK}_{58, \mathrm{I}} * \mathrm{PM} \\
& +\mathrm{XK}_{59, \mathrm{I}} \\
& \text { TARER }=\left(\mathrm{APCH}-\mathrm{XK}_{60, \mathrm{I}}\right) *\left[\mathrm{XK}_{61, \mathrm{I}} * \mathrm{SF}+\mathrm{XK}_{62, \mathrm{I}} * \mathrm{FN}\right.  \tag{Eq.D-34}\\
& \left.+\mathrm{XK}_{63, \mathrm{I}}{ }^{*} \mathrm{RM}+\mathrm{XK}_{64, \mathrm{I}}{ }^{*} \mathrm{PM}+\mathrm{XK}_{65, \mathrm{I}} * \mathrm{YM}\right] \\
& +\left(\mathrm{APCH}-\mathrm{XK}_{66, \mathrm{I}}\right) * \mathrm{XK}_{67, \mathrm{I}}+\mathrm{XK}_{68, \mathrm{I}} * \mathrm{SF} \\
& +\mathrm{XK}_{69, \mathrm{I}} * \mathrm{FN}+\mathrm{XK}_{70, \mathrm{I}} * \mathrm{PM}+\mathrm{XK}_{71, \mathrm{I}} * \mathrm{YM} \\
& +\mathrm{XK}_{72, \mathrm{I}}
\end{align*}
\]
\[
\left[\mathrm{F}_{3}\right]=\left[\begin{array}{l}
A F(\mathrm{I}, 3)  \tag{Eq.D-35}\\
\mathrm{SF}(\mathrm{I}, 3) \\
\mathrm{NA}(\mathrm{I}, 3) \\
R M(\mathrm{I}, 3) \\
\mathrm{PM}(\mathrm{I}, 3) \\
\mathrm{YM}(\mathrm{I}, 3)
\end{array}\right]=\left[\begin{array}{l}
A F(\mathrm{I}, 3)-\text { TAREA } \\
\mathrm{SF}(\mathrm{I}, 3)-\text { TARES } \\
\mathrm{NF}(\mathrm{I}, 3)-\text { TAREN } \\
R M(\mathrm{I}, 3)-\text { TARER } \\
\mathrm{PM}(\mathrm{I}, 3)-\text { TAREP } \\
\mathrm{YM}(\mathrm{I}, 3)-\text { TAREY }
\end{array}\right]
\]
12. Perform gravity-to-balance transformations.

Let \(\left[R_{\square}\right]\) denote specific Euler transformation matrixes
\[
\begin{align*}
{\left[F_{\text {bal }}\right] } & =\left[R_{\text {strut }}\right]\left[R_{\text {knuckle }}\right]\left[\mathrm{R}_{\text {deflections }}\right]\left[\mathrm{F}_{\mathrm{g}}\right]  \tag{Eq.D-36}\\
& =\left[\mathrm{R}_{\mathrm{GB}}\right]\left[\mathrm{F}_{\mathrm{g}}\right]
\end{align*}
\]
where
\[
\begin{aligned}
& {\left[F_{b a l}\right]=\text { vector representing balance quantities in balance axis. }} \\
& {\left[\mathrm{F}_{\mathrm{g}}\right]=\text { vector representing balance quantities in gravity axis. }} \\
& {\left[\mathrm{R}_{\mathrm{GB}}\right]=\text { gravity-to-balance axis transformation matrix. }}
\end{aligned}
\]
13. Determine weight tares (attitude loads)
\(\left[\begin{array}{l}\text { AFTARE } \\ \text { SFTARE } \\ \text { NFTARE } \\ \text { RMTARE } \\ \text { PMTARE } \\ \text { YMTARE }\end{array}\right]=\left[\begin{array}{l}W\left(\sin \theta_{g}-\sin \theta_{0}\right) \\ W\left(\cos \theta_{g} \sin \phi_{\mathrm{g}}-\cos \theta_{0} \sin \phi_{0}\right) \\ -W\left(\cos \theta_{g} \cos \phi_{\mathrm{g}}-\cos \theta_{0} \cos \phi_{0}\right) \\ \operatorname{SFTARE}(\mathrm{Z})-\operatorname{NFTARE}(\mathrm{Y}) \\ \operatorname{AFTARE}(\mathrm{Z})+\operatorname{NFTARE}(\mathrm{X}) \\ \operatorname{SFTARE}(\mathrm{X})+\operatorname{AFTARE}(\mathrm{Y})\end{array}\right]\)

Correct for weight tares (attitude loads)
\[
[F 4]=[F 3]-[\operatorname{FTARE}]=\left[\begin{array}{l}
A F(\mathrm{I}, 4  \tag{Eq.D-38}\\
\mathrm{SF}(\mathrm{I}, 4) \\
\mathrm{NF}(\mathrm{I}, 4) \\
\mathrm{RM}(\mathrm{I}, 4) \\
\mathrm{PM}(\mathrm{I}, 4) \\
\mathrm{YM}(\mathrm{I}, 4)
\end{array}\right]=\left[\begin{array}{l}
\operatorname{AF}(\mathrm{I}, 3)-\operatorname{AFTARE}(\mathrm{I}) \\
\mathrm{SF}(\mathrm{I}, 3)-\operatorname{SFTARE}(\mathrm{I}) \\
\mathrm{NF}(\mathrm{I}, 3)-\operatorname{NFTARE}(\mathrm{I}) \\
R M(\mathrm{I}, 3)-\operatorname{RMTARE}(\mathrm{I}) \\
\mathrm{PM}(\mathrm{I}, 3)-\operatorname{PMTARE}(\mathrm{I}) \\
\mathrm{YM}(\mathrm{I}, 3)-\operatorname{YMTARE}(\mathrm{I})
\end{array}\right]
\]
G. Balance Quantities Corrected for Method of Attachment
1. Balance component quantities corrected for method of attachment are named as follows:
\[
[F 5]=\left[\begin{array}{l}
A F(1,5) \\
S F(I, 5) \\
N F(I, 5) \\
R M(1,5) \\
P M(I, 5) \\
Y M(1,5)
\end{array}\right]
\]
(Eq. D-39)

Where \(\mathrm{I}=\) balance number.
2. The constant required from the project engineer is KSIGN(I).
\[
[\mathrm{F} 5]=\operatorname{KSIGN} *[\mathrm{~F} 4]=\left[\begin{array}{l}
\operatorname{AF}(\mathrm{I}, 5)  \tag{Eq.D-40}\\
\mathrm{SF}(\mathrm{I}, 5) \\
\mathrm{NF}(\mathrm{I}, 5) \\
\mathrm{RM}(\mathrm{I}, 5) \\
\mathrm{PM}(\mathrm{I}, 5) \\
\mathrm{YM}(\mathrm{I}, 5)
\end{array}\right]=\left[\begin{array}{l}
\operatorname{KSIGN}(\mathrm{I}) * \mathrm{AF}(\mathrm{I}, 4) \\
\operatorname{KSIGN}(\mathrm{I}) * \mathrm{SF}(\mathrm{I}, 4) \\
\operatorname{KSIGN}(\mathrm{I}) * \mathrm{NF}(\mathrm{I}, 4) \\
\operatorname{KSIGN}(\mathrm{I}) * \mathrm{RM}(\mathrm{I}, 4) \\
\operatorname{KSIGN}(\mathrm{I}) * \mathrm{PM}(\mathrm{I}, 4) \\
\operatorname{KSIGN}(\mathrm{I}) * \mathrm{YM}(\mathrm{I}, 4)
\end{array}\right]
\]
H. Angle of Attack and Sideslip Angle
1. The following definitions denote various transformation matrixes which are obtained from given orders of Euler rotation angles.
\[
\begin{aligned}
& {\left[R_{W G}\right]=\text { wind-axes-to-gravity-axes transformation matrix }} \\
& {\left[R_{G B}\right]=\text { gravity-axes-to-balance-axes transformation matrix. This }} \\
& \text { matrix is established from rotation angles supplied in section } \\
& \text { F, therefore }
\end{aligned}
\]
\(\left[R_{G B}\right]=R_{\text {strut }} R_{\text {knuckle }} R_{\text {deflection }}\) (Eq. D-41)
\(\left[\mathrm{R}_{\mathrm{BM}}\right]\) = balance axes-to-model axes transformation matrix
2. The constants required from the project engineer are THETAU, PSIU, PSIBI, THETABI AND PHIBI.

For wind-to-gravity rotation angles, see Figure D-3.

For balance-to-model rotation angles, see Figure D-4(a).

The matrix \(\left[{ }^{R} W M\right]\), which transforms a vector in the wind axis system to the model axis system, may now be computed by a yaw, pitch, and roll rotation. The result is the final rotation matrix from the wind axes to model axes.
\[
\begin{align*}
& {\left[R_{W M}\right]=\left[R_{B M}\right]\left[R_{G B}\right]\left[R_{W G}\right]=\left[\begin{array}{lll}
\mathrm{w}_{11} & w_{12} & w_{13} \\
\mathrm{w}_{21} & \mathrm{w}_{22} & \mathrm{w}_{23} \\
\mathrm{w}_{31} & \mathrm{w}_{32} & \mathrm{w}_{33}
\end{array}\right]}  \tag{Eq.D-42}\\
& {\left[\mathrm{R}_{\mathrm{WM}}\right]=\left[\mathrm{R}_{\mathrm{X}}^{(\phi)}\right]\left[\mathrm{R}_{\mathrm{Y}}(\Theta)\right]\left[\mathrm{R}_{\mathrm{Z}}(\psi)\right]} \tag{Eq.D-43}
\end{align*}
\]


Using the definitions shown in Figure D-5 and the above information
\[
\begin{equation*}
\text { ALPHA }=\text { TAN }^{-1}\left(\frac{\mathrm{w}_{31}}{\mathrm{w}_{11}}\right) \tag{Eq.D-45}
\end{equation*}
\]

Note that for \(\phi=0^{\circ}, \alpha=\theta\)
\[
\begin{aligned}
& \text { PSI }=\operatorname{SIN}^{-1}\left(\mathrm{w}_{21}\right) \\
& \text { BETA }=- \text { PSI } \\
& \text { THETA }=\operatorname{SIN}^{-1}\left(-\mathrm{w}_{13}\right) \\
& \text { PHI }=\text { TAN }^{-1}\left(-\frac{\mathrm{w}_{23}}{\mathrm{w}_{33}}\right)
\end{aligned}
\]
I. Body Axis Components; Rotation and Translation from Balance-to-Model Axis
1. Balance components rotated to the model (body) axis are named as follows:
\begin{tabular}{|c|c|}
\hline Axial & - FA( 1,1 ) \\
\hline Side & - FY( \(\mathrm{I}, 1)\) \\
\hline Norm & FN( \(\mathrm{I}, 1\) ) \\
\hline Roll & - MX( 1,1 ) \\
\hline Pitch & - MY(1,1) \\
\hline Yaw & - MZ(I,1) \\
\hline
\end{tabular}
2. Balance components rotated and translated to the model (body) axis are named as follows:
\[
\begin{array}{ll}
\text { Axial } & -\mathrm{FA}(\mathrm{I}, 2) \\
\text { Side } & -\mathrm{FY}(\mathrm{I}, 2) \\
\text { Normal } & -\mathrm{FN}(\mathrm{I}, 2) \\
\text { Roll } & -\mathrm{MX}(\mathrm{I}, 2) \\
\text { Pitch } & -\mathrm{MY}(\mathrm{I}, 2) \\
\text { Yaw } & -\mathrm{MZ}(\mathrm{I}, 2)
\end{array}
\]
3. The constants required from the project engineer are XBAR, YBAR and ZBAR. (See Figure D-4.(b))

The matrix \(\left[R_{B M}\right]\) is used to transform the components in the balance axis to the model (body) axis system as follows:
\[
\begin{align*}
& {\left[\begin{array}{l}
\mathrm{FA}(\mathrm{I}, 1) \\
\mathrm{FY}(\mathrm{I}, 1) \\
\mathrm{FN}(\mathrm{I}, \mathrm{I})
\end{array}\right]=\left[\mathrm{R}_{\mathrm{BM}}\right]\left[\begin{array}{c}
\mathrm{AF}(\mathrm{I}, 5) \\
\mathrm{SF}(\mathrm{I}, 5) \\
\mathrm{NF}(\mathrm{I}, 5)
\end{array}\right]}  \tag{Eq.D-47}\\
& {\left[\begin{array}{r}
-\mathrm{MX}(\mathrm{I}, 1) \\
\mathrm{MY}(\mathrm{I}, 1) \\
-M Z(1,1)
\end{array}\right]=\left[\mathrm{R}_{\mathrm{BM}}\right]\left[\begin{array}{r}
-\mathrm{RM}(\mathrm{I}, 5) \\
\mathrm{PM}(1,5) \\
-\mathrm{YM}(\mathrm{I}, 5)
\end{array}\right]}
\end{align*}
\]
or
\(\left[\begin{array}{l}F A(I, 1) \\ F Y(I, 1) \\ F N(I, 1) \\ M X(I, 1) \\ M Y(I, 1) \\ M Z(I, 1)\end{array}\right]=\left[\begin{array}{c}b_{11} A F(I, 5)+b_{12} S F(I, 5)+b_{13} N F(I, 5) \\ b_{21} A F(I, 5)+b_{22} S F(I, 5)+b_{23} N F(I, 5) \\ b_{31} A F(I, 5)+b_{32} S F(I, 5)+b_{33} N F(I, 5) \\ b_{11} R M(I, 5)-b_{12} P M(I, 5)+b_{13} Y M(I, 5) \\ -b_{21} R M(I, 5)+b_{22} P M(I, 5)-b_{23} Y M(I, 5) \\ b_{31} R M(I, 5)-b_{32} P M(I, 5)+b_{33} Y M(I, 5)\end{array}\right] \quad\) (Eq. D-49)

The components are then translated as follows


\section*{J. Pressure Corrections to Body Axis Components}
1. Base and/or cavity pressures are obtained from the standard program for quantities and are named PBASE(II). Where II = orifice number.
2. Tunnel static pressure is computed in module A and is named PO.
3. Base force and moment tares are named as follows:
Axial - FABASE(I)
Side - FYBASE(I)
Normal - FNBASE(I)
Roll - RMBASE(I)
Pitch - PMBASE(I)
Yaw - YMBASE(I)
4. Final body axis components, corrected for base tares, are named as follows:
\begin{tabular}{ll} 
Axial - FA(I) \\
Side & - FY(I) \\
Normal & FN(I) \\
Roll & \(-M X(I)\) \\
Pitch & \(-M Y(I)\) \\
Yaw & \(-M Z(I)\)
\end{tabular}

Note that axial force is not corrected for internal (duct) axial force.
5. The constants required from the project engineer are \(A R P B(I I, K)\) and KPP.

To determine differential base and cavity pressures
\[
\begin{equation*}
\triangle \operatorname{PBASE}(\mathrm{II})=\operatorname{PBASE}(\mathrm{II})-[(\mathrm{PO} *(\mathrm{KPP}))], \tag{Eq.D-51}
\end{equation*}
\]

Noting that a positive differential pressure acting on the base of a model causes a thrust, then base pressure force and moment tares are defined as follows:
\[
\begin{align*}
\operatorname{FABASE}(\mathrm{I})= & -\sum_{\mathrm{II}=1}^{\mathrm{n}}[\Delta \operatorname{PBASE}(\mathrm{II})] *[\operatorname{ARPB}(\mathrm{II}, 1)]  \tag{Eq.D-52}\\
\operatorname{FYBASE}(\mathrm{I})= & \sum_{\mathrm{I}}^{\mathrm{n}}[\Delta \operatorname{PBASE}(\mathrm{II})] *[\operatorname{ARPB}(\mathrm{II}, 2)]  \tag{Eq.D-53}\\
& \\
\operatorname{FNBASE}(\mathrm{I})= & \sum^{\mathrm{n}}[\Delta \operatorname{PBASE}(\mathrm{II})] *[\operatorname{ARPB}(\mathrm{II}, 3)]  \tag{Eq.D-54}\\
& \mathrm{II}=1
\end{align*}
\]
\[
\begin{align*}
& \operatorname{RMBASE}(\mathrm{I})=\sum_{\mathrm{II}=1}^{\mathrm{n}}[\Delta \operatorname{PBASE}(\mathrm{II})] *[\operatorname{ARPB}(\mathrm{II}, 4)]  \tag{Eq.D-55}\\
& \operatorname{PMBASE}(\mathrm{I})=\sum_{\mathrm{II}=1}^{\mathrm{n}}[\triangle \mathrm{PBASE}(\mathrm{II})] *[\operatorname{ARPB}(\mathrm{II}, 5)]  \tag{Eq.D-56}\\
& \operatorname{YMBASE}(\mathrm{I})=\sum_{\mathrm{II}=1}^{\mathrm{n}}[\triangle \operatorname{PBASE}(\mathrm{II})] *[\operatorname{ARPB}(\mathrm{II}, 6)] \tag{Eq.D-57}
\end{align*}
\]
(Eq. D-58)
K. Stability Axis Components
1. Force and moment components in the stability axis are called
\(\left[\begin{array}{l}\text { Drag }- \text { FDS(I) } \\ \text { Side }- \text { FYS(I) } \\ \text { Lift }-\operatorname{FLS}(\mathrm{I}) \\ \text { Roll }-\operatorname{MXS}(\mathrm{I}) \\ \text { Pitch }-\operatorname{MYS}(\mathrm{I}) \\ \text { Yaw }-\operatorname{MZS}(\mathrm{I})\end{array}\right]\)
where \(\mathrm{I}=\) balance number.

Note that drag is not corrected for internal (duct) drag.
\[
\begin{aligned}
& \mathrm{FDS}(\mathrm{I})=[\mathrm{FA}(\mathrm{I})] *[\operatorname{COS}(\mathrm{ALPHA})]+[\mathrm{FN}(\mathrm{I})] *[\operatorname{SIN}(\mathrm{ALPHA})] \\
& \mathrm{FYS}(\mathrm{I})=\mathrm{FY}(\mathrm{I}) \\
& \mathrm{FLS}(\mathrm{I})=[\mathrm{FN}(\mathrm{I})] *[\operatorname{COS}(\mathrm{ALPHA})]-[\mathrm{FA}(\mathrm{I})] *[\operatorname{SIN}(\mathrm{ALPHA})]
\end{aligned} \quad \text { (Eq.D-59) }
\]
\[
\begin{aligned}
& \operatorname{MXS}(\mathrm{I})=[\mathrm{MX}(\mathrm{I})] *[\operatorname{COS}(\mathrm{ALPHA})]+[\mathrm{MZ}(\mathrm{I})] *[\operatorname{SIN}(\mathrm{ALPHA})] \\
& M Y S(I)=M Y(I) \\
& M Z S(I)=[M Z(I)] *[\operatorname{COS}(A L P H A)]-[M X(I)] *[\operatorname{SIN}(A L P H A)]
\end{aligned}
\]
L. Wind Axis Components
1. Force and moment components in the wind axis are called
\begin{tabular}{ll} 
Drag & \(-\operatorname{FD}(\mathrm{I})\) \\
Crosswind & \(-\mathrm{FC}(\mathrm{I})\) \\
Lift & \(-\mathrm{FL}(\mathrm{I})\) \\
Roll & \(-\mathrm{MXW}(\mathrm{I})\) \\
Pitch & -MYW \\
Yaw & \(-\mathrm{I})\) \\
&
\end{tabular}

Note that drag is not correct for internal (duct) drag.
\begin{tabular}{|c|c|}
\hline \(\mathrm{FD}(\mathrm{I}) \quad=[\mathrm{FDS}(\mathrm{I})] *[\operatorname{COS}(\mathrm{BETA})]-[\mathrm{FYS}(\mathrm{I})] *[\operatorname{SIN}(\mathrm{BETA})]\) & (Eq. D-65) \\
\hline \(\mathrm{FC}(\mathrm{I})=[\mathrm{FYS}(\mathrm{I})] *[\operatorname{COS}(\mathrm{BETA})]+[\mathrm{FDS}(\mathrm{I})] *[\operatorname{SIN}(\mathrm{BETA})]\) & (Eq. D-66) \\
\hline \(\mathrm{FL}(\mathrm{I})=\mathrm{FLS}(\mathrm{I})\) & (Eq. D-67) \\
\hline \(\operatorname{MXW}(\mathrm{I})=[\mathrm{MXS}(\mathrm{I})] *[\operatorname{COS}(\mathrm{BETA})]+[\mathrm{MYS}(\mathrm{I})] *[\operatorname{SIN}(\mathrm{BETA})]\) & (Eq. D-68) \\
\hline \(M Y W(I)=[M Y S(I)] *[\operatorname{COS}(\mathrm{BETA})]-[\mathrm{MXS}(\mathrm{I})] *[\operatorname{SIN}(\mathrm{BETA})]\) & (Eq. D-69) \\
\hline \(\mathrm{MZW}(\mathrm{I})=\operatorname{MZS}(\mathrm{I})\) & (Eq. D-70) \\
\hline
\end{tabular}
M. Alternate Reference Axis Components
1. Body axis components rotated and translated to an arbitrary reference axis system are called
\[
\begin{array}{ll}
\text { Axial } & \text { - FAREF(I) } \\
\text { Side } & \text { FYREF(I) } \\
\text { Normal }- & \text { FNREF(I) } \\
\text { Roll } & -\operatorname{MXREF}(\mathrm{I}) \\
\text { Pitch } & \text { - MYREF(I) } \\
\text { Yaw } & \text { MZREF(I) } \\
\text { where I } & \text { balance number. }
\end{array}
\]

Note that axial force is corrected for internal (duct) axial force.
2. The transformation matrix for model axis to reference axis rotations is defined as \(\left[{ }^{R}{ }_{M R}\right]\).
3. The constants required from the project engineer are PSIR, THETAR, PHIR, XREF, YREF, ZREF and SAREAI where I = balance number for model-(body)-to-reference axis rotations.
4. CAI is from module E.

The matrix \(\left[{ }^{R}{ }_{M R}\right.\) ] is used to transform the components in the model (body) axis to a reference axis system as follows:
\[
\begin{equation*}
\mathrm{FA}(\mathrm{I})^{\prime}=\mathrm{FA}(\mathrm{I})-\mathrm{CAI} * \mathrm{QO} * \mathrm{SAREA}(\mathrm{I}) \tag{Eq.D-71}
\end{equation*}
\]

\(\left[\begin{array}{c}-\mathrm{MXREF}(\mathrm{I})^{\prime} \\ \mathrm{MYREF}(\mathrm{I})^{\prime} \\ -\mathrm{MZREF}(\mathrm{I})^{\prime}\end{array}\right]=\left[\begin{array}{l}\mathrm{R}_{\mathrm{MR}}\end{array}\right]\left[\begin{array}{r}-\mathrm{MX}(\mathrm{I}) \\ \mathrm{MY}(\mathrm{I}) \\ -\mathrm{MZ}(\mathrm{I})\end{array}\right]\)

(Eq. D-74)

(Eq. D-75)
N. Base Force and Moment Tare Coefficients
1. Base force and moment tare coefficients are called
\(\left[\begin{array}{ll}\text { Axial } & -\operatorname{CABASE}(\mathrm{I}) \\ \text { Side } & \text { - CYBASE(I) } \\ \text { Normal } & \text { CNBASE(I) } \\ \text { Roll } & -\operatorname{CRMBASE}(\mathrm{I}) \\ \text { Pitch } & -\operatorname{CPMBASE}(\mathrm{I}) \\ \text { Yaw } & -\operatorname{CYMBASE}(\mathrm{I})\end{array}\right]\)
where \(\mathrm{I}=\) balance number.
2. Free-stream dynamic pressure is defined in module A and is called QO.
3. The constants required from the project engineer are SAREA(I), CHORD(I), and BSPAN(I).

(Eq. D-76)

\section*{O. Base Pressure Coefficients}
1. Base pressure coefficients are called CPBASE(II)
\[
\operatorname{CPBASE}(\mathrm{II})=\frac{1}{\mathrm{QO}}[\triangle \mathrm{PBASE}(\mathrm{II})]
\]
where II = orifice number.
P. Model (Body) Axis Coefficients
1. Model (body) axis coefficients are called
Axial \(-C A(I)\)
Side \(-C Y(I)\)
Normal \(-C N(I)\)
Roll \(-C M X(I)\)
Pitch \(-C M Y(I)\)
Yaw \(-C M Z(I)\)
where \(\mathrm{I}=\) balance number.
2. CAI is from module \(E\).

(Eq. D-78)
Q. Stability Axis Coefficients
1. Stability axis coefficients are called
\(\left[\begin{array}{ll}\text { Drag } & -\operatorname{CDS}(\mathrm{I}) \\ \text { Side } & -\mathrm{CYS}(\mathrm{I}) \\ \text { Lift } & -\mathrm{CLS}(\mathrm{I}) \\ \text { Roll } & -\mathrm{CMXS}(\mathrm{I}) \\ \text { Pitch } & -\mathrm{CMYS}(\mathrm{I}) \\ \text { Yaw } & -\mathrm{CMZS}(\mathrm{I})\end{array}\right]\)
where \(\mathrm{I}=\) balance number.
2. CDIS is from module \(E\).

R. Wind Axis Coefficients
1. Wind axis coefficients are named
\begin{tabular}{ll} 
Drag & \(-C D(I)\) \\
Crosswind & \(-C C(I)\) \\
Lift & \(-C L(I)\) \\
Roll & \(-C M X W(I)\) \\
Pitch & \(-C M Y W(1)\) \\
Yaw & \(-C M Z W(I)\)
\end{tabular}
where \(\mathrm{I}=\) balance number.
2. CDI is from module E.

S. Alternate Reference Axis Coefficients
1. Reference axis coefficients are named
```

Axial - CAREF(I)
Side - CYREF(I)
Normal - CNREF(I)
Roll - CMXREF(I)
Pitch - CMYREF(I)
Yaw - CMZREF(I)

```
where \(I=\) balance number.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
CAREF(I) \\
CYREF(I) \\
CNREF(I) \\
CMXREF(I) \\
CMYREF(I) \\
CMZREF(I)
\end{tabular} & \(\left.=\frac{1}{[Q O]^{*}[\text { SAREA (1) }}\right]\) & \(\left[\begin{array}{l}\text { FAREF (I) } \\ \operatorname{FYREF}(\mathrm{I}) \\ \operatorname{FNREF}(\mathrm{I}) \\ {[\operatorname{MXREF}(\mathrm{I}) / \operatorname{BSPAN}(\mathrm{II})]} \\ {[\operatorname{MYREF}(\mathrm{I}) / \operatorname{CHORD}(\mathrm{I})]} \\ {[\operatorname{MZREF}(\mathrm{I}) / \operatorname{BSPAN}(\mathrm{I})]}\end{array}\right]\) \\
\hline
\end{tabular}
T. Miscellaneous Equations
1. Base drag coefficient is called \(\operatorname{CDBASE}(\mathrm{I})\). Where \(\mathrm{I}=\) balance number.
\[
[\operatorname{CDBASE}(\mathrm{I})=[\operatorname{CABASE}(\mathrm{I})] *[\operatorname{COS}(\mathrm{ALPHA})]+[\operatorname{CNBASE}(\mathrm{I})] *[\operatorname{SIN}(\mathrm{ALPHA})]
\]
(Eq. D-82)
2. Lift-over-drag ratio in the stability axis is called LS/DS(I).
\[
\begin{equation*}
\operatorname{LS} / D S(\mathrm{I})=\operatorname{CLS}(\mathrm{I}) / C D S(\mathrm{I}) \tag{Eq.D-83}
\end{equation*}
\]
3. Lift-over-drag ratio in the wind axis is called \(L / D(1)\).
\[
\begin{equation*}
\mathrm{L} / \mathrm{D}(\mathrm{I})=\mathrm{CL}(\mathrm{I}) / \mathrm{CD}(\mathrm{I}) \tag{Eq.D-84}
\end{equation*}
\]
4. Lift coefficient squared is called CLSQR(I).
\[
\begin{equation*}
\operatorname{CLSQR}(\mathrm{I})=[\operatorname{CLS}(\mathrm{I})] *[\operatorname{CLS}(\mathrm{I})] \tag{Eq.D-85}
\end{equation*}
\]

\section*{U. Calculation of Initial Weight Tares and Attitude Load Constants}
1. The initial weight tares and attitude load constants may be obtained by either of two methods for each strain gage balance.
a. Method I - Data obtained at an arbitrary series of pitch angles ( \(2 \leq\) number of pitch angles \(\leq 30\) ). This method cannot be used with a balance without an axial force component.
b. Method II - Data obtained at an arbitrary series of roll angles ( \(4 \leq\) number of roll angles \(\leq 30\) ). Normally, the roll angles will be \(0^{\circ}\), \(90^{\circ}, 180^{\circ}\), and \(270^{\circ}\). The roll angle must be specified in a digital channel with name PHIK. (Note that this method must be used for balances without an axial force component). This method cannot be used with a balance that does not have a rolling moment coefficient.

\section*{V. Calculation of Initial Weight Tares and Attitude Load Tares (Strain Gage Balance)}
1. Calculate
a. \(K_{A, 1}=\cos \phi_{0} \cos _{\theta_{0}}\)
(Eq. D-86)
b. \(\quad K_{A, 2}=\sin _{\theta_{0}}\).
(Eq. D-87)
\[
\begin{equation*}
\text { c. } K_{A, 3}=\sin ^{\phi_{0}} \cos \theta_{0} \tag{Eq.D-88}
\end{equation*}
\]
2. Determine from balance deck number of components and what these components are.
3. Determine maximum value of each equipment over entire tare run.
a. \(\quad \operatorname{FNMAX}(\mathrm{I})=\operatorname{ABS}(\mathrm{NF}(1,1))_{\text {max }}\)
(Eq. D-89)
b. \(\quad\) FAMAX \((\mathrm{I})=\operatorname{ABS}(\mathrm{AF}(\mathrm{I}, \mathrm{I}))\) max
(Eq. D-90)
c. \(\quad \operatorname{FYMAX}(1)=\operatorname{ABS}(\mathrm{SF}(1,1)) \max\)
(Eq. D-91)
d. \(\operatorname{PMMAX}(\mathrm{I})=\operatorname{ABS}(\mathrm{PM}(1,1)) \max\)
(Eq. D-92)
e. \(\operatorname{RMMAX}(\mathrm{I})=\operatorname{ABS}(\mathrm{RM}(\mathrm{I}, 1)) \max\)
(Eq. D-93)
f. \(\quad \operatorname{YMMAX}(\mathrm{I})=\operatorname{ABS}(\mathrm{YM}(\mathrm{I}, \mathrm{I})) \max\)
(Eq. D-94)
4. Initialize initial weight tares and attitude load constants.
a. Set \(\quad \Delta A=\Delta N=\Delta Y=0\)
(Eq. D-95)
\[
\begin{aligned}
& \Delta_{m_{1}}=\Delta m_{2}=\Delta n_{1}=\Delta n_{2}=\Delta l_{1}=\Delta \ell_{2}=0 \\
& x=y=z=0
\end{aligned}
\]
b. Assume NFO (I) \(=\operatorname{AFO}(\mathrm{I})=\mathrm{PMO}(\mathrm{I})=\mathrm{RMO}(\mathrm{I})=\mathrm{YMO}(\mathrm{I})=\mathrm{SFO}(\mathrm{I})=0\).
(Eq. D-96)
5. For each data point correct balance quantities for interactions.

Determine uncorrected total loads, [FUT]
\[
[F U T]=[F 1]+[F 0]=\left[\begin{array}{l}
A F(I, 1)+A F O(I) \\
S F(I, 1)+S F O(I) \\
N F(I, 1)+N F O(I) \\
R M(1,1)+R M O(I) \\
P M(I, 1)+P M O(I) \\
Y M(I, 1)+Y M O(I)
\end{array}\right]
\]

Correct for interactions
a. \([\mathrm{FUT}]=\left[\mathrm{C}_{1}\right] *[\mathrm{FT}]+\left[\mathrm{C}_{2}\right] *[\mathrm{FP}] \quad\) (Same as Eq. D-20)
where \(\left[\mathrm{C}_{1}\right]\) and \(\left[\mathrm{C}_{2}\right]\) are balance interaction constants
b. Therefore
\[
[\mathrm{FT}]=\left[\mathrm{C}_{1}\right]^{-1} *[\mathrm{FUT}]-\left[\mathrm{C}_{1}\right]^{-1} *\left[\mathrm{C}_{2}\right] *[\mathrm{FP}]
\]
(Same as Eq. D-21)

Compute corrected delta balance loads, [F2]
\([\mathrm{F} 2]=[\mathrm{FT}]-[\mathrm{F} 0]=\left[\begin{array}{l}\mathrm{AF}(\mathrm{I}, 2) \\ \mathrm{SF}(\mathrm{I}, 2) \\ \mathrm{NF}(\mathrm{I}, 2) \\ \mathrm{RM}(\mathrm{I}, 2) \\ \mathrm{PM}(\mathrm{I}, 2) \\ \mathrm{YM}(\mathrm{I}, 2)\end{array}\right]=\left[\begin{array}{l}\operatorname{AFT}(\mathrm{I})-\operatorname{AF0}(\mathrm{I}) \\ \mathrm{SFT}(\mathrm{I})-\mathrm{SFO}(\mathrm{I}) \\ \mathrm{NFT}(\mathrm{I})-\mathrm{NF0(I)} \\ \mathrm{RMT}(\mathrm{I})-\mathrm{RM0}(\mathrm{I}) \\ \mathrm{PMT}(\mathrm{I})-\mathrm{PMO}(\mathrm{I}) \\ \mathrm{YMT}(\mathrm{I})-\mathrm{YM0(I)}\end{array}\right]\)
(Same as Eq. D-22)

Correct forces and moments for high model restraints coupled with high balance interactions
\[
[F 3]=[F 2]+K[F 1]=\left[\begin{array}{l}
A F(I, 3) \\
S F(I, 3) \\
N F(I, 3) \\
R M(1,3) \\
P M(1,3) \\
Y M(I, 3)
\end{array}\right]=\left[\begin{array}{l}
A F(1,2)+(\operatorname{HIRAF}) A F(1,1) \\
S F(I, 2)+(\operatorname{HIRSF}) \operatorname{SF}(\mathrm{I}, 1) \\
\mathrm{NF}(\mathrm{I}, 2)+(\operatorname{HIRNF}) \mathrm{NF}(\mathrm{I}, 1) \\
R M(\mathrm{I}, 2)+(\operatorname{HIRRM}) R M(\mathrm{I}, 1) \\
\mathrm{PM}(\mathrm{I}, 2)+(\operatorname{HIRPM}) \mathrm{PM}(\mathrm{I}, 1) \\
\mathrm{YM}(\mathrm{I}, 2)+(\operatorname{HIRYM}) \mathrm{YM}(\mathrm{I}, 1)
\end{array}\right]
\]
6. Determine balance rotation from gravity axis.
a. Determine rotation matrix for each matrix. See first part of this module.
b. Determine \(\left[{ }^{R_{G B}}\right]=\) product of each individual rotation
c. Then:
\(\mathbf{R}_{\mathbf{G B}}=\left[\begin{array}{ccc}\cos \theta \cos \psi & -\sin \psi \cos \theta & -\sin \theta \\ -\sin \phi \sin \theta \cos \psi+\cos \phi \sin \psi & \sin \phi \sin \theta \sin \psi+\cos \phi \cos \psi & -\sin \phi \cos \theta \\ \cos \phi \sin \theta \cos \psi+\sin \phi \sin \psi & -\cos \phi \sin \theta \sin \psi+\cos \phi \cos \psi & \cos \phi \cos \theta\end{array}\right]\)
(Eq. D-97)
d. \(\quad R_{G B}=\left[\begin{array}{lll}R(1,1) & R(1,2) & R(1,3) \\ R(2,1) & R(2,2) & R(2,3) \\ R(3,1) & R(3,2) & R(3,3)\end{array}\right]\)
(Eq. D-98)
e. Calculate
\[
\begin{aligned}
& \text { PSI }=\operatorname{SIN}^{-1}\left(\mathrm{w}_{21}\right) \\
& \text { BETA }=-\mathrm{PSI} \\
& \text { THETA }=\operatorname{SIN}^{-1}\left(-\mathrm{w}_{13}\right) \\
& \text { PHI }=\text { TAN }^{-1}\left(-\frac{\mathrm{w}_{23}}{\mathrm{w}_{33}}\right)
\end{aligned}
\]

\section*{W. Calculation of Attitude Load Constants by Method I}
1. Solve following matrix equation using a least squares technique (MINFIT routine) for \(\Delta \mathrm{A}\).
\[
\left.\left|\begin{array}{c}
\left(-R(1,3)-K_{A, 2}\right)_{1} \\
\left(-R(1,3)-K_{A, 2}\right)_{2} \\
\cdot \\
\cdot \\
\cdot \\
\left(-R(1,3)-K_{A, 2}\right)_{k}
\end{array}\right||\Delta A \quad| \begin{gathered}
\left(A_{3}\right)_{1} \\
\left(A_{3}\right)_{2} \\
\cdot \\
\cdot \\
\cdot \\
\left(A_{3}\right)_{k}
\end{gathered} \right\rvert\,
\]
(Eq. D-99)
where \(k\) is the number of data points \(\leq 30\)
2. \(\Delta N=\Delta A+\Delta W\)
(Eq. D-100)
\[
\Delta Y=\Delta N
\]
where \(\Delta W\) is obtained from balance interaction deck
3. If \(\operatorname{PMMAX}(\mathrm{I})>Y M M A X(I)\) and \(\circledast \operatorname{RMMAX}(\mathrm{I})\)
a. Solve following matrix equation using least squares technique for \(\Delta m_{1}\) and \(\Delta m_{2}\).
\[
\left|\begin{array}{cc}
\left(K_{A, 1}-R(3,3)\right)_{1} & \left(-R(1,3)-K_{A, 2}\right)_{1} \\
\left(K_{A, 1}-R(3,3)\right)_{2} & \left(-R(1,3)-K_{A, 2}\right)_{2} \\
\cdot & \cdot \\
\cdot & \cdot \\
\left(K_{A, 1}-R(3,3)\right)_{k} & \left(-R(1,3)-K_{A, 2}\right)_{k}
\end{array}\right|\left|\begin{array}{c}
\Delta m_{1} \\
\Delta m_{2}
\end{array}\right|=\left|\begin{array}{l}
\left(m_{3}\right)_{1} \\
\left(m_{3}\right)_{2} \\
\cdot \\
\cdot \\
\left(m_{3}\right)_{k}
\end{array}\right|
\]
(Eq. D-101)

> b. \(\quad x=\frac{\Delta m_{1}}{\Delta N}\)
> c. \(\quad z=\frac{\Delta m_{2}}{\Delta A}\)
(Eq. D-102)
(Eq. D-103)
d. \(\quad \Delta \ell_{2}=\Delta m_{2}\)
e. \(\quad \Delta n_{1}=\Delta m_{1}\)
(Eq. D-105)
f. If \(\operatorname{YMMAX}(\mathrm{I})>\operatorname{RMMAX}(\mathrm{I})\) solve the following equation for \(\Delta n_{2}\) and \(\Delta \ell_{1}\).
\[
\left|\begin{array}{c}
\left(-R(1,3)-K_{A, 2}\right)_{1} \\
\left(-R(1,3)-K_{A, 2}\right)_{2} \\
\cdot \\
\cdot \\
\left(-R(1,3)-K_{A, 2}\right)_{k}
\end{array}\right|\left|\begin{array}{c} 
\\
\Delta n_{2}
\end{array}\right|=\left|\begin{array}{c}
\left(n_{3}+\Delta n_{1}\left(R(2,3)+K_{A, 3}\right)\right)_{1} \\
\left(n_{3}+\Delta n_{1}\left(R(2,3)+K_{A, 3}\right)\right)_{2} \\
\cdot \\
\cdot \\
\left(n_{3}+\Delta n_{1}\left(R(2,3)+K_{A, 3}\right)\right)_{k}
\end{array}\right|
\]
(Eq. D-106)
and \(\Delta l_{1}=\Delta n_{2}\)
g. If RMMAX(I) > YMMAX(I), solve following equations for \(\Delta l_{1}\) and \(\Delta n_{2}\)
\[
\left|\begin{array}{c}
\left(\mathrm{R}(3,3)-\mathrm{K}_{\mathrm{A}, 1}\right)_{1} \\
\left(\mathrm{R}(3,3)-\mathrm{K}_{\mathrm{A}, 1}\right)_{2} \\
\cdot \\
\cdot \\
\cdot \\
\left(\mathrm{R}(3,3)-\mathrm{K}_{\mathrm{A}, 1}\right)_{k}
\end{array}\right|\left|\Delta \ell_{1}\right|=\left|\begin{array}{c}
{\left[+\ell_{3}+\Delta \ell_{2}\left(\mathrm{R}(2,3)+\mathrm{K}_{\mathrm{A}, 3}\right)\right]_{1}} \\
{\left[+\ell_{3}+\Delta \ell_{2}\left(\mathrm{R}(2,3)+\mathrm{K}_{\mathrm{A}, 3}\right]_{2}\right.} \\
\cdot \\
\cdot \\
\cdot \\
{\left[+\ell_{3}+\Delta \ell_{2}\left(\mathrm{R}(2,3)+\mathrm{K}_{\mathrm{A}, 3}\right)\right]_{\mathrm{k}}}
\end{array}\right|
\]
(Eq. D-107)
and \(\Delta n_{2}=\Delta l_{1}\)
h. \(y=\frac{\Delta n_{2}}{\Delta A}\)
(Eq. D-108)
4. If \(\operatorname{YMMAX}(\mathrm{I})>\operatorname{PMMAX}(\mathrm{I})\) and \(>\operatorname{RMMAX}(\mathrm{I})\)
a. Solve following matrix equation using a least square technique for \(\Delta n_{1}\) and \(\Delta n_{2}\)
\[
\left|\begin{array}{cc}
-\left(R(2,3)+K_{A, 3}\right)_{1} & \left(-R(1,3)-K_{A, 2}\right) 1 \\
-\left(R(2,3)+K_{A, 3}\right)_{2} & \left(-R(1,3)-K_{A, 2}\right) \\
\cdot & \cdot \\
\cdot & \cdot \\
- & \cdot \\
-\left(R(2,3)+K_{A, 3}\right)_{k} & \left(-R(1,3)-K_{A, 2}\right)_{k}
\end{array}\right|\left|\begin{array}{l} 
\\
\Delta n_{1} \\
\Delta n_{2} \\
\\
\end{array}\right|=\left|\begin{array}{l}
\left(n_{3}\right)_{1} \\
\left(n_{3}\right)_{2} \\
\cdot \\
\cdot \\
\cdot \\
\left(n_{3}\right)_{k}
\end{array}\right|
\]
(Eq. D-109)
b. \(\mathrm{x}=+\frac{\Delta \mathrm{n}_{1}}{\Delta \mathrm{Y}}\)
c. \(y=\frac{\Delta n_{2}}{\Delta \mathrm{~A}}\)
(Eq. D-110)
d. \(\quad \Delta \ell_{1}=\Delta n_{2}\)
e. \(\quad \Delta m_{1}=\Delta n_{1}\)
f. If \(\operatorname{PMMAX}(\mathrm{I})>\operatorname{RMMAX}(\mathrm{I})\), solve following equations for \(\Delta \mathrm{m}_{2}\) and \(\Delta l_{2}\)
\[
\left|\begin{array}{c}
\left(-R(1,3)-K_{A, 2}\right)_{1} \\
\left(-R(1,3)-K_{A, 2}\right)_{2} \\
\cdot \\
\cdot \\
\cdot \\
\left(-R(1,3)-K_{A, 2}\right)_{k}
\end{array}\right|\left|\Delta m_{2}\right|=\left|\begin{array}{c}
{\left[m_{3}-\Delta m_{1}\left(K_{A, 1}-R(3,3)\right)\right]_{1}} \\
{\left[m_{3}-\Delta m_{1}\left(K_{A, 1}-R(3,3)\right)\right]_{2}} \\
\cdot \\
\cdot \\
\cdot \\
{\left[m_{3}-\Delta m_{1}\left(K_{A, 1}-R(3,3)\right)\right]_{k}}
\end{array}\right|
\]
(Eq. D-114)
and \(\Delta l_{1}=\Delta m_{2}\)
g. If RMMAX(I) > PMMAX(1), solve the following equations for \(\Delta l_{2}\) and \(\Delta m_{2}\)
\(\left|\begin{array}{c}\left(R(2,3)-K_{A, 3}\right)_{1} \\ \left(R(2,3)-K_{A, 3}\right)_{2} \\ \cdot \\ \cdot \\ \cdot \\ \left(R(2,3)-K_{A, 3}\right)_{k}\end{array}\right|\left|\begin{array}{c}\Delta \ell_{2} \\ \end{array}\right|=\left|\begin{array}{c}{\left[+\ell_{3}-\ell_{1}\left(R(3,3)-K_{A, 1}\right)\right]_{1}} \\ {\left[+\ell_{3}-\ell_{1}\left(R(3,3)-K_{A, 1}\right)\right]_{2}} \\ \cdot \\ \cdot \\ {\left[+\ell_{3}-\ell_{1}\left(R(3,3)-K_{A, 1}\right)\right]_{k}}\end{array}\right|\)
(Eq. D-115)
\(\quad\) and \(\Delta m_{2}=\Delta l_{2}\)
h. \(\quad z=+\frac{\Delta m_{2}}{\Delta A}\)
(Eq. D-116)
5. If \(\mathrm{RMMAX}(\mathrm{I})>\operatorname{PMMAX}(\mathrm{I})\) and \(>\operatorname{YMMAX}(\mathrm{I})\)
a. Solve the following matrix equation using a least squares technique for \(\Delta l_{1}\) and \(\Delta l_{2}\).

(Eq. D-117)
b. \(y=\frac{\Delta l_{1}}{\Delta \bar{N}}\)
c. \(z=\frac{\Delta l_{2}}{\Delta Y}\)
(Eq. D-119)
d. \(\Delta n_{2}=\Delta \ell_{1}\)
e. \(\quad \Delta m_{2}=\Delta l_{2}\)
f. If PMMAX(I) \(>\) YMMAX(I), solve following equations for \(\Delta \mathrm{m}_{1}\) and \(\Delta n_{1}\).

(Eq. D-122)
and \(\Delta n_{1}=\Delta m_{1}\)
g. If YMMAX(I) \(>\operatorname{PMMAX}(\mathrm{I})\), solve following equations for \(\Delta n_{1}\) and \(\Delta \mathrm{m}_{1}\).
\(\left|\begin{array}{c}-\left(R(2,3)+K_{A, 3}\right)_{1} \\ -\left(R(2,3)+K_{A, 3}\right)_{1} \\ \cdot \\ \cdot \\ \cdot \\ - \\ -\left(R(2,3)+K_{A, 3}\right)_{k}\end{array}\right| \Delta n_{1}\left|=\left|\begin{array}{c}{\left[n_{3}-\Delta n_{2}\left(-R(1,3)-K_{A, 2}\right)\right]_{1}} \\ {\left[n_{3}-\Delta n_{2}\left(-R(1,3)-K_{A, 2}\right)\right]_{2}} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ {\left[n_{3}-\Delta n_{2}\left(-R(1,3)-K_{A, 2}\right)\right]_{k}}\end{array}\right|\right.\)
(Eq. D-123)
\[
\begin{align*}
& \text { and } \Delta m_{1}=\Delta n_{1} \\
& \text { h. } x=\frac{\Delta m_{1}}{\Delta N} \tag{Eq.D-124}
\end{align*}
\]
X. Calculation of Attitude Load Constants by Method II
1. If \(F N M A X(1)>F Y M A X(I)\), solve following equations for \(\Delta N\) and \(\Delta Y\).
\(\left|\begin{array}{c}\left.\mathrm{K}_{\mathrm{A}, 1}-\mathrm{R}(3,3)\right)_{1} \\ \left(\mathrm{~K}_{\mathrm{A}, 1}-\mathrm{R}(3,3)\right)_{2} \\ \cdot \\ \cdot \\ \cdot \\ \left(\mathrm{~K}_{\mathrm{A}, 1}-\mathrm{R}(3,3)\right)_{k}\end{array}\right||\Delta \mathrm{N}|=\left|\begin{array}{c}\left(\mathrm{N}_{3}\right)_{1} \\ \left(\mathrm{~N}_{3}\right)_{2} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \left(\mathrm{~N}_{3}\right)_{k}\end{array}\right|\) (Eq. D-125)
and \(\Delta Y=\Delta N\)
2. If \(F Y M A X(\Omega)>F N M A X\), solve following equations for \(\Delta Y\) and \(\Delta N\).
\[
\left.\left|\begin{array}{c}
-\left(R(2,3)+K_{A, 3}\right)_{1} \\
-\left(R(2,3)+K_{A, 3}\right)_{2} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
-\left(R(2,3)+K_{A, 3}\right)_{k}
\end{array}\right||\Delta Y \quad| \begin{gathered}
\left(Y_{3}\right)_{1} \\
\left(Y_{3}\right)_{2} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\text { and } \Delta N=\Delta Y
\end{gathered} \right\rvert\, \text { (Eq. D-126) }
\]
3. \(\Delta A=\Delta N-\Delta W\)
(Eq. D-127)
4. Determine \(\Delta m_{1}, \Delta m_{2}, \Delta n_{1}, \Delta n_{2}, \Delta \ell_{1}, \Delta \ell_{2}, x, y\), and \(z\) by calculation procedure given in Subsection W., item 3.

\section*{Y. Balances Without Six Components}
1. For balances that do not have six components, set appropriate attitude tare constant to zero as indicated below.
a. If balance does not have a normal-force component: \(\Delta \mathrm{N}=0\)
b. If balance does not have a axial-force component: \(\Delta \mathrm{A}=0\)
c. If balance does not have a side-force component: \(\Delta Y=0\)
d. If balance does not have a pitching-moment component:
\[
\Delta m_{1}=\Delta m_{2}=0
\]
e. If balance does not have a rolling-moment component:
\[
\Delta l_{1}=\Delta l_{2}=0
\]
f. If balance does not have a yawing moment component:
\[
\Delta n_{1}=\Delta n_{2}=0
\]

\section*{Z. Initial Weight Tare Calculations}
1. Calculate initial weight tares
a. \(\quad N_{0}=-\Delta \mathrm{NK}_{\mathrm{A}, 1}\)
NF0
(Eq. D-128)
b. \(\quad A_{0}=-\Delta A K_{A, 2}\)
AF0
(Eq. D-129)
c. \(\quad m_{0}=-\Delta m_{1} K_{A, 1}+\Delta m_{2} K_{A, 2}\)
PMO
\[
\begin{array}{ll}
\text { d. } \quad \ell_{0}=\Delta \ell_{1} K_{A, 1}+\Delta \ell_{2} K_{A, 3} & \text { RM0 } \\
\text { e. } \quad n_{0}=\Delta n_{1} K_{A, 3}+\Delta n_{2} K_{A, 2} & \text { YM0 }  \tag{Eq.D-132}\\
\text { f. } \quad y_{0}=\Delta Y K_{A, 2} & \text { SFO }
\end{array}
\]
(Eq. D-133)

\section*{AA. New Values of Initial Weight Tares}
1. Go to Subsection V., item 5. and repeat calculation using new values of initial weight tares. Repeat iteration procedure until initial weight tares repeat to following accuracy.
\[
\begin{equation*}
\varepsilon=\frac{\text { New - Old }}{\text { New }}<0.005 \tag{Eq.D-134}
\end{equation*}
\]

BB. Point Calculations
1. For each point, calculate:
a. \(\quad N_{4}=N_{3}-\left[\Delta N\left(K_{A, 1}-R(3,3)\right)\right]\)
b. \(\quad A_{4}=A_{3}-\left[\Delta A\left(-R(1,3)-K_{A, 2}\right)\right]\)
c. \(\quad m_{4}=m_{3}-\left\{\left[\Delta m_{1}\left(K_{A, 1}-R(3,3)\right)\right]-\left[\Delta m_{2}\left(R(1,3)+K_{A, 2}\right)\right]\right\}\)
(Eq. D-137)
d. \(\left.\quad \ell_{4}=\ell_{3}-\left\{\left[\Delta \ell_{1}\left(R(3,3)-K_{A, 1}\right)\right)\right]-\left[\Delta \ell_{2}\left(R(2,3)+K_{A, 3}\right)\right]\right\}\)
(Eq. D-138)
e. \(\quad n_{4}=n_{3}+\left\{\left[\Delta n_{1}\left(R(2,3)+K_{A, 3}\right)\right]-\left[\Delta n_{2}\left(R(1,3)+K_{A, 2}\right)\right]\right\}\)
(Eq. D-139)
f. \(\quad Y_{4}=Y_{3}+\left[\Delta Y\left(R(2,3)+K_{A, 3}\right)\right]\)
(Eq. D-140)

D-54

(b) Tunnel support to undeflected
Figure D-1. Continued.

(B)
\[
\psi_{k}=0^{\circ}, \theta_{k}=K^{\circ}, \phi_{k}=0^{\circ}
\]

(C)
\[
\psi_{k}=0^{\circ}, \theta_{k}=0^{\circ}, \phi_{k}=180^{\circ}
\]

(D)
\[
\psi_{k}=0^{\circ}, \theta_{k}=180^{\circ}, \phi_{k}=0^{\circ}
\]

(E)
\[
\begin{gathered}
\psi_{k}=0^{\circ}, \theta_{k}=180^{\circ}+k^{\circ}, \phi_{k}=180^{\circ} \\
\text { or } \\
\psi_{k}=180^{\circ}, \theta_{k}=-k^{\circ}, \phi_{k}=0^{\circ} \\
\text { or } \\
\theta_{k}=k^{\circ}, \psi_{k}=180^{\circ}, \phi_{k}=0^{\circ}
\end{gathered}
\]

(c) Illustrations of knuckle angles.

Figure D-I. Continued.

Figure D-I. Continued.
(A)
\[
\psi_{K 2}=0^{\circ}, \theta_{K 2}=0^{\circ}, \phi_{K 2}=0^{\circ}
\]

(B)
\[
\Psi_{\mathrm{K} 2}=180^{\circ}, \theta_{\mathrm{K} 2}=0^{\circ}, \Phi_{\mathrm{K} 2}=0^{\circ}
\]

(C)
\[
\psi_{\mathrm{K} 2}=180^{\circ}, \theta_{\mathrm{K} 2}=0^{\circ}, \phi_{\mathrm{K} 2}=0^{\circ}
\]

(D)
\[
\psi_{\mathrm{K} 2}=0^{\circ}, \theta_{\mathrm{K} 2}=180^{\circ}, \Phi_{\mathrm{K} 2}=0^{\circ}
\]

(E)
\[
\theta_{K 2}=K^{\circ}, \psi_{K 2}=180^{\circ}, \phi_{K 2}=0^{\circ}
\]

(f) Illustration of primary balance to undeflected secondary balance rotations.

Figure D-1. Continued.

(g) Definition of initial or wind-off balance attitude.

Figure D-1. Concluded.


(b) Case 1A, Case 1 held by opposite end.
Figure D-2. Continued.

Balance readings

D-62



(d) Case 2A, Same as case 2 held by opposite end.
Balance readings
Balance looking
ups tream
ups tream

Figure D-2. Continued.



\(\quad\) Balance readings
Normal +
Axial \(\quad=\)
Pitch \(\quad+\)
Side \(\quad+\)
Yaw
Roll \(\quad=\)
(f) Case 3A, Case 3 held by opposite end.
Figure D-2. Continued.




\[
\begin{aligned}
& \text { Model forces } \\
& \hline \text { Normal }=\text {-Side bal } \\
& \text { Axial }=- \text { AF bal } \\
& \text { Pitch }=- \text { Yaw bal } \\
& \text { Side }=\text { NF bal } \\
& \text { Yaw }=\text { PM bal } \\
& \text { Roll }=- \text { Roll bal }
\end{aligned}
\]

\[
\begin{aligned}
& \text { 4A, Case } 4 \text { held by opposite end. } \\
& \text { Figure D-2. Continued. }
\end{aligned}
\]



(j) Case 5A, Case 5 held by opposite end.
Figure D-2. Continued.

 Balance looking
ups tream


Figure D-2. Continued.

Model forces
Normal \(=-\)-Side bal
Axial \(=\) AF bal
Pitch \(=\) Yaw bal
Side \(=-\)-NF bal
Yaw \(=\) PM bal
Roll \(=\) Roll bal
Figure D-2. Continued.
Citive
acting
ese
nents
(1) Case 6A, Case 6 held by opposite end.
Balance readings
Balance looking
upstream


\begin{tabular}{l}
\(\quad\) Balance readings \\
Normal \(+\quad+\) \\
Axial \(\frac{+}{+}\) \\
Pitch \\
Side \\
Yaw \\
Roll \\
R + \\
\hline
\end{tabular}
(n) Case 7A, Same as Case 7 held by opposite end.
Figure D-2. Continued.


\(\begin{aligned} & \\ & \text { Model forces } \\ & \text { Normal }=\text { NF bal } \\ & \text { Axial }=\text { AF bal } \\ & \text { Pitch }=\text {-PM bal } \\ & \text { Side }=- \text { Side bal } \\ & \text { Yaw }=\text { Yaw bal } \\ & \text { Roll }=\text { Roll bal }\end{aligned}\)
Balance \(\left.\begin{array}{l}\text { looking } \\ \text { ups tream }\end{array}\right]\) Figure

\[
\begin{aligned}
& \text { ched } 180^{\circ} \text { and rolled } 90^{\circ} \text { clockwise. } \\
& \text { Figure D-2. Continued. }
\end{aligned}
\]

Model forces
Normal \(=\) Sidee bal
Axial



D-78

Note: Axes shown are for \(\phi=0^{\circ}\)

Figure D-5. Definition of angle of attack

\section*{APPENDIX E}

\section*{Internal Drag}
(or Exit-Flow Distributions)
Nomenclatures ..... E-1
Required Constants ..... E-5
Test for Module E Computations ..... E-6
Rake Total Pressure ..... E-6
Rake Static Pressures ..... E-7
Rake Total Pressure/Static Pressure Assignments ..... E-7
Duct Flow Static-to-Total-Pressure Ratio ..... E-8
Correct for Supersonic Duct Mach Numbers ..... E-8
Compute Subsonic Duct Mach Numbers ..... E-9
Compute Average Duct Pressure Ratios ..... E-9
Mass-Flow Rates ..... E-11
Mass-Flow Ratio ..... E-12
Free-Stream Velocity ..... E-13
Average Exit Mach Number ..... E-13
Internal Axial Force ..... E-14
Internal Normal Force ..... E-15
Internal Side Force ..... E-16
Flow-Through Pressure Ratio ..... E-17
Internal Drag ..... E-17
Internal Lift ..... E-19
Internal Drag and Axial Force Tables ..... E-19
Figures
E-1 Definition of thrust angles ..... E-20
E-2 Definition of Euler angles and directions ..... E-21

SYMBOL
AEXIT1

AEXIT2

ARAKE(I)

CAI
CAI1
CAI2
CDI
CDIS
CLI
CNI
CYI
FTMDOT1
FTMDOT2
FTPR1

FTPR2

INDX(I,J)

IRAKE
\(\mathrm{KPR}(\mathrm{I})\)

\section*{NOMENCLATURE}

Exit areas for duct 1. sq. in. Not required for IRAKE \(=2\) or 3.

Exit areas for duct 2. sq. in. Not required for IRAKE \(=2\) or 3.

Exit area assigned to each rake total pressure PROBE(I), sq. in. Not required for IRAKE \(=2\) or 3 .
Total internal axial force coefficient.
Internal axial force coefficient for duct 1.
Internal axial force coefficient for duct 2.
Total internal drag coefficient in the wind axis.
Total internal drag coefficient in the stability axis.
Total internal lift coefficient.
Total internal normal force coefficient.
Total internal side force coefficient.
Mass flow rate at exit of duct 1 , slugs \(/\) sec.
Mass flow rate at exit of duct 2 , slugs/sec.
Ratio of nozzle exit total pressure to free stream static pressure for duct 1 .
Ratio of nozzle exit total pressure to free stream static pressure for duct 2.
Table of values used to assign rake total pressures to specific static pressures, where \(\mathrm{I}=\) static pressure probes assigned to \(\mathrm{J}=\) table position. Not required for \(\operatorname{IRAKE}=2\) or 3.

RAKE code.
\(=0\), set CAI=CDIS \(=\) CDI \(=0.0\) and skip module 5 .
\(=1\), computes internal drag.
\(=2\), measures exit flow distribution only.
\(=3\), obtains internal drag from a given table.
Needed to correct for bad rake static pressure probes. Set to 0.0 or 1.0 , where \(I=\) static pressure probe. Not required for \(\operatorname{IRAKE}=2\) or 3 .

135

SYMBOL
MEXIT1
MEXIT2
MODOT1

MODOT2

M/M01
M/M02
NPR1

NPR2

NPTR1

NPTR2

PD1/PTO

PD2/PTO

PRAKE(I)
PR/PTO(I)

PSIN1

PSIN2

PTD1/PTO

PTD2/PTO

PTRAKE(I)
PTR/PTO(I)

\section*{NOMENCLATURE}

Average exit mach number for duct 1.
Average exit mach number for duct 2.
Mass flow rate based on free-stream conditions for duct 1 , slugs/sec.
Mass flow rate based on free-stream conditions for duct 2, slugs/sec.
Mass flow ratio for duct 1 .
Mass flow ratio for duct 2.
Number of static pressure probes on the rake for duct 1. Maximum of 10. Not required for IRAKE \(=3\).
Number of static pressure probes on the rake for duct 2. Maximum of \(10-\mathrm{NPR1}\). Not required for IRAKE \(=3\).
Number of total pressure probes on the rake for duct 1. Maximum of 50. Not required for IRAKE \(=3\).
Number of total pressure probes on the rake for duct 2. Maximum of \(50-\) NPTR1. Not required for IRAKE \(=3\).
Ratio of the average duct static pressure to free-stream total pressure for duct 1.
Ratio of the average duct static pressure to free-stream total pressure for duct 2.
Rake static pressure, where I = probe number.
Ratio of rake static pressure to free-stream total pressure, where I = probe number.
Thrust axis yaw angle (degrees) for duct 1. Not required for IRAKE = 2 or 3 .
Thrust axis yaw angle (degrees) for duct 2. Not required for IRAKE = 2 or 3 .
Ratio of the average duct total pressure to free-stream total pressure for duct 1 .
Ratio of the average duct total pressure to free-stream total pressure for duct 2.
Rake total pressure, where \(\mathrm{I}=\) probe number.
Ratio of rake total pressure to free-stream total pressure, where \(\mathrm{I}=\) probe number.

SYMBOL
SCAP1

SCAP2

THETAN1

THETAN2

NOMENCLATURE
Inlet capture area for duct 1. sq. in. Not required for IRAKE = 2 or 3.
Inlet capture area for duct 2 sq . in. Not required for IRAKE \(=2\) or 3 .
Thrust axis Euler pitch angle (degrees), with respect to body axis for duct 1. Not required for IRAKE \(=2\) or 3 .
Thrust axis Euler pitch angle (degrees), with respect to body axis for duct 2. Not required for IRAKE = 2 or 3 .

\section*{APPENDIXE \\ Module E \\ Internal Drag (or Exit Flow Distributions)}

\section*{A. Required Constants}

The constants for internal drag calculations are given in the nomenclatures. All constants are initialized to a value of \(\mathbf{0 . 0}\).
1. IRAKE -
where
Rake code
IRAKE \(=0\), Set \(C A I=C D I S=C D I=0.0\) and skip this module.

IRAKE \(=1\), compute internal drag
IRAKE \(=2\), measure exit flow distribution only
IRAKE \(=3\), obtain internal drag from a given table

NPTR1
\(\sum \operatorname{ARAKE}(\mathrm{I})=\) total exit area for duct 1
\(\mathrm{I}=1\)
NPTR2
\(\operatorname{ARAKE}(\mathrm{I})=\) total exit area for duct 2
2. SCAP1, SCAP2 - inlet capture area, where SCAP1 is for duct 1 and SCAP2 is for duct 2. Not required for IRAKE \(=2\) or 3.
3. AEXIT1, AEXIT2 - exit areas for ducts 1 and 2, respectively. Not required for IRAKE \(=2\) or 3 .
4. PSIN1, PSIN2 -

Thrust axis yaw angle, with respect to body axis, for ducts 1 and 2, respectively. Positive direction is shown on Figure E-1. Not required for IRAKE \(=2\) or 3.
5. THETAN1, THETAN2 - Thrust axis Euler pitch angles, with respect to body axis, for ducts 1 and 2, respectively, deg. Positive direction is shown on Figure E-1. Figure E-1 also gives relations to obtain the Euler angle if not known directly. Not required for IRAKE = 2 or 3 .
6. AREF Model reference area used for coefficients, in \({ }^{2}\). If Module B or C is used, this constant is already specified. Not required for IRAKE \(=2\) or 3 .

\section*{B. Test for Module E Computations}

IF IRAKE = 0, skip module E.
IF IRAKE \(=3\), do section \(T\) only .
C. Rake Total Pressure
1. Rake total pressures are called PTRAKE(I). Note that provisions are made to survey two exits at one time; however probes are numbered consecutively (max. of 50 ). For example, probes in the first exit may be numbered 1 through 30; probes in the second exit must start with number 31. Where \(I=\) probe number.
2. The ratio of rake total pressure to free-stream total pressure is called PTR/PTO(I), where PTO is from module A.
3. The constants required from the project engineer are NPTR1, and NPTR2.

Calculate PTR/PTO(I) for \(\mathrm{I}=1\), NPTR1 + NPTR2
\[
\begin{equation*}
\mathrm{PTR} / \mathrm{PTO}(\mathrm{I})=\frac{\text { PTRAKE(I) }}{\text { PTO }} \tag{Eq.E-3}
\end{equation*}
\]
D. Rake Static Pressures
1. Rake static pressures are called PRAKE(I). Comments C.1. above apply except that the maximum number of probes is 10.
2. The ratio of rake static pressure to free-stream total pressure is called PR/PTO(I). PTO is from module A.
3. The constants required from the project engineer are NPR1, and NPR2.

If NPR1 \(=0\), skip this part.
Calculate PR/PTO(I) for \(\mathrm{I}=1\), NPR1 + NPR2
\[
\begin{equation*}
\mathrm{PR} / \mathrm{PTO}(\mathrm{I})=\frac{\text { PRAKE(I) }}{\text { PTO }} \tag{Eq.E-4}
\end{equation*}
\]

\section*{E. Rake Total Pressure/Static Pressure Assignments}
1. If internal drag is to be computed, the project engineer must assign specific total pressure measurement to each static pressure measurement. This is done by supplying a table of I for all J, where I - total pressure measurements or probes which correspond to a specific \(\mathbf{J}=\) static pressure measurement or probe.
2. For example:
\[
\begin{array}{ll}
\mathrm{J}=1 & \mathrm{I}=1,2,3,4 \\
\mathrm{~J}=2 & \mathrm{I}=5,9,11 \\
\mathrm{~J}=3 & \mathrm{I}=6,7,8,10 \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
J=\text { NPR1 + NPR2 } & \mathrm{I}(\mathrm{Max})=\text { NPTR1 + NPTR2 }
\end{array}
\]
3. The constants required from the project engineer are from the \(I, J\) table.

If \(\operatorname{IRAKE}=2\), skip this section.
F. Duct Flow Static-to-Total-Pressure Ratio
1. The ratio of duct flow static pressure to duct flow total pressure is called PR/PTR(J,I), where \(J\) and I are the combinations supplied in section \(E\) above. For the example shown in E., values of PR/PTR(J,I) are obtained for: PR/PTR1,1

PR/PTR1,2
PR/PTR1,3
PR/PTR1,4
PR/PTR2,5
PR/PTR2,9
PR/PTR2,11
PR/PTR3,6
PR/PTR3,7
etc.

If IRAKE \(=2\), skip this section.

Do the following calculation for \(\mathrm{J}=1\), NPR1 +NPR 2

Do the following calculation for \(I\) = those values assigned
\[
\operatorname{PR} / \operatorname{PTR}(\mathrm{J}, \mathrm{I})=\frac{\operatorname{PR} / \operatorname{PTO}(\mathrm{J})}{\operatorname{PTR} / \operatorname{PTO}(\mathrm{I})}
\]
(Eq. E-5)
G. Correct for Supersonic Duct Mach Numbers
1. Local duct Mach number is called MD(I). Where \(\mathrm{I}=\) total pressure probe number on which local Mach number is based.

If \(\operatorname{IRAKE}=2\), skip this section.

Do the following calculation for \(J=1, N P R 1+N P R 2\)

Do the following calculation for \(I\) = those values assigned

If PR/PTR \((\mathrm{J}, \mathrm{I})<.5283\), calculate MD(I) using the Newton Raphson method with an initial assumption of \(\mathrm{MD}(\mathrm{I})=1.0001\) and correct the total pressure ratio for normal shock.
\[
\begin{align*}
& \mathrm{MD}(\mathrm{I})=\sqrt{\frac{5}{6} *\left[\frac{7 \mathrm{MD}(\mathrm{I})^{2}-1}{6}\right]^{5 / 7} *\left[\frac{\mathrm{PTR} / \mathrm{PTO}(\mathrm{I})}{\mathrm{PR} / \mathrm{PTO}(\mathrm{~J})}\right]^{2 / 7}}  \tag{Eq.E-6}\\
& \operatorname{PTR} / \mathrm{PTO}(\mathrm{I})=\mathrm{PR} / \mathrm{PTO}(\mathrm{~J}) *\left(1+\frac{\mathrm{MD}(\mathrm{I})^{2}}{5}\right)^{7 / 2}
\end{align*}
\]
H. Compute Subsonic Duct Mach Numbers
1. This calculation is made for those I, J combinations for which PR/PTR ( \(\mathrm{J}, \mathrm{I}\) ) > . 5283.

If \(\operatorname{IR} A K E=2\), skip this section.

Do the following calculation for \(J=1, N P R 1+N P R 2\)

Do the following calculation for \(I=\) those values assigned

If \(\operatorname{PR} / \operatorname{PTR}(\mathrm{J}, \mathrm{I})>.5283\), calculate \(\mathrm{MD}(\mathrm{I})\)
\(\mathrm{MD}(\mathrm{I})=\sqrt{5 *\left[\frac{\mathrm{PTR} / \mathrm{PTO}(\mathrm{I})}{\mathrm{PR} / \mathrm{PTO}(\mathrm{J})}\right]^{2 / 7}-5}\)
(Eq. E-8)

\section*{I. Compute Average Duct Pressure Ratios}
1. The ratio of the average duct total pressure to free-stream total pressure is called PTD1/PTO for duct 1 and PTD2/PTO for duct 2.
2. The ratio of the average duct static pressure to free-stream total pressure is called PD1/PTO for duct 1 and PD2/PTO for duct 2.
3. The constants required from the project engineer are \(\operatorname{ARAKE}(\mathrm{I}), \mathrm{KPR}(\mathrm{I})\), NPTR1, NPTR2, NPR1, and NPR2
```

 NPTR1
 \sum ARAKE(I)[PTR/PTO(I)]
 PTD1/PTO = = = = =
\ ARAKE(I)
I=1

```
    NPTR1
If \(\quad[\quad \operatorname{ARAKE}(\mathrm{I})=0.0\), then \(\mathrm{PD} 1 / \mathrm{PTO}=1.0\)
    \(\mathrm{I}=1\)

NPR1
            \(\sum \mathrm{KPR}(\mathrm{I})[\mathrm{PR} / \mathrm{PTO}(\mathrm{I})]\)
\(\mathrm{PD} 1 / \mathrm{PTO}=\frac{\mathrm{I}=1}{\mathrm{NPR} 1}\)
                \(\sum K P R(I)\)
                    \(\mathrm{I}=1\)
        NPR1
If \(\sum_{\mathrm{I}=1} \mathrm{KPR}(\mathrm{I})=0.0\), then \(\mathrm{PD} 1 / \mathrm{PTO}=1.0\)
If NPTR2 \(=0.0\), skip equations \(\mathrm{E}-11\) and \(\mathrm{E}-12\).
\[
\begin{gathered}
\text { NPTR2 } \\
\text { PTD2/PTO }=\frac{1 \text { ARAKE(I) }[\text { NPTR/PTO(I) })]}{\text { NPTR2 } 1} \\
\sum \quad \text { ARAKE(I) } \\
\mathrm{I}=\text { NPTR1 }+1
\end{gathered}
\]
```

 NPTR2
 If { ARAKE(I)=0.0, then PD2/PTO = 1.0
I = NPTR1 + 1

```
        NPR2
            \([K \operatorname{KPR}(\mathrm{I})[\mathrm{PR} / \mathrm{PTO}(\mathrm{I})]\)
\(\mathrm{PD} 2 / \mathrm{PT} 0=\frac{\mathrm{I}=\mathrm{NPR} 1+1}{\mathrm{NPR} 2}\)
                            \(\sum \quad \mathrm{KPR}(\mathrm{I})\)
\[
\mathrm{I}=\mathrm{NPR} 1+1
\]

NPR2
If \(\quad \sum \quad \mathrm{KPR}(\mathrm{I})=0\), then \(\mathrm{PD} 2 / \mathrm{PTO}=1.0\)
\(\mathrm{I}=\mathrm{NPR} \mathbf{1}+1\)

\section*{J. Mass-Flow Rates}
1. Mass-flow rate at the duct exit is called FTMDOT1 for duct 1 and FTMDOT2 for duct 2.
2. Mass-flow rate based on free-stream conditions is called MODOT1 for duct 1 and MODOT2 for duct 2.
3. TTO, MACH, and PO come from the tunnel parameters, module A.
4. The constants required from the project engineer are ARAKE(I), SCAPI, SCAP2, NPTR1, and NPTR2.

If \(\operatorname{IRAKE}=2\), skip equations \(\mathrm{E}-13, \mathrm{E}-14, \mathrm{E}-15\) and \(\mathrm{E}-16\).

FTMDOT \(1=\frac{.028563}{\sqrt{\text { TTO }+459.67}} * \sum_{\mathrm{I}=1}^{\operatorname{NPTRI}} \operatorname{ARAKE}(\mathrm{I}) * \operatorname{PRAKE}(\mathrm{~J}) *\left[\frac{\mathrm{PTR} / \mathrm{PTO}(\mathrm{I})}{\operatorname{PR} / \mathrm{PTO}(\mathrm{J})}\right]^{1 / 7} *\) MD(I)
(Eq. E-13)
where J corresponds to I from E.l. above.
\[
\text { MODOT } 1=\frac{(.028563) *(\mathrm{SCAP1}) *(\mathrm{MACH}) *(\mathrm{PO})}{\sqrt{\text { TTO }+459.67}} *\left[1+.2(\mathrm{MACH})^{2}\right]^{1 / 2}
\]

If NPTR2 \(=0\), skip equations \(\mathrm{E}-15\) and \(\mathrm{E}-16\).
FTMDOT \(2=\frac{.028563}{\sqrt{\text { TTO }+459.67}} * \sum_{\mathrm{I}=\mathrm{NPTRI}+1}^{\operatorname{NPTR2}} \underset{\operatorname{ARAKE}(\mathrm{I})}{\operatorname{ARAKE}(\mathrm{J})} *\left[\frac{\mathrm{PTR} / \mathrm{PTO}(\mathrm{I})}{\operatorname{PR} / \operatorname{PTO}(\mathrm{J})}\right]^{1 / 7} * \operatorname{MD(I)}\)
(Eq. E-15)
where \(J\) corresponds to I from E.I. above.
MODOT2 \(=\frac{(.028563) *(\mathrm{SCAP} 2) *(\mathrm{MACH}) *(\mathrm{PO})}{\sqrt{\text { TTO }+459.67}} *\left[1+.2(\mathrm{MACH})^{2}\right]^{1 / 2}\)
(Eq. E-16)
K. Mass-Flow Ratio
1. Mass-flow ratio for duct 1 is called \(\mathrm{M} / \mathrm{MO1}\). Mass-flow ratio for duct 2 is called M/M02..

If \(\operatorname{IRAKE}=\mathbf{2}\), skip the remainder of this section.

M/MO1 \(=\frac{\text { FTMDOT1 }}{\text { MODOTI }}\)

If \(\mathrm{MODOT} 1=0.0, \mathrm{M} / \mathrm{MOL}=0.0\)

If NPTR2 \(=0\), skip equation \(\mathrm{E}-18\).
M/MO2 \(=\frac{\text { FTMDOT2 }}{\text { MODOT2 }}\)
(Eq. E-18)
L. Free-Stream Velocity
1. Free-stream velocity is called VO.
2. TTO and MACH are from module A.
\(v O=\frac{49.01428 \sqrt{\mathrm{TTO}+456.67}}{\sqrt{1+.2(\mathrm{MACH})^{2}}}\)
(Eq. E-19)

\section*{M. Average Exit Mach Number}
1. The average exit Mach number for duct 1 is always called MEXIT 1. The average exit Mach number for duct 2 is always called MEXIT2.

If IRAKE \(=2\), skip the remainder of this section.

MEXIT1 \(=\sqrt{5 *\left[\frac{\mathrm{PTD} 1 / \mathrm{PTO}}{\mathrm{PDI} / \mathrm{PTO}}\right]^{2 / 7}-5}\)

If NPTR2 \(=0\), skip equation \(\mathrm{E}-21\).

MEXITI \(=\sqrt{5 *\left[\frac{\mathrm{PTD} 2 / \mathrm{PTO}}{\mathrm{PD} 2 / \mathrm{PTO}}\right]^{2 / 7}-5}\)
N. Internal Axial Force
1. The internal axial force is called AIl and AI2 for ducts 1 and 2, respectively.
2. The internal axial force coefficient is called CAIl and CA12 for ducts 1 and 2 , respectively.
3. The total internal axial force coefficient is called CAI.
4. PTO, PO, and QO are from the tunnel parameters, module A.
5. PSI and THETA are from the balance and weight tare calculations, module D. Positive directions for PSI and THETA are shown on Figure E-2.
6. The constants required from the project engineer are AEXIT1, AEXIT2, PSIN1, PSIN2, THETAN1, THETAN2, AREF, and NPTR2

If \(\operatorname{IRAKE}=2\), skip the remainder of this section.


CAII \(=\frac{\mathrm{AII}}{(\mathrm{QO}) *(\mathrm{AREF})}\)

CAI \(=\) CAII
If NPTR2 \(=0\), skip equations \(\mathrm{E}-25, \mathrm{E}-26\) and \(\mathrm{E}-27\).
\[
\begin{align*}
\mathrm{AI} 2= & {[(\mathrm{FTMDOT} 2) * \mathrm{VO} * \cos (\mathrm{PSI}) * \cos (\mathrm{THETA})] } \\
& \left.-\left\{\left[1.4 *(\mathrm{PD} 2 / \mathrm{PTO}) * \operatorname{PTO} *(\mathrm{MEXIT} 2)^{2}\right]+[(\mathrm{PD} 2 / \mathrm{PTO}) * \mathrm{PTO})-\mathrm{PO}\right]\right\} \\
& *(\text { AEXIT } 2) * \operatorname{COS}(\mathrm{PSIN} 2) * \cos (\text { THETAN } 2) \tag{Eq.E-25}
\end{align*}
\]
\(\mathrm{CAI} 2=\frac{\mathrm{Al2}}{(\mathrm{QO}) *(\mathrm{AREF})}\)
\(\mathrm{CAI}=\mathrm{CAII}+\mathrm{CAI} 2\)
(Eq. E-27)
O. Internal Normal Force
1. The internal normal force is called NI1 and NI2 for ducts 1 and 2, respectively.
2. The internal normal force coefficient is called CNI1 and CNI2 for ducts 1 and 2 , respectively.
3. The total internal normal force coefficient is called CNI.
4. PTO, PO, and QO are from the tunnel parameters, module A.
5. PSI, THETA, and PHI are from the balance and weight tare calculations, module D. Positive directions are shown on Figure E-2.
6. The constants required from the project engineer are AEXIT1, AEXIT2, THETAN 1, THETAN2, AREF, and NPTR2

If \(\operatorname{IRAKE}=2\), skip the remainder of this section.

NII =
\(\{(\mathrm{FTMDOT} 1) * \mathrm{VO} *[\operatorname{COS}(\mathrm{PHI}) * \operatorname{SIN}(\) THETA \() * \operatorname{COS}(\mathrm{PSI})+\operatorname{SIN}(\mathrm{PHI}) * \operatorname{SIN}(\mathrm{PSI})]\}\)
\(+\left\{\left[1.4 *(\mathrm{PDI} / \mathrm{PTO}) * \mathrm{PTO}^{*}(\mathrm{MEXIT})^{2}\right]+[(\right.\) PD 1/PTO \(\left.\left.) * \mathrm{PTO})-\mathrm{PO}\right]\right\}\)
* (AEXIT 1)*SIN(THETAN1)
(Eq. E-28)
\(\mathrm{CNH}=\frac{\mathrm{NII}}{(\mathrm{QO}) *(\mathrm{AREF})}\)
(Eq. E-29)
\(\mathrm{CNI}=\mathrm{CNII}\)
(Eq. E-30)
If NPTR2 \(=0\), skip equations E-31, E-32 and E-33.

\title{
\(\mathrm{NI} 2=\{(\mathrm{FTMDOT} 2) * \mathrm{VO} *[\operatorname{COS}(\mathrm{PHI}) * \operatorname{SIN}(\mathrm{THETA}) * \operatorname{COS}(\mathrm{PSI})+\operatorname{SIN}(\mathrm{PHI}) * \operatorname{SIN}(\mathrm{PSI})]\}\) \(+\left\{\left[1.4 *(\right.\right.\) PD \(2 /\) PTO \() *\) PTO* \(\left.(\text { MEXIT 2 })^{2}\right]+[(\) PD \(2 /\) PTO \() * P T O)-\) PO \(\left.]\right\}\) * (AEXIT2)*SIN(THETAN2)
}

\title{
\(\mathrm{CNI} 2=\frac{\mathrm{NI} 2}{(\mathrm{QO}) *(\mathrm{AREF})}\)
}
(Eq. E-32)
\[
\begin{equation*}
\mathrm{CNI}=\mathrm{CNI} 1+\mathrm{CNI} 2 \tag{Eq.E-33}
\end{equation*}
\]

\section*{P. Internal Side Force}
1. The internal side force is called YII and YI2 for ducts 1 and 2, respectively.
2. The internal side force coefficient is called CYII and CYI2 for ducts 1 and 2, respectively.
3. The total internal side force coefficient is called CYI.
4. PTO, PO, and QO are from the tunnel parameters, module \(A\).
5. PSI, THETA, and PHI are from the balance and weight tares calculations, module D .
6. The constants required from the project engineer are AEXIT1, AEXIT2, THETAN1, THETAN2, PSIN1, PSIN2, AREF, and NPTR2.

If \(\operatorname{IRAKE}=2\), skip the remainder of this section.
YII \(=\{(\) FTMDOT 1\() * V O *[\operatorname{SIN}(P H I) * \operatorname{SIN}(T H E T A) * \operatorname{COS}(P S I)-C O S(P H I) * \operatorname{SIN}(P S I)]\}\) \(+\left\{\left[1.4 *(\mathrm{PDI} / \mathrm{PTO}) * \mathrm{PTO} *(\mathrm{MEXITI})^{2}\right]+[((\mathrm{PDI} / \mathrm{PTO}) * \mathrm{PTO})-\mathrm{PO}]\right\}\)
* (AEXIT1)* \(\operatorname{COS}(T H E T A N 1) * \operatorname{SIN}(\operatorname{PSIN} 1)\)
\(C Y I I=\frac{\mathrm{YII}}{(\mathrm{QO}) *(\mathrm{AREF})}\)
\(\mathrm{CYI}=\mathrm{CYII}\)

If NPTR2 \(=0\), skip equations \(\mathrm{E}-37, \mathrm{E}-38\) and \(\mathrm{E}-39\).
\(\mathrm{YI2}=\{(\mathrm{FTMDT} 2) * \mathrm{VO} *[\operatorname{SIN}(\mathrm{PHI}) * \operatorname{SIN}(\) THETA \() * \operatorname{COS}(\mathrm{PSI})-\operatorname{COS}(\mathrm{PHI}) * \operatorname{SIN}(\mathrm{PSI})]\}\) \(+\left\{\left[1.4^{*}(\mathrm{PD} 2 / \mathrm{PTO}) * \text { PTO }^{*} \text { ME XIT } 2\right)^{2}\right]+[(\) PD2/PTO \() *\) PTO \(\left.\left.)-\mathrm{PO}\right]\right\}\)
* (AEXIT 2)* COS(THETAN2)*SIN (PSIN2)
(Eq. E-37)
\(\mathrm{CYI2}=\frac{\mathrm{YI2}}{(\mathrm{QO}) *(\mathrm{AREF})}\)
(Eq. E-38)
\(\mathrm{CYI}=\mathrm{CYII}+\mathrm{CYI} 2\)
(Eq. E-39)

\section*{Q. Flow-Through Pressure Ratio}
1. The nozzle exit (flow-through) total pressure in ratio to free-stream static pressure is called PTD1/PO and PTD2/PO for ducts 1 and 2, respectively.
2. PTO and PO are from tunnel parameters, module A.

If \(\operatorname{IRAKE}=2\), skip the remainder of this section.
\(\mathrm{PTD} / / \mathrm{PO}=\frac{(\mathrm{PTDI} / \mathrm{PTO}) *(\mathrm{PTO})}{\mathrm{PO}}\)
(Eq. E-40)

If NPTR2 \(=0\), skip equation \(\mathrm{E}-41\).
\(\mathrm{PTD} 2 / \mathrm{PO}=\frac{(\mathrm{PTD} 2 / \mathrm{PTO}) *(\mathrm{PTO})}{\mathrm{PO}}\)
(Eq. E-41)
R. Internal Drag
1. The internal drag coefficient based on the stability axes is called CDIS1 and CDIS2 for ducts 1 and 2, respectively.
2. The total internal drag coefficient in the stability axis is called CDIS.
3. ALPHA is from the balance and weight tares computations, module D.
4. The internal drag coefficient based on the wind axis is called CDI1 and CDI2 for ducts 1 and 2, respectively.
5. The total internal drag coefficient in the wind axis is called CDI.
6. BETA is from module D.

If \(\operatorname{IRAKE}=2\), skip the remainder of this section.
\[
\begin{align*}
& \text { CDIS } 1=(\mathrm{CNI} 1) * \operatorname{SIN}(\mathrm{ALPHA})+(\mathrm{CAI} 1) * \operatorname{COS}(\mathrm{ALPHA})  \tag{Eq.E-42}\\
& \mathrm{CDI} 1=(\mathrm{CDIS} 1) * \operatorname{COS}(\mathrm{BETA})-(\mathrm{CYI1}) * \operatorname{SIN}(\mathrm{BETA})  \tag{Eq.E-43}\\
& \mathrm{CDIS}=\mathrm{CDIS} 1  \tag{Eq.E-44}\\
& \mathrm{CDI}=\mathrm{CDI} 1 \tag{Eq.E-45}
\end{align*}
\]

If NPTR2 \(=0\), skip equations E-46, E-47, E-48 and E-49.
\[
\begin{equation*}
\operatorname{CDIS} 2=(\mathrm{CNI} 2) * \operatorname{SIN}(\mathrm{ALPHA})+(\mathrm{CAI} 2) * \operatorname{COS}(\mathrm{ALPHA}) \tag{Eq.E-46}
\end{equation*}
\]

CDI2 \(=(\) CDIS2 \() * \operatorname{COS}(\mathrm{BETA})-(\mathrm{CYI} 2) * \operatorname{SIN}(\mathrm{BETA})\)

CDIS \(=\) CDIS1 + CDIS2
\(\mathrm{CDI}=\mathrm{CDI} 1+\mathrm{CDI} 2\)
(Eq. E-49)

\section*{S. Internal Lift}
1. The internal lift coefficient based on stability axis (also wind axis) is called CLI1 and CLI2 for ducts 1 and 2, respectively.
2. The total internal lift coefficient is called CLI.
3. ALPHA is from the balance and weight tares computations in module D.

If \(\operatorname{IRAKE}=2\), skip the remainder of this section.
\[
\text { CLI1 }=(\mathrm{CNI} 1) * \operatorname{COS}(\mathrm{ALPHA})-(\mathrm{CAI} 1) * \operatorname{SIN}(\mathrm{ALPHA})
\]
(Eq. E-50)

CLI = CLI1
(Eq. E-51)

If NPTR2 \(=0\), skip equations E-52 and E-53.
\(\mathrm{CLI} 2=(\mathrm{CNI} 2) * \operatorname{COS}(\mathrm{ALPHA})-(\mathrm{CAI} 2) * \operatorname{SIN}(\mathrm{ALPHA})\)
(Eq. E-52)
\(\mathrm{CLI}=\mathrm{CLI} 1+\mathrm{CLI} 2\)
(Eq. E-53)
T. Internal Drag and Axial Force Tables

If IRAKE \(\neq 3\), skip this section.

CAI, CDSI, and CDI are supplied in tables as functions of MACH, ALPHA and PSI.

Figure E-L. Definition of thrust angles.
\[
\left.\begin{array}{rl}
\text { PSI } & =\psi=\text { Euler yaw angle }=\angle A B C \\
\text { THETA }=\theta=\text { Euler pitch angle }=\angle C B D\left[\text { [Note: } \theta \neq \alpha \text { unless } \phi=0^{\circ}\right. \text { ] }
\end{array}\right] \begin{array}{ll}
\text { [Note: } \begin{array}{l}
\text { Line DE is not in } \\
\text { plane of paper, but } \\
\text { rotated about line BD] }
\end{array}
\end{array}
\]


Figure E-2. Definition of Euler angles and directions.

\section*{APPENDIX F \\ Pressure Coefficients and Integrated Forces}
Nomenclatures ..... F-1
Required Constants ..... F-5
Test For Module F Computations ..... F-5
Free-Stream Static and Dynamic Pressures ..... F-5
Coefficient Calculations ..... F-6
Total Pressure Drag Coefficient ..... F-6
Internal Static Pressure Ratio ..... F-7

MODULE F PRESSURE COEFFICIENT AND INTEGRATED FORCES

SYMBOL
ARAAU(I)
ARABU(I) ARADU(I) ARAFU(I) ARAGU(I) ARAHU(I) ARANU(I) ARASU(I) AREF
\(\left.\begin{array}{l|l}\text { ARHAU(I) } \\ \text { ARHBU(I) }\end{array}\right)\)

NOMENCLATURE

Areas to be used with pressure groups to compute integrated forces, where \(I=\) orifice number, sq. in.

Model reference area from module \(B\), sq. in.

Areas to be used with pressure groups to compute integrated forces, where \(I=\) orifice number, sq. in.

Areas to be used with pressure groups to compute integrated forces, where \(\mathrm{I}=\) orifice number, sq. in.

Area times moment arm, sq. in. to be used with pressure group to compute integrated moments, \(\mathrm{I}=\) orifice, sq . in.

F-2
SYMBOL
CBAR
CDAUN
CDBUN
CDDUN
CDFUN
CDGUN
CDHUN
CDNUN
CDSUN
CDPR
CFAUN

\section*{CFBUN}

CFDUN
CFFUN
CFGUN
CFHUN
CFNUN
CFSUN
CHMAUN
CHMBUN
CHMDUN
CHMF UN
CHMGUN
CHMHUN
CHMNUN
CHMSUN
CLAUN
CLBUN
CLDUN
CLFUN
CLGUN
CLHUN
CLNUN

\section*{NOMENCLATURE}

Pitching moment reference length from module \(D\), in. Integrated pressure drag coefficients.

Total integrated drag coefficient.
Integrated pressure axial force coefficients.

Integrated pressure hinge moment coefficients.

SYMBOL
CLSUN
CLPR
CNAUN

\section*{CNBUN}

\section*{CNDUN}

CNFUN
CNGUN
CNHUN
CNNUN
CNSUN
CPMAUN

\section*{CPMBUN}

CPMDUN

\section*{CPMFUN}

CPMGUN
CPMHUN
CPMNUN
CPMSUN
CPMPR
KCDA
KCDB
KCDD
KCDF
KCDG
KCDH
KCDN
KCDS
\(\left.\begin{array}{l}\text { PAUN } \\ \text { PBUN } \\ \text { PDUN } \\ \text { PFUN } \\ \text { PGUN } \\ \text { PHUN } \\ \text { PNUN } \\ \text { PSUN }\end{array}\right\}\)

NOMENCLATURE

Total integrated lift coefficient.
Integrated pressure normal force coefficients.

Integrated pressure pitching moment coefficients.

Total integrated pitching moment coefficient.
Constants provided by the engineer. ( 0.0 or 1.0 )
Constants provided by the engineer. ( 0.0 or 1.0 )
Constants provided by the engineer. ( 0.0 or 1.0 )
Constants provided by the engineer. ( 0.0 or 1.0 )
Constants provided by the engineer. ( 0.0 or 1.0 )
Constants provided by the engineer. ( 0.0 or 1.0 )
Constants provided by the engineer. ( 0.0 or 1.0 )
Constants provided by the engineer. (0.0 or 1.0 )

Individual pressures to be used with each type of pressure coefficient for computation of integrated forces and moments. Maximum number of each type is 125 . lbs/sq. in.

F-4
SYMBOL
PRATI(II)

\section*{NOMENCLATURE}

Ratio of nozzle internal static pressure to nozzle total pressure, where II = orifice number (PGUN only).

\author{
APPENDIX F \\ Module F \\ Pressure Coefficients and Integrated Forces
}

Eight groups of pressure coefficients may be computed under this module. Names assigned to each group are arbitrary. Final names may be inserted with finalized data printout headers. These groups are PAUN, PBUN, PDUN, PFUN, PGUN, PHUN, PNUN, and PSUN.

\section*{A. Required Constants}

The required constants for module F are given in the nomenclatures.
1. All constants are initialized to a value of zero. The project engineer need only supply those constants which are required for those quantities to be computed.
2. KAUN, KBUN, KDUN, KFUN, KGUN, KHUN, KNUN, KSUN - number of individual pressures to be used with each type of pressure coefficient for computation of integrated forces and moments. (125 maximum for each type)
B. Test for Module F Computations

If KP RESS \(=0\), skip this module.
C. Free-Stream Static and Dynamic Pressures

Free-stream static and dynamic pressures to be used for computing pressure coefficients are obtained from module A; however, for individual pressure transducers, an average value is used. For Scanivalve pressure transducers, PO and QO are calculated for each frame of data (one frame/port).
D. Coefficient Calculations
\[
\begin{align*}
& \operatorname{CPSUN}(\mathrm{I})=(\operatorname{PSUN}(\mathrm{I})-\mathrm{PO}) / \mathrm{QO}  \tag{Eq.F-1}\\
& \text { KSUN } \\
& \text { CFSUN }=\quad \sum \operatorname{CPSUN}(\mathrm{I}) * \operatorname{ARASU}(\mathrm{I}) / \operatorname{AREF} \\
& \mathrm{I}=1 \\
& \text { KSUN } \\
& \text { CNSUN }=\quad \sum \text { CPSUN(I) } * \operatorname{ARNSU}(\mathrm{I}) / \text { AREF } \\
& \mathrm{I}=1 \\
& \text { KSUN } \\
& \text { CPMSUN }=\sum \text { CPSUN(I) } * \operatorname{ARPSU}(\mathrm{I}) / \text { AREF } * \operatorname{CBAR} \\
& \mathrm{I}=1 \\
& \text { KSUN } \\
& \text { CHMSUN }=\sum_{\mathrm{I}=1} \operatorname{CPSUN}(\mathrm{I}) * \operatorname{ARHSU}(\mathrm{I}) / \text { AREF } * \operatorname{CBAR} \\
& \text { CDSUN }=\text { CFSUN * COS (ALPHA) + CNSUN * SIN (ALPHA) } \\
& \text { (Eq. F-5) } \\
& \text { CLSUN }=\text { CNSUN * COS (ALPHA) - CFSUN * SIN (ALPHA) }
\end{align*}
\]

These equations are the same for all pressure groups.

\section*{E. Total Pressure Drag Coefficient}

CDPRessure \(=\mathrm{KCDS} * \operatorname{CDSUN}+\mathrm{KCDA} * \operatorname{CDAUN}+\mathrm{KCDB} * \operatorname{CDBUN}+\mathrm{KCDN} *\) CDNUN + KCDD * CDDUN + KCDF * CDFUN + KCDG * CDGUN + KCDH * CDHUN
(Eq. F-8)
where KCDS, KCDB, KCDA, KCDN, KCDD, KCDF, KCDG, KCDH are constant inputs, either 0 or 1.0 .
F. Internal Static Pressure Ratio PRATI(II) \(=\) PGUN(II)/PTENG1
NOTE: In addition to the pressure coefficients, this ratio is for PGUN measurements only.

\section*{APPENDIX G}

\section*{Thrust Removal Options}
Nomenclatures ..... G-1
General Information ..... G-5
Required Constants ..... G-5
Quantities Required ..... G-5
Compute Thrust and Static Thrust Terms
IF = 1 ..... G-6
Single Balance/All Metric IF1 = 1 ..... G-11
Single Balance/Afterbody Metric IF2 =1 ..... G-13
Two-Balance/Afterbody Metric IFAF1 = 1 ..... G-15
Two-Balance/Afterbody Metric IFAF2 = 1 ..... G-18
Two-Balance/Afterbody Metric IFAFN1 = 1 ..... G-20
Two-Balance/Afterbody Metric IFAFN2 \(=1\) ..... G-22
Single Balance, Thrust Removal All
Components IFAF ..... G-24
When IFAFN \(=1\) ..... G-28
Bifurcate Support Mode Two Balance/Afterbody Metric IDN = 1 ..... G-29
Other Options ..... G-33

MODULE G THRUST REMOVAL OPTIONS
\begin{tabular}{ll} 
SYMBOL & NOMENCLATURE \\
AEX & Nozzle exit area. \\
CAAERO & Thrust removed axial force coefficient. \\
CASCADE & Resultant angle of jet exhaust, degrees. \\
CDAERO & Thrust removed drag coefficient. \\
CDNOZ & Nozzle drag. \\
C(F-ANOZ) & Thrust minus nozzle axial force coefficient. \\
C(F-DNOZ) & Thrust minus nozzle drag coefficient. \\
CDSAER & Thrust removed stability axis drag coefficient. \\
CDWAER & Thrust removed wind axis drag coefficient. \\
CF & Jet axial force coefficient (from balance and pressures). \\
CF/CFI & Ratio of thrust (from balance and pressures) to ideal thrust. \\
CFJ & Jet axial force coefficient. \\
CFJC & Computed jet axial force coefficient. \\
CFJET & Jet reaction axial force coefficient. \\
C(F-A) & Thrust minus axial force coefficient. \\
C(F-D) & Thrust minus drag coefficient. \\
CLAERO & Thrust removed lift coefficient. \\
CLJET & Jet reaction lift coefficient. \\
CLNOZ & Thrust removed nozzle lift. \\
CLNOZT & Nozzle lift plus thrust. \\
CLSAER & Thrust removed stability axis lift coefficient. \\
CLWAER & Thrust removed wind axis lift coefficient. \\
CMAERO & Thrust removed pitching moment coefficient. \\
CMJ &
\end{tabular}

G-2
SYMBOL
CRAERO
CRJC
CRJET
CRSAER
CRWAER
CSAERO
CSJC
CSJET
CSSAER
CSWAER
CT
CTS

CTST

\section*{CTSY}

CTS2

CTS2T
CTS2Y

CTT
CTY
CYAERO
CYJC
CYJET
CYSAER
CYWAER
DELTA
DELTAY
DELTA1

DELTA2

\section*{NOMENCLATURE}

Thrust removed rolling moment coefficient.
Computed jet rolling moment coefficient.
Jet reaction rolling moment coefficient.
Thrust removed stability axis rolling moment coefficient.
Thrust removed wind axis rolling moment coefficient.
Thrust removed side force coefficient.
Computed jet side force coefficient.
Jet reaction side force coefficient.
Thrust removed stability axis side force coefficient.
Thrust removed wind axis side force coefficient.
Computed resultant thrust coefficient about pitch axis.
Resultant static thrust coefficient, main balance, about pitch axis.
Resultant static thrust coefficient, main balance.
Resultant static thrust coefficient, main balance, about yaw axis.

Resultant static thrust coefficient, second balance, about pitch axis.
Resultant static thrust coefficient, second balance.
Resultant static thrust coefficient, second balance, about yaw axis.
Computed resultant thrust coefficient.
Computed resultant thrust coefficient about yaw axis.
Thrust removed yawing moment coefficient.
Computed jet yawing moment coefficient.
Jet reaction yawing moment coefficient.
Thrust removed stability axis yawing moment coefficient.
Thrust removed wind axis yawing moment coefficient.
Computed thrust vector angle about pitch axis, degrees.
Computed thrust vector angle about yaw axis, degrees.
Static thrust vector angle, main balance, about pitch axis, degrees.
Static thrust vector angle, second balance, about pitch axis, degrees.
\begin{tabular}{|c|c|}
\hline SYMBOL & NOMENCLATURE \\
\hline DELT1Y & Static thrust vector angle, main balance, about yaw axis, degrees. \\
\hline DELT2Y & Static thrust vector angle, second balance, about yaw axis, degrees. \\
\hline ETAABS & Isentropic vacuum or stream thrust coefficient. \\
\hline (F-A)/FI & Ratio of thrust minus axial force to ideal thrust. \\
\hline (F-ANOZ)/FI & Ratio of thrust minus nozzle axial force to ideal thrust. \\
\hline FGT/FI & Total static resultant thrust ratio, main balance. \\
\hline FGT2/FI & Total static resultant thrust ratio, second balance. \\
\hline FGY/FI & Static resultant thrust ratio, main balance, about yaw axis. \\
\hline FG/FI & Static resultant thrust ratio, main balance, about pitch axis. \\
\hline FG2/FI & Static resultant thrust ratio, second balance, about pitch axis. \\
\hline FG2 Y/FI & Static resultant thrust ratio, second balance, about yaw axis. \\
\hline FJ1/FI & Static thrust ratio, main balance. \\
\hline FJ2/FI & Static thrust ratio, second balance. \\
\hline (F-D)/FI & Ratio of thrust minus drag to ideal thrust. \\
\hline (F-DNOZ)/FI & Ratio of thrust minus nozzle drag to ideal thrust. \\
\hline FN/FI & Ratio of normal force to ideal thrust. \\
\hline FT/FI & Total resultant thrust ratio. \\
\hline F/FI & Ratio of thrust to ideal thrust. \\
\hline IDA & Engineer's option. \\
\hline IDN & Future option. \\
\hline IF & Computes thrust and static thrust terms when IF=1. \\
\hline IF1 & Computes single balance/all metric when IF1=1. \\
\hline IF2 & Computes single balance/afterbody metric when IF2=1. \\
\hline IFAF & Single balance, thrust removal from all components. \\
\hline IFAF1 & Computes two balances/afterbody metric when IFAF1=1. \\
\hline IFAF2 & Computes two balances/afterbody metric when IFAF2=1. \\
\hline IFAFN & Future option. \\
\hline IFAFN1 & Computes two balances/afterbody metric when IFAFN1=1. \\
\hline IFAFN2 & Computes two balances/afterbody metric when IFAFN2=1. \\
\hline LENGTH(I) & Leng ths to transfer moments to relative station. \\
\hline
\end{tabular}

G-4
SYMBOL
PM/FI
RM/FI
SF/FI
SPLAY
SPLAY1
YM/FI

NOMENCLATURE
Ratio of pitching moment to ideal thrust.
Ratio of rolling moment to ideal thrust.
Ratio of side force to ideal thrust.
Projected roll angle of jet exhaust, degrees.
Projected roll angle of jet exhaust, degrees.
Ratio of yawing moment to ideal thrust.

\title{
APPENDIX G \\ Module G \\ Thrust Removal Options
}
A. General Information

The following options are used to remove thrust and to obtain various aerodynamic and aeropropulsion parameters usually required for most \(16-\mathrm{Ft}\). Transonic Tunnel investigations. The various constants are keyed to typical balance arrangements used and may be used for most test setups. This section requires computed inputs from modules \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\) and E . The engineer should refer to each module for exact definition of the computed quantity. These options will work for both fully and partially metric models for both longitudinal and lateral data.

\section*{B. Required Constants}
1. IF, IF 1, IF 2, IF AF, IF AF1, IF AF2, IFAFN, IFAFN1, IFAFN2, ID and IDN.

\section*{C. Quantities Required}
1. MODULE A
a. \(P O \& Q O\)
2. MODULE B
a. NPR
b. CFI
3. MODULE C
a. CDFAFT - afterbody + nozzle skin friction
b. CDFNOZ - nozzle skin friction
4. MODULE D
1. ALPHA
2. CN1, CA1, CMY1 \(\left.\begin{array}{l}\text { CY1, CMX1, CMZ1 } \\ \text { CDS1, CLS } 1\end{array}\right\}\) MAIN BALANCE
3. CDS1, CLS1
4. CN2, CA2, CMY2 CY2, CMX2, CMZ2 \(\}\) SECOND BALANCE (2)
5. CDS2, CLS2
5. MODULE F
1. CFSUN, CNSUN, CPMSUN
2. CDSUN, CLSUN

AFTERBODY PRESSURE FORCES
3. CFBUN, CNBUN, CPMBUN
4. CDBUN, CLBUN
D. Compute Thrust and Static Thrust Terms IF =1
1. Compute Thrust
a. If \(\mathrm{NPR} \leq 1.2, \mathrm{CFJ}=\mathrm{CNJ}=\mathrm{CMJ}=0=\mathrm{CRJ}=\mathrm{CYJ}=\mathrm{CSJ}\)
b. The computed jet axial force coefficient is
\[
\mathrm{CFJC}=\frac{\mathrm{PO}}{\mathrm{QO}} *[\mathrm{KCFJ}(\mathrm{NPR})+\mathrm{ICFJ}]
\]
(Eq. G-1)
c. The computed jet normal force coefficient is
\[
\begin{equation*}
\mathrm{CNJC}=\frac{\mathrm{PO}}{\mathrm{QO}} *[\mathrm{KCNJ}(\mathrm{NPR})+\mathrm{ICNJ}] \tag{Eq.G-2}
\end{equation*}
\]
d. The computed jet pitching moment coefficient is
\[
\begin{equation*}
\mathrm{CMJC}=\frac{\mathrm{PO}}{\mathrm{QO}} *[\mathrm{KCMJ}(\mathrm{NPR})+\mathrm{ICMJ}] \tag{Eq.G-3}
\end{equation*}
\]
e. The computed jet rolling moment coefficient is
\[
\begin{equation*}
\mathrm{CRJC}=\frac{\mathrm{PO}}{\mathrm{QO}} *[\mathrm{KCRJ}(\mathrm{NPR})+\mathrm{ICRJ}] \tag{Eq.G-4}
\end{equation*}
\]
f. The computed jet yawing moment coefficient is
\[
\begin{equation*}
\mathrm{CYJC}=\frac{\mathrm{PO}}{\mathrm{QO}} *[\mathrm{KCYJ}(\mathrm{NPR})+\mathrm{ICYJ}] \tag{Eq.G-5}
\end{equation*}
\]
g. The computed jet side force coefficient is
\[
\begin{equation*}
\operatorname{CSJ} \mathrm{C}=\frac{\mathrm{PO}}{\mathrm{QO}} *[\mathrm{KCSJ}(\mathrm{NPR})+\mathrm{ICSJ}] \tag{Eq.G-6}
\end{equation*}
\]
h. Table input is as follows: (Need six tables) Up to five values per table may be used.

NPR Range Slope \(\quad\) Intercept
2. Compute Static Thrust Terms
a. The resultant static thrust coefficient about the pitch axis for the main balance is
\(\mathrm{CTS}=\sqrt{\mathrm{CN} 1^{2}+\mathrm{CA1}^{2}}\)
(Eq. G-7)
b. The resultant static thrust ratio about the pitch axis for the main balance is
\(\mathrm{FG} / \mathrm{FI}=\mathrm{CTS} / \mathrm{CFI}\)
(Eq. G-8)

G-8
c. The static thrust ratio for the main balance is
\[
\mathrm{FJ} 1 / \mathrm{FI}=-\mathrm{CA} 1 / \mathrm{CFI}
\]
-
(Eq. G-9)
d. The static thrust vector angle about the pitch axis for the main balance is
\[
\begin{equation*}
\text { DELTA1 }=\operatorname{TAN}^{-1}(-\mathrm{CN} 1 / \mathrm{CA} 1) \tag{Eq.G-10}
\end{equation*}
\]
e. The resultant static thrust coefficient about the yaw axis for the main balance is
\[
\begin{equation*}
\mathrm{CTSY}=\sqrt{\mathrm{CY} 1^{2}+\mathrm{CA1}^{2}} \tag{Eq.G-11}
\end{equation*}
\]
f. The resultant static thrust ratio about the yaw axis for the main balance is
\(\mathrm{FGY} / \mathrm{FI}=\mathrm{CTSY} / \mathrm{CFI}\)
(Eq. G-12)
g. The static thrust vector angle about the yaw axis for the main balance is

DELTA1Y \(=\) TAN \(^{-1}(-\mathrm{CY} 1 / \mathrm{CA} 1)\)
(Eq. G-13)
h. The resultant static thrust coefficient for the main balance is
\[
\begin{equation*}
\mathrm{CTST}=\sqrt{\mathrm{CN} 1^{2}+\mathrm{CA} 1^{2}+\mathrm{CY} 1^{2}} \tag{Eq.G-14}
\end{equation*}
\]
i. The total resultant static thrust ratio for the main balance is
\[
\begin{equation*}
\mathrm{FGT} / \mathrm{FI}=\mathrm{CTST} / \mathrm{CFI} \tag{Eq.G-15}
\end{equation*}
\]
j. The isentropic vacuum thrust or stream thrust coefficient is computed by
ETAABS \(=\frac{\frac{\mathrm{FGT} / \mathrm{FI} * \mathrm{FI}}{\mathrm{PTJAVG}}+\frac{\mathrm{AEX}}{\mathrm{PTJ} / \mathrm{PO}}}{\mathrm{PE} / \mathrm{PTJ} * \mathrm{AEX} *(1+\gamma * \mathrm{ME})^{2}}\)
where AS = WPWITO * AT(1)
k. The nozzle exit Mach number ME is computed from
\(\mathrm{AS} / \mathrm{AEX}=\frac{216}{125} \mathrm{ME}\left(1+0.2 \mathrm{ME}^{2}\right)^{-3}\)
and the nozzle exit pressure ratio is from
PE/PTJ \(=\left(1+0.2 \mathrm{ME}^{2}\right)^{-7 / 2}\)
(Eq. G-17)
1. The resultant static thrust coefficient about the pitch axis for the second balance is
\[
\begin{equation*}
\mathrm{CTS} 2=\sqrt{\mathrm{CN} 2^{2}+\mathrm{CA} 2^{2}} \tag{Eq.G-18}
\end{equation*}
\]
m. The resultant static thrust ratio about the pitch axis for the second balance is
\[
\begin{equation*}
\mathrm{FG} 2 / \mathrm{FI}=\mathrm{CTS} 2 / \mathrm{CFI} \tag{Eg.G-19}
\end{equation*}
\]
n. The static thrust ratio for the second balance is
\[
\begin{equation*}
\mathrm{FJ} 2 / \mathrm{FI}=-\mathrm{CA} 2 / \mathrm{CFI} \tag{Eq.G-20}
\end{equation*}
\]
o. The static thrust vector angle about the pitch axis for the second balance is

DELTA2 \(=\) TAN \(^{-1}(-\mathrm{CN} 2 / \mathrm{CA} 2)\)
p. The resultant static thrust coefficient about the yaw axis for the second balance is
\(\operatorname{CTS} 2 \mathrm{Y}=\sqrt{\mathrm{CY} 2^{2}+\mathrm{CA}^{2}}\)
(Eq. G-22)
q. The resultant static thrust ratio about the yaw axis for the second balance is

FG2Y/FI = CTS2 Y/CFI
(Eq. G-23)
r. The static thrust vector angle about the yaw axis for the second balance is

DELTA2Y \(=\) TAN \(^{-1}(-\mathrm{CY} 2 / \mathrm{CA} 2)\)
(Eq. G-24)
s. The resultant static thrust coefficient for the second balance is
\[
\begin{equation*}
\mathrm{CTS} 2 \mathrm{~T}=\sqrt{\mathrm{CN} 2^{2}+\mathrm{CA}_{2}^{2}+\mathrm{CY} 2^{2}} \tag{Eq.G-25}
\end{equation*}
\]
t. The total resultant static thrust ratio for the second balance is
FGT2 = CTS2T/CFI
u. The splay angle is
\[
\text { SPLAY }=\operatorname{ATAN}(C Y 1 / C N 1)
\]
v. The cascade angle is
\[
\begin{equation*}
\text { CASCADE }=\operatorname{TAN}^{-1}\left(\frac{\text { TAN (DELTA1) }}{\sqrt{1+\operatorname{TAN}^{2}(\text { SPLAY }) * \operatorname{TAN}^{2}(D E L T A 1)}}\right) \tag{Eq.G-28}
\end{equation*}
\]
w. The ratio of normal force to ideal thrust is
\[
\begin{equation*}
\mathrm{FN} / \mathrm{FI}=\mathrm{CN} 1 / \mathrm{CFI} \tag{Eq.G-29}
\end{equation*}
\]
x. The ratio of side force to ideal thrust is
\[
\begin{equation*}
\mathrm{SF} / \mathrm{FI}=\mathrm{CY} 1 / \mathrm{CFI} \tag{Eq.G-30}
\end{equation*}
\]
y. The ratio of rolling moment to ideal thrust is
\[
\mathrm{RM} / \mathrm{FI}=\mathrm{CMX1} /(\mathrm{CFI} * \text { LENGTH1) }
\]
(Eq. G-31)
z. The ratio of pitching moment to ideal thrust is
PM/FI = CMY1/(CFI * LENGTH2)
(Eq. G-32)
aa. The ratio of yawing moment to ideal thrust is
YM/FI = CMZ1/(CFI * LENGTH3)
(Eq. G-33)

\section*{E. Single Balance/All Metric IF1 = 1}

1. The resultant thrust coefficient about the pitch axis is
\[
\begin{equation*}
\mathrm{CT}=\sqrt{\mathrm{CNJC}^{2}+\mathrm{CFJC}^{2}} \tag{Eq.G-34}
\end{equation*}
\]
2. The thrust vector about the pitch axis is
\[
\begin{equation*}
\text { DELTA }=\mathrm{TAN}^{-1}(\mathrm{CNJC} / \mathrm{CFJC}) \tag{Eq.G-35}
\end{equation*}
\]
3. The jet reaction lift coefficient is
\[
\begin{equation*}
\text { CLJET }=\text { CT }[\operatorname{SIN}(\text { ALPHA }+ \text { DELTA })] \tag{Eq.G-36}
\end{equation*}
\]
4. The jet reaction axial force coefficient is
\[
\begin{equation*}
\text { CFJET }=\text { CT }[\text { COS (ALPHA }+ \text { DELTA })] \tag{Eq.G-37}
\end{equation*}
\]
5. The thrust removed lift coefficient is
CLAERO = CLS1 - CLJET
6. The thrust removed drag coefficient is
CDAERO = CDS1 + CFJET
7. The thrust removed pitching moment coefficient is
\[
\begin{equation*}
\text { CMAERO = CMYS } 1-\text { CMJC } \tag{Eq.G-40}
\end{equation*}
\]
8. The thrust minus axial force coefficient is
\[
\begin{equation*}
C(F-A)=-C A 1 \tag{Eq.G-41}
\end{equation*}
\]
9. The thrust minus drag coefficient is
\[
\begin{equation*}
C(F-D)=-C D S 1 \tag{Eq.G-42}
\end{equation*}
\]
10. The ratio of thrust minus axial force to ideal thrust is
\[
\begin{equation*}
(F-A) / F I=C(F-A) / C F I \tag{Eq.G-43}
\end{equation*}
\]
11. The ratio of thrust minus drag to ideal thrust is
\[
\begin{equation*}
(\mathrm{F}-\mathrm{D}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{D}) / \mathrm{CFI} \tag{Eq.G-44}
\end{equation*}
\]
12. The ratio of thrust to ideal thrust is
\[
\begin{equation*}
\mathrm{F} / \mathrm{FI}=\mathrm{CFJC} / \mathrm{CFI} \tag{Eq.G-45}
\end{equation*}
\]
13. The thrust minus nozzle drag coefficient is
\[
\begin{equation*}
\mathrm{C}(\mathrm{~F}-\mathrm{DNOZ})=\mathrm{CFJET}-\mathrm{CDBUN} \tag{Eq.G-46}
\end{equation*}
\]
14. The ratio of thrust minus nozzle drag to ideal thrust is
\[
\begin{equation*}
(\mathrm{F}-\mathrm{DNOZ}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{DNOZ}) / \mathrm{CFI} \tag{Eq.G-47}
\end{equation*}
\]
F. Single Balance/Afterbody Metric IF2 \(=1\)

1. The resultant thrust coefficient about the pitch axis is
\[
\mathrm{CT}=\sqrt{\mathrm{CNJC}^{2}+\mathrm{CFJC}^{2}}
\]
(Same as Eq. G-34)
2. The thrust vector angle about the pitch axis is
\[
\text { DELTA }=\mathrm{TAN}^{-1}(\mathrm{CNJC} / \mathrm{CFJC})
\]
(Same as Eq. G-35)
3. The jet reaction lift coefficient is
\[
\text { CLJET }=\text { CT }[\operatorname{SIN}(A L P H A+\text { DELTA })]
\]
4. The jet reaction axial force coefficient is
\[
\text { CFJET }=\mathrm{CT}[\operatorname{COS}(A L P H A+\text { DELTA })]
\]
5. The thrust removed lift coefficient is
CLAERO = CLS1 - CLJET
(Same as Eq. G-38)
6. The thrust removed drag coefficient is
CDAERO = CDS1 + CFJET
7. The thrust removed pitch moment coefficient is
CMAERO = CMYS1-CMJC
8. The thrust minus axial force coefficient is
\[
C(F-A)=-C A 1
\]
9. The thrust minus drag coefficient is
\[
C(F-D)=-\operatorname{CDS} 1
\]
10. The ratio of thrust minus axial force to ideal thrust is
\[
(\mathrm{F}-\mathrm{A}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{A}) / \mathrm{CFI}
\]
11. The ratio of thrust minus drag to ideal thrust is
\[
(\mathrm{F}-\mathrm{D}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{D}) / \mathrm{CFI}
\]
(Same as Eq. G-44)
12. The thrust minus nozzle drag coefficient is
\[
\begin{equation*}
C(F-D N O Z)=C(F-D)+(C D F A F T-C D F N O Z) \tag{Eq.G-48}
\end{equation*}
\]
13. The ratio of thrust minus nozzle drag to ideal thrust is
\[
\begin{equation*}
(\mathrm{F}-\mathrm{DNOZ}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{DNOZ}) / \mathrm{CFI} \tag{Eq.G-49}
\end{equation*}
\]
14. The ratio of thrust to ideal thrust is
\[
\begin{equation*}
\mathrm{F} / \mathrm{FI}=[\mathrm{C}(\mathrm{~F}-\mathrm{DNOZ})+\mathrm{CDFNOZ}+\mathrm{CDBUN}] / \mathrm{CFI} \tag{Eq.G-50}
\end{equation*}
\]

\section*{G. Two-Balance/Afterbody Metric IFAF1 = 1}

1. The jet axial force coefficient is
\[
\begin{equation*}
\mathrm{CFJ}=\mathrm{CA} 2-\mathrm{CA} 1 \tag{Eq.G-51}
\end{equation*}
\]
2. The jet normal force coefficient is
\[
\begin{equation*}
\mathrm{CNJ}=\mathrm{CN} 1-\mathrm{CN} 2 \tag{Eq.G-52}
\end{equation*}
\]
3. The jet pitching moment coefficient is
CMJ = CMY1 - CMY2
4. The resultant thrust coefficient about the pitch axis is
\[
\begin{equation*}
\mathrm{CT}=\sqrt{\mathrm{CFJ}^{2}+\mathrm{CNJ}^{2}} \tag{Eq.G-54}
\end{equation*}
\]
5. The thrust vector angle about the pitch axis is
\[
\begin{equation*}
\text { DELTA }=\mathrm{TAN}^{-1}(\mathrm{CNJ} / \mathrm{CFJ}) \tag{Eq.G-55}
\end{equation*}
\]
6. The thrust removed lift coefficient is
CLAERO = CLS2
7. The thrust removed drag coefficient is

CDAERO \(=\) CDS 2
(Eq. G-57)
8. The thrust removed pitching moment coefficient is
CMAERO = CYMS2
9. The thrust minus axial force coefficient is
\[
C(F-A)=-C A 1
\]
10. The thrust minus drag coefficient is
\[
C(F-D)=-C D S 1
\]
11. The ratio of thrust minus axial force to ideal thrust is
\((\mathrm{F}-\mathrm{A}) / \mathrm{FI}=\mathrm{C}(\mathrm{F}-\mathrm{A}) / \mathrm{CFI}\)
(Same as Eq. G-43)
12. The ratio of thrust minus drag to ideal thrust is
\[
(\mathrm{F}-\mathrm{D}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{D}) / \mathrm{CFI}
\]
(Same as Eq. G-44)
13. The thrust minus nozzle drag coefficient is
\[
\begin{equation*}
C(F-D N O Z)=C(F-D)+(C D F A F T-C D F N O Z)+C D S U N \tag{Eq.G-59}
\end{equation*}
\]
14. The ratio of thrust minus nozzle drag to ideal thrust is
\[
(\mathrm{F}-\mathrm{DNOZ}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{DNOZ}) / \mathrm{CFI}
\]
15. The ratio of thrust to ideal thrust is
\[
\begin{equation*}
\mathrm{F} / \mathrm{FI}=\mathrm{CFJ} / \mathrm{CFI} \tag{Eq.G-60}
\end{equation*}
\]
16. The jet reaction lift coefficient is
\[
\begin{equation*}
\text { CLJET }=\mathrm{CT}[\operatorname{SIN}(A L P H A+\text { DELTA })] \tag{Eq.G-61}
\end{equation*}
\]
17. The jet reaction axial force coefficient is
\[
\begin{equation*}
\text { CFJET }=\mathrm{CT}[\operatorname{COS}(A L P H A+\text { DELTA })] \tag{Eq.G-62}
\end{equation*}
\]
H. Two-Balance/Afterbody Metric IFAF2 \(=1\)


NOTE:Wings or tails usually attached to balance 2
1. The thrust removed lift coefficient is

CLAERO \(=\) CLS2
(Same as Eq. G-56)
2. The thrust removed drag coefficient is

CDAERO \(=\) CDS 2
(Same as Eq. G-57)
3. The thrust removed pitching moment coefficient is
CMAERO = CYMS2
(Same as Eq. G-58)
4. The thrust minus axial force coefficient is
\[
C(F-A)=-C A 1
\]
(Same as Eq. G-41)
5. The thrust minus drag coefficient is
\[
C(F-D)=-C D S 1
\]
(Same as Eq. G-42)
6. The ratio of thrust minus axial force to ideal thrust is
\[
(\mathrm{F}-\mathrm{A}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{A}) / \mathrm{CFI}
\]
(Same as Eq. G-43)
7. The ratio of thrust minus drag to ideal thrust is
\[
(\mathrm{F}-\mathrm{D}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{D}) / \mathrm{CFI}
\]
(Same as Eq. G-44)
8. The thrust minus nozzle drag coefficient is
\[
\begin{equation*}
C(F-D N O Z)=C(F-D)+C D S 2 \tag{Eq.G-63}
\end{equation*}
\]
9. The jet axial force coefficient is
\[
\begin{equation*}
\mathrm{CFJ}=\mathrm{C}(\mathrm{~F}-\mathrm{DNOZ})+(\mathrm{CDFNOZ}+\mathrm{CDBUN}) \tag{Eq.G-64}
\end{equation*}
\]
10. The jet normal force coefficient is
\[
\begin{equation*}
\mathrm{CNJ}=\mathrm{CN} 1-\mathrm{CN} 2-\mathrm{CNBUN} \tag{Eq.G-65}
\end{equation*}
\]
11. The jet pitching moment coefficient is
CMJ = CMY1 - CMY2 - CPMBUN
12. The resultant thrust coefficient about the pitch axis is
\[
\mathrm{CT}=\sqrt{\mathrm{CFJ}^{2}+\mathrm{CNJ}^{2}}
\]
13. The thrust vector angle about the pitch axis is
\[
\text { DELTA }=\operatorname{TAN}^{-1}(\mathrm{CNJ} / \mathrm{CFJ})
\]
14. The jet reaction lift coefficient is
\[
\operatorname{CLJET}=\mathrm{CT}[\operatorname{SIN}(A L P H A+D E L T A)]
\]
15. The jet reaction axial force coefficient is
\[
\text { CFJET }=\mathrm{CT}[\operatorname{COS}(\mathrm{ALPHA}+\text { DELTA })]
\]
I. Two-Balance/Afterbody Metric IFAFN1 = 1

1. The jet axial force coefficient is
\[
\begin{equation*}
\mathrm{CFJ}=-\mathrm{CA} 2 \tag{Eq.G-67}
\end{equation*}
\]
2. The jet normal force coefficient is
\(\mathrm{CNJ}=\mathrm{CN} 2\)
(Eq. G-68)
3. The jet pitching moment coefficient is
\(\mathrm{CMJ}=\mathrm{CMY2}\)
(Eq. G-69)
4. The resultant thrust coefficient about the pitch axis is
\(\mathrm{CT}=\sqrt{\mathrm{CFJ}^{2}+\mathrm{CNJ}^{2}}\)
5. The thrust vector angle about the pitch axis is
\[
\text { DELTA }=\mathrm{TAN}^{-1}(\mathrm{CNJ} / \mathrm{CFJ})
\]
6. The jet reaction lift coefficient is
\[
\text { CLJET }=\mathrm{CT}[\operatorname{SIN}(A L P H A+\text { DELTA) }] \quad \text { (Same as Eq. G-61) }
\]
7. The jet reaction axial force coefficient is
\[
\text { CFJET }=\mathrm{CT}[\operatorname{COS}(A L P H A+\text { DELTA })]
\]
8. The thrust minus axial force coefficient is
\[
C(F-A)=-C A 1
\]
(Same as Eq. G-41)
9. The thrust minus drag coefficient is
\[
C(F-D)=-C D S 1
\]
(Same as Eq. G-42
10. The ratio of thrust minus axial force to ideal thrust is
\[
(\mathrm{F}-\mathrm{A}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{A}) / \mathrm{CFI}
\]
11. The ratio of thrust minus drag to ideal thrust is
\[
(\mathrm{F}-\mathrm{D}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{D}) / \mathrm{CFI}
\]
12. The thrust removed lift coefficient is
CLAERO = CLS1 - CLS2
13. The thrust removed drag coefficient is
\[
\begin{equation*}
\text { CDAERO }=\mathrm{CDS} 1-\mathrm{CDS} 2 \tag{Eq.G-71}
\end{equation*}
\]
14. The thrust removed pitching moment coefficient is
\[
\begin{equation*}
\text { CMAERO = CMYS } 1-\text { CMYS2 } \tag{Eq.G-72}
\end{equation*}
\]
15. The thrust minus nozzle drag coefficient is
\[
C(F-D N O Z)=C(F-D)+(C D F A F T-C D F N O Z)+C D S U N
\]
(Same as Eq. G-59)
J. Two-Balance/Afterbody Metric IFAFN2 =1

1. The jet axial force coefficient is
\[
\begin{equation*}
\mathrm{CFJ}=(\mathrm{CDFNOZ}+\mathrm{CFBUN})-\mathrm{CA} 2 \tag{Eq.G-73}
\end{equation*}
\]
2. The jet normal force coefficient is
\[
\begin{equation*}
\mathrm{CNJ}=\mathrm{CN} 2-\mathrm{CNBUN} \tag{Eq.G-74}
\end{equation*}
\]
3. The jet pitching moment coefficient is
CMJ = CMY2 - CPMBUN
4. The resultant thrust coefficient about the pitch axis is
\(\mathrm{CT}=\sqrt{\mathrm{CFJ}^{2}+\mathrm{CNJ}^{2}}\)
5. The thrust vector about the pitch axis is
\[
\text { DELTA }=\mathrm{TAN}^{-1}(\mathrm{CNJ} / \mathrm{CFJ})
\]
6. The jet reaction lift coefficient is
\[
\text { CLJET }=C T *[\operatorname{SIN}(A L P H A+\text { DELTA) }] \quad \text { (Same as Eq. G-61) }
\]
7. The jet reaction axial force coefficient is
\[
\text { CFJET }=\mathrm{CT} *[\operatorname{COS}(\mathrm{ALPHA}+\text { DELTA })] \quad \text { (Same as Eq. G-62) }
\]
8. The thrust minus axial force coefficient is
\[
C(F-A)=-C A 1
\]
(Same as Eq. G-41)
9. The thrust minus drag coefficient is
\[
C(F-D)=-C D S 1
\]
10. The ratio of thrust minus axial force to ideal thrust is
\[
(\mathrm{F}-\mathrm{A}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{A}) / \mathrm{CFI}
\]
11. The ratio of thrust minus drag to ideal thrust is
\[
(F-D) / F I=C(F-D) / C F I
\]
12. The thrust removed lift coefficient is
CLAERO = CLS1 - CLS2
13. The thrust removed drag coefficient is
\[
\text { CDAERO }=\text { CDS } 1-\mathrm{CDS} 2
\]
14. The thrust removed pitching moment coefficient is
CMAERO = CMYS1 - CMYS2
15. The thrust minus nozzle drag coefficient is
\[
\begin{equation*}
\mathrm{C}(\mathrm{~F}-\mathrm{DNOZ})=-\mathrm{CDS} 2 \tag{Eq.G-76}
\end{equation*}
\]

\section*{K. Single Balance, Thrust Removal All Components IFAF}
1. The thrust removed normal force coefficient is
\[
\text { CNAERO = CN } 1-\mathrm{CNJC}
\]
(Eq. G-77)
2. The thrust removed axial force coefficient is
\[
\begin{equation*}
\text { CAAERO }=\mathrm{CA} 1+\mathrm{CFJC} \tag{Eq.G-78}
\end{equation*}
\]
3. The thrust removed pitching moment coefficient is
CMAERO = CMY1 - CMJC
4. The thrust removed rolling moment coefficient is
CRAERO = CMX1 - CRJC
5. The thrust removed yawing moment coefficient is
CYAERO = CMZ1-CYJC
6. The thrust removed side force coefficient is
CSAERO = CY1 - CSJC
7. The thrust removed lift coefficient is
8. The thrust removed drag coefficient is
\[
\text { CDAERO }=\text { CAAERO } * \operatorname{COS}(\text { ALPHA })+\text { CNAERO } * \operatorname{SIN}(A L P H A)
\]
(Eq. G-84)
9. The resultant thrust coefficient about the pitch axis is
\[
\mathrm{CT}=\sqrt{\mathrm{CNJC}^{2}+\mathrm{CFJC}^{2}}
\]
(Same as Eq. G-34)
10. The thrust vector angle about the pitch axis is
\[
\text { DELTA }=\mathrm{TAN}^{-1}(\mathrm{CNJC/CFJC})
\]
11. The jet reaction lift coefficient is
\[
\text { CLJET }=\text { CNJC } * \operatorname{COS}(\mathrm{ALPHA})+\text { CFJC } * \operatorname{SIN}(\mathrm{ALPHA})
\]
12. The jet reaction axial force coefficient is
\[
\text { CFJET }=\text { CFJC } * \operatorname{COS}(\text { ALPHA })-\text { CNJC } * \operatorname{SIN} \text { (ALPHA) }
\]
13. The jet reaction side force coefficient is
\[
\text { CSJET }=\operatorname{CSJC}
\]
14. The jet reaction pitching moment coefficient is
CMJET + CMJC
15. The jet reaction rolling moment coefficient is
\[
\text { CRJET }=\text { CRJC } * \operatorname{COS}(A L P H A)+C Y J C * \operatorname{SIN}(A L P H A)
\]
16. The jet reaction yawing moment coefficient is
\[
\text { CYJET }=\text { CYJC } * \operatorname{COS} \text { (ALPHA) - CRJC } * \operatorname{SIN} \text { (ALPHA) }
\]
17. The splay angle is
\[
\text { SPLAY1 }=\mathrm{TAN}^{-1}(\mathrm{CSJC} / \mathrm{CNJC})
\]
18. The thrust minus axial force coefficient is
\[
\mathrm{C}(\mathrm{~F}-\mathrm{A})=-\mathrm{CA} 1
\]
(Same as Eq. G-41)
19. The thrust minus drag coefficient is
\[
\mathrm{C}(\mathrm{~F}-\mathrm{D})=-\mathrm{CDS} 1
\]
(Same as Eq. G-42)
20. The ratio of thrust minus axial force to ideal thrust is
\[
\begin{equation*}
(\mathrm{F}-\mathrm{A}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{A}) / \mathrm{CFI} \tag{Eq.G-85}
\end{equation*}
\]
21. The ratio of thrust minus drag to the ideal thrust is
\[
\begin{equation*}
(F-D) / F I=C(F-D) / C F I \tag{Eq.G-86}
\end{equation*}
\]
22. The ratio of thrust to the ideal thrust is
\[
\mathrm{F} / \mathrm{FI}=\mathrm{CFJC} / \mathrm{CFI}
\]
23. The resultant thrust coefficient about the yaw axis is
\[
\begin{equation*}
\mathrm{CTY}=\sqrt{\mathrm{CSJC}^{2}+\mathrm{CFJC}^{2}} \tag{Eq.G-87}
\end{equation*}
\]
24. The thrust vector angle about the yaw axis is
\[
\begin{equation*}
\text { DELTAY }=\text { TAN }^{-1}(\text { CSJC/CFJC }) \tag{Eq.G-88}
\end{equation*}
\]
25. The total resultant thrust coefficient is
\[
\begin{equation*}
\mathrm{CTT}=\sqrt{\mathrm{CNJC}^{2}+\mathrm{CFJC}^{2}+\mathrm{CSJC}^{2}} \tag{Eq.G-89}
\end{equation*}
\]
26. The total resultant thrust ratio is
\[
\begin{equation*}
\mathrm{FT} / \mathrm{FI}=\mathrm{CTT} / \mathrm{CFI} \tag{Eq.G-90}
\end{equation*}
\]
27. The thrust minus nozzle axial force coefficient is
\[
\mathrm{C}(\mathrm{~F}-\mathrm{ANOZ})=\mathrm{C}(\mathrm{~F}-\mathrm{A})+(\mathrm{CDFAFT}-\mathrm{CDFNOZ})+\mathrm{CFSUN}
\]
28. The ratio of thrust minus nozzle axial force to the ideal thrust is
\[
\mathrm{F}-\mathrm{ANOZ} / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{ANOZ}) / \mathrm{CFI}
\]
29. The thrust minus nozzle drag coefficient is
\[
C(F-D N O Z)=C(F-D)+(C D F A F T-C D F N O Z)+C D S U N
\]
(Same as Eq. G-59)
30. The ratio of thrust minus nozzle drag to the ideal thrust is
\[
(\mathrm{F}-\overline{\mathrm{DN}} \overline{\mathrm{O}} \mathrm{Z}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{DNOZ}) / \mathrm{CFI}
\]
31. The thrust coefficient (from balance and pressures) is
\[
C F=(F-A N O Z)+C D F N O Z+C F B U N
\]
32. The ratio of thrust (from balance and pressures) to the ideal thrust is
\[
\mathrm{CF} / \mathrm{CFI}=\mathrm{CF} / \mathrm{CFI}
\]
L. When IFAFN =1
1. The thrust removed stability axis lift coefficient is
CLSAER = CLAERO
2. The thrust removed stability axis drag coefficient is
CDSAER = CDAERO
3. The thrust removed stability axis side force coefficient is
CSSAER = CSAERO
4. The thrust removed stability axis pitching moment coefficient is
CMSAER = CMAERO
5. The thrust removed stability axis rolling moment coefficient is
CRSAER = CRAERO COS ALPHA + CYAERO SIN ALPHA
6. The thrust removed stability axis yawing moment coefficient is
CYSAER = CYAERO COS ALPHA - CRAERO SIN ALPHA
7. The thrust removed wind axis drag coefficient is

\section*{CDWAER = CDSAER COS BETA - CSSAER SIN BETA}
8. The thrust removed wind axis side force coefficient is
CSWAER = CSSAER COS BETA + CDSAER SIN BETA
9. The thrust removed wind axis lift coefficient is
CLWAER = CLSAER
10. The thrust removed wind axis rolling moment coefficient is CRWAER = CRSAER COS BETA + CMSAER SIN BETA
11. The thrust removed wind axis pitching moment coefficient is
CMWAER = CMSAER COS BETA - CRSAER SIN BETA
12. The thrust removed wind axis yawing moment coefficient is
CYWAER = CYSAER
M. Bifurcate Support Mode Two Balance/Afterbody Metric IDN =1
1. The axial force coefficient is modified
\[
\mathrm{CA} 1=\mathrm{CA} 1-0.0004
\]
2. The drag coefficient in the stability axis is modified
\[
\text { CDS1 }=\text { CDS1- } 0.0004
\]
3. The thrust removed normal force coefficient is
\[
\text { CNAERO }=\text { CN1 }- \text { CNJC } \quad \text { (Same as Eq. G-77) }
\]
4. The thrust removed axial force coefficient is
CAAERO = CA1 + CFJC
(Same as Eq. G-78)
5. The thrust removed pitching moment coefficient is
CMAERO = CMY1 - CMJC
(Same as Eq. G-79)
6. The thrust removed rolling moment coefficient is
CRAERO = CMX1 - CRJC
(Same as Eq. G-80)
7. The thrust removed yawing moment coefficient is
CYAERO = CMZ1 - CYJC
(Same as Eq. G-81)
8. The thrust removed side force coefficient is
CSAERO = CY1 - CSJC
9. The thrust removed lift coefficient is
\[
\begin{array}{r}
\text { CLAERO }=\text { CNAERO } * \operatorname{COS}(\text { ALPHA })-\text { CAAERO } * \operatorname{SIN} \text { (ALPHA) } \\
\text { (Same as Eq. G-83) }
\end{array}
\]
10. The thrust removed drag coefficient is
\[
\begin{array}{r}
\text { CDAERO }=\text { CAAERO } * \operatorname{COS}(\text { ALPHA })+\text { CNAERO } * \text { SIN (ALPHA) } \\
\text { (Same as Eq. G-84) }
\end{array}
\]
11. The computed resultant thrust about the pitch axis is
\[
\mathrm{CT}=\sqrt{\mathrm{CNJC}^{2}+\mathrm{CFJC}^{2}}
\]
(Same as Eq. G-34)
12. The computed thrust vector angle about the pitch axis is
\[
\text { DELTA }=\mathrm{TAN}^{-1}(\mathrm{CNJC} / \mathrm{CFJC})
\]
13. The jet reaction lift coefficient is
\[
\text { CLJET }=\mathrm{CT}[\text { SIN }(A L P H A+\text { DELTA })]
\]
14. The jet reaction axial force coefficient is
\[
\text { CFJET }=\operatorname{CT}[\operatorname{COS}(A L P H A+\text { DELTA })] \quad \text { (Same as Eq. G-37) }
\]
15. The thrust minus axial force coefficient is
\[
C(F-A)=-C A 1
\]
(Same as Eq. G-41)
16. The thrust minus drag coefficent is
\[
C(F-D)=-C D S 1
\]
17. The ratio of thrust minus axial force to ideal thrust is
\[
(\mathrm{F}-\mathrm{A}) / \mathrm{FI}=\mathrm{C}(\mathrm{~F}-\mathrm{AF}) / \mathrm{CFI}
\]
18. The ratio of thrust minus drag to ideal thrust is
\[
(F-D) / F I=C(F-D) / C F I
\]
19. The ratio of thrust to ideal thrust is
\[
\mathrm{F} / \mathrm{FI}=\mathrm{CFJC} / \mathrm{CFI}
\]
20. The computed resultant thrust coefficient about the yaw axis is
\[
\mathrm{CTY}=\sqrt{\mathrm{CYJC}^{2}+\mathrm{CFJC}^{2}}
\]
(Same as Eq. G-87)
21. The computed thrust vector angle about the yaw axis is
\[
\text { DELTAY }=\mathrm{TAN}^{-1}(\mathrm{CYJC/CFJC})
\]
(Same as Eq. G-88)
22. The computed resultant thrust coefficient is
\[
\mathrm{CTT}=\sqrt{\mathrm{CNJC}^{2}+\mathrm{CFJC}^{2}+\mathrm{CYJC}^{2}}
\]
(Same as Eq. G-89)
23. The total resultant thrust ratio is
\[
\mathrm{FT} / \mathrm{FI}=\mathrm{CTT} / \mathrm{CFI}
\]
24. The thrust minus nozzle drag coefficient is
\[
\mathrm{C}(\mathrm{D}-\mathrm{FNOZ}) / \mathrm{FI}=\mathrm{CDS} 2-\mathrm{CDS} 1
\]
25. The ratio of thrust minus nozzle drag to ideal thrust is
\[
(F-F N O Z) / F I=C(D-F N O Z) / C F I
\]
26. The nozzle lift plus thrust coefficient is
CLNOZT = CLS1 - CLS2
27. The nozzle pitching moment plus lift coefficient is
CMNOZT = CMYS1 - CMYS2
28. The nozzle drag coefficient is
\[
\text { CDNOZ }=\text { CDAERO }- \text { CDS2 }
\]
29. The thrust removed nozzle lift coefficient is
CLNOZ = CLAERO - CLS2
30. The thrust removed nozzle pitching moment coefficient is
CMNOZ = CMAERO - CMYS2

\section*{N. Other Options}
1. ID - Engineer's option
a. If \(\mathrm{ID}=1\), the engineer may write his own option with the following restrictions:
(1) Names must be identical to those already used.
(2) No more terms may be added to the output.

\section*{APPENDIX H}

\section*{Turboprop Options}
Nomenclatures ..... H-1
Introduction ..... H-5
Test for Air Turbine Simulator ..... H-6
Compute Common Constant ..... H-6
Individual Engine Measurements ..... H-7
Propeller Coefficient Calculations ..... H-8
Exhaust Calculations ..... H-12

\section*{MODULE H TURBOPROP OPTIONS}

SYMBOL
AD(J)
AE(J)
ALPHAP(J)
ARATIO(J)
AT(J)
CDP(J)
CDTP
CE
CO
CHPROP(J)
CMPROP(J)
CNPROP(J)
CPPROP(J)
CTPROP(J)
DIAP(J)
ETA(J)
ETAP(J)
FAPT
FTE(J)

FTGE(J)
JBINC
JP(J)
KBINC

KPINM(I,J)

KPOUTM(I,J)

KPST(I,J)

KPW

\section*{NOMENCLATURE}

Area at rake in exhaust duct J, sq. in.
Exhaust area for exhaust duct J, sq. in.
Angle of attack at propeller J, degrees.
Area ratio for motor J.
Throat area of exhaust duct J, sq. in.
Propeller drag coefficient for motor J.
Total propeller drag coefficient.
Exhaust sonic velocity, feet per second.
Sonic velocity, feet per second.
Chord length at \(75 \%\) radius of propeller J .
Pitching moment coefficient of propeller J.
Normal force coefficient of propeller J.
Power coefficient of propeller J.
Thrust coefficient of propeller J.
Diameter of propeller \(J\), feet.
Efficiency for motor \(J\), per cent.
Efficiency for propeller J, per cent.
Total system thrust in streamwise direction, lbs.
Propeller thrust plus jet thrust due to exhaust flow for motor J, lbs.
Total system thrust of motor J , lbs.
Increment on engine number to match prop balance number.
Advance ratio of propeller J.
Indicates that balance 3 deck contains more than one set of balance constants. (KBINC = 1).

Constant for input drive pressure tap I and motor J, (must be 0.0 or 1.0 ).

Constant for output drive pressure tap I and motor J, (must be 0.0 or 1.0 ).
Constant for rake static pressure tap I and motor J, (must be 0.0 or 1.0).
Power coefficient constant.

H-2
SYMBOL KTINM(I,J)

KTOUTM (I, J)

MD(J)
ME(J)
MTIP(J)
NPROP(J)
NSAME(J)
PDRIVE
PE(J)
PHIANG
PIN M(I,J)

PITCH(J)
POUTM(I,J)

PR/PTR
PST(I,J)

PSTATC(J)
PW1(J)

PW2(J)

RHO
RPS
TDRIVE(J)
TE(J)
TINM(I,J)
TOUTM(I,J)
TSPROP(J)
TTO
VE(J)

\section*{NOMENCLATURE}

Constant for input motor temperature tap I and motor J, (must be 0.0 or 1.0).
Constant for output motor temperature tap I and motor J ,
(must be 0.0 or 1.0 ).
Rake mach number for motor J.
Exhaust mach number for motor J.
Mach number of propeller tip J.
Revolutions per second of propeller J.
Constant of propeller J set equal to 0.0 or 1.0
Pressure drop through air turbine motor, lbs/sq. in.
Exhaust static pressure for motor J, lbs/sq. in.
Angle between forward and rotational velocities, degrees.
Motor input static pressure for motor \(J\) and pressure tap \(I\), lbs/sq. in.
Measured value of geometric pitch of propeller J.
Motor output static pressure for motor \(J\) and pressure tap I, \(\mathrm{lbs} / \mathrm{sq}\). in.
Ratio of static to total pressures.
Static pressure for motor \(J\) and pressure tap I at rake, lbs/sq. in.
Average static pressure at rake for motor \(\mathrm{J}, \mathrm{lbs} / \mathrm{sq}\). in.
Horsepower output by motor J with ideal gas calculations, HP.
Horsepower calculated using Isentropic equation multiplied by efficiency for motor J, HP.
Density of free-stream air, slugs per cubic feet.
Engine's revolutions per second.
Temperature differential across the air turbine motor \(\mathrm{J},{ }^{\circ} \mathrm{F}\). Exhaust temperature for motor \(\mathrm{J},{ }^{\circ} \mathrm{F}\). Input temperature for motor \(J\) and temperature tap \(I,{ }^{\circ} \mathrm{F}\). Output temperature for motor J and temperature tap \(\mathrm{I},{ }^{\circ} \mathrm{F}\). Rotational tip speed of propeller J , feet per second. Tunnel static temperature, \({ }^{\circ} \mathrm{F}\).
Exhaust velocity in motor J , feet per second.

\section*{SYMBOL}
vo
VRES(J)
VRN

NOMENCLATURE
Free-stream velocity, feet per second. Total velocity of propeller tip J, feet per second.
Total velocity at \(75 \%\) of propeller radius (for Reynolds number), feet per second.

\title{
APPENDIX H \\ Module H \\ Turboprop Options
}

\section*{A. Introduction}
1. Module \(B\) with its constants must be run first. All constants are to be initialized to a value of zero. The project engineer must supply only those constants which are required for those quantities to be computed. In addition, by logical use of combinations of these constants, several options are available to the project engineer.
2. \(\operatorname{Set} \operatorname{NSAME}(\mathrm{J})=1\) if \(\operatorname{POUTM}(\mathrm{I}, \mathrm{J})=\operatorname{PST}(\mathrm{I}, \mathrm{J})\), and \(\operatorname{TOUTM}(\mathrm{I}, \mathrm{J})=\operatorname{TTJ}(\mathrm{I}, \mathrm{J})\)
\[
\begin{aligned}
\text { where } \mathrm{J} & =\text { engine number } \\
\mathrm{I} & =\text { probe number }
\end{aligned}
\]
3. Set the constant, \(\operatorname{KTINM}(\mathrm{I}, \mathrm{J})\), equal to 1.0 for the temperature measuring probe. If the temperature probe is defective or does not exist, set the constant equal to 0.0 . Use only a maximum of six probes per engine.
4. The meaning of the values of \(\operatorname{KTOUTM}(1, \mathrm{~J})\) is the same as \(\operatorname{KTINM}(1, \mathrm{~J})\).
5. Set the constant, KPINM(I,J) equal to 1.0 for the pressure measuring probe. If the probe is defective or does not exist, set the constant equal to 0.0. The pressure probes may be weighted using this constants, if desired. Use only a maximum of 12 probes per engine.
6. The meaning of the values of KPOUTM(I,J) is the same as KPINM(I,J).
7. Set the constant, \(\operatorname{KPST}(\mathrm{I}, \mathrm{J})\), equal to 1.0 for the pressure measuring probe. If the probe is defective or does not exist, set the constant equal to 0.0. The pressure probes may be weighted using this constant, if desired. Use oniy a maximum of 12 probes per engine.

PRECEDIMG PAGE ELANM NOT FRMED

H-6
8. \(A E(J)\) is equal to \(A T(J)\) for a converging nozzle. Both constants are required. Values of \(A T(J)\) come from Module B.
B. Test for Air Turbine Simulator
1. The constant required from the project engineer input at Module B is NUMENG (0 to 4).

If \(\mathrm{NUMENG}=\mathbf{0}\), skip module H .
C. Compute Common Constant
1. The constants required from the project engineer input at Module \(B\) are GAMJ and RJ.
\[
\mathrm{KJ} 1=\left(\begin{array}{l}
\frac{2}{\mathrm{GAMJ}+1}
\end{array}\right)^{\frac{\mathrm{GAMJ}+1}{2(\mathrm{GAMJ}-1)}} \quad \sqrt{\frac{\mathrm{GAMJ} \times 32.174}{\mathrm{RJ}}}
\]
(Same as Eq. B-1)
\[
\mathrm{KJ} 2=\frac{\text { GAMJ } \times 64.348}{(\mathrm{GAMJ}-1) \mathrm{RJ}}
\]
\[
\begin{align*}
& \mathrm{KJ} 3=\sqrt{\frac{2(\mathrm{GAMJ})(\mathrm{RJ})}{(\mathrm{GAMJ}-1) 32.174}}  \tag{SameasEq.B-3}\\
& \mathrm{KJ} 4=\frac{\mathrm{GAMJ}-1}{\text { GAMJ }} \\
& \text { (Same as Eq. B-4) } \\
& \mathrm{KJ5}=\quad \frac{1}{\mathrm{GAMJ}} \\
& \text { (Same as Eq. B-4) } \\
& \text { (Same as Eq. B-5) }
\end{align*}
\]
2. To continue, the equations are given to show calculations for other constants.
a. The static temperature is
\[
\begin{equation*}
\mathrm{TO}=(\mathrm{TTO}+459.67) /\left(1.0+0.2 * \mathrm{MACH}^{2}\right) \tag{Eq.H-1}
\end{equation*}
\]
b. The free-stream density is
\[
\begin{equation*}
\mathrm{RHO}=\mathrm{PO} * 144.0 /(1716.4829 * \mathrm{TO}) \tag{Eq.H-2}
\end{equation*}
\]
c. The viscosity is
\[
\begin{equation*}
\mathrm{XMU}=\left(2.270 * 10^{-8} * \mathrm{TO} * \sqrt{\mathrm{TO} /(\mathrm{TO}+198.6)}\right. \tag{Eq.H-3}
\end{equation*}
\]
d. The free-stream velocity of sound is
\[
\begin{equation*}
\mathrm{CO}=49.021179 * \sqrt{\mathrm{TO}} \tag{Eq.H-4}
\end{equation*}
\]
e. The free-stream velocity is
\[
\begin{equation*}
\mathrm{VO}=\mathrm{CO} * \mathrm{MACH} \tag{Eq.H-5}
\end{equation*}
\]
D. Individual Engine Measurements
1. This module provides the computations for four separate engines with the following instrumentation in each engine.
a. Input pressure to engine
*b. Output pressure of engine
c. Input temperature to engine
*d. Output temperature of engine
* May be replaced with rake measurements.
e. Static exhaust pressure at rake
f. Revolutions per second indicator
g. Geometric pitch of propeller

\section*{E. Propeller Coefficient Calculations}
1. The tip speed of propeller is
\(\operatorname{TSPROP}(\mathrm{J})=3.14159 * \operatorname{DIAP}(\mathrm{~J}) * \operatorname{NPROP}(\mathrm{~J})\)
(Eq. H-6)
2. The advance ratio of propeller is
\(\mathrm{JP}(\mathrm{J})=\mathrm{VO} /(\operatorname{NPROP}(\mathrm{J}) * \operatorname{DIAP}(\mathrm{~J}))\)
(Eq. H-7)
3. The angle of attack of the propeller is the geometric pitch of the propeller at the \(3 / 4\) chord, in degrees, minus the resultant angle between the free-stream velocity and rotational velocity.
\(\operatorname{ALPHAP}(\mathrm{J})=\operatorname{PITCH}(\mathrm{J})-\mathrm{PHIANG}\)
(Eq. H-8)
where

PHIANG \(=\) TAN \(^{-1}(\) VO/VROT \()\)
(Eq. H-9)
and

VROT \(=3 / 4\) TSPROP(J)
(Eq. H-10)
4. The Reynolds number for the propeller is calculated at the \(3 / 4\) chord.

RNPROP(J) \(=\mathrm{VRN}\) * RHO * CHPROP(J)/XMU
(Eq. H-11)
where

VRN = Resultant velocity at the \(3 / 4\) chord
\(=\sqrt{\left(\mathrm{VROT}^{2}+\mathrm{VO}^{2}\right)}\)
XMU = Free-stream air viscosity calculated by Ames table equation, based on tunnel air static temperature
5. The Mach number of the propeller tip is
\(\operatorname{MTIP}(\mathrm{J})=\mathrm{VRES} / \mathrm{CO}\)
(Eq. H-12)
where
\(\mathrm{VRES}=\sqrt{\mathrm{VO}^{2}+\operatorname{TSPROP}(\mathrm{J})^{2}}\)
(Eq. H-13)
6. Calculate the thrust coefficient of the propeller and hub using

SCALE \(=\) RHO \(* \operatorname{NPROP(J)~}{ }^{2} * \operatorname{DIAP(J)}{ }^{4}\)

CTPROP(J) = FAREF1/SCALE
where

FAREF1 comes from Equation D-75.
7. Calculate the normal force coefficient of the propeller and hub using

CNPROP(J) = FNREF1/SCALE

H-10
where

FNREF1 comes from Equation D-75.
8. Calculated the pitching moment coefficient of the propeller and hub using
\(\operatorname{CMPROP}(\mathrm{J})=\mathrm{MYREF} 1 /(\operatorname{SCALE} * \operatorname{DIAP}(\mathrm{~J}) * 12.0)\)
(Eq. H-17)
where

MYREF1 comes from Equation D-75.
9. If NSAME(J) equals 1 , then
\(\operatorname{POUTM}(1, \mathrm{~J})=\operatorname{PST}(1, \mathrm{~J})\)
(Eq. H-18)
and
\(\operatorname{TOUTM}(\mathrm{I}, \mathrm{J})=\operatorname{TTJ}(\mathbf{I}, \mathrm{J})\)
(Eq. H-19)
10. Calculations for the power coefficient of the propeller and hub are:
a. Turbine inlet temperature
\[
\begin{equation*}
\operatorname{TIN}(\mathrm{J})=\frac{\sum \operatorname{TTNM}(\mathrm{I}, \mathrm{~J}) * \operatorname{KTINM}(\mathrm{I}, \mathrm{~J})}{\sum \operatorname{KTINM}(\mathrm{I}, \mathrm{~J})} \tag{Eq.H-20}
\end{equation*}
\]
b. Turbine outlet temperature
\[
\begin{equation*}
\operatorname{TOUT}(\mathrm{J})=\frac{\sum \operatorname{TOUTM}(\mathrm{I}, \mathrm{~J}) * \operatorname{KTOUTM}(\mathrm{I}, \mathrm{~J})}{\sum \operatorname{KTOUTM}(\mathrm{I}, \mathrm{~J})} \tag{Eq.H-21}
\end{equation*}
\]
c. Turbine inlet pressure
\[
\begin{equation*}
\operatorname{PIN}(\mathrm{J})=\frac{\sum \operatorname{PINM}(\mathrm{I}, \mathrm{~J}) * \operatorname{KPINM}(\mathrm{I}, \mathrm{~J})}{\sum \mathrm{KPINM}(\mathrm{I}, \mathrm{~J})} \tag{Eq.H-22}
\end{equation*}
\]
d. Turbine outlet pressure
\(\operatorname{POUT}(\mathrm{J})=\frac{\sum \operatorname{POUTM}(\mathrm{I}, \mathrm{J}) * \operatorname{KPOUTM}(\mathrm{I}, \mathrm{J})}{\sum \operatorname{KPOUTM}(\mathrm{I}, \mathrm{J})}\)
(Eq. H-23)
e. The drive pressure across the air turbine engine is
\(\operatorname{PDRIVE}(J)=\operatorname{PIN}(J)-\operatorname{POUT}(J)\)
(Eq. H-24)
f. The drive temperature across the air turbine engine is
\(\operatorname{TDRIVE}(\mathrm{J})=\operatorname{TIN}(\mathrm{J})-\operatorname{TOUT}(\mathrm{J})\)
(Eq. H-25)
g. The engine's revolutions per second are
\[
\begin{equation*}
\operatorname{RPS}=\operatorname{NPROP}(\mathrm{J}) / \sqrt{(\operatorname{TIN}(J)+459.67) / 518.7} \tag{Eq.H-26}
\end{equation*}
\]
h. Calculate the horsepower output from the air turbine engine using
```

PW1(J)= (6006.0 * (WPENG(J)/32.174)* TDRIVE(J)/550) * (Eg. H-27)
((KPW13 * PIN(J) + KPW12 * RPS + KPW11) * RPS + KPW10)
PW2(J) = (6006.0 * (WPENG(J)/32.174)
* (TIN(J) + 459.67)
* (1.0 - (POUT(J)/PIN(J))}\mp@subsup{}{}{2/7}
* ETA(J)/550
(Eq. H-28)

```
where

ETA(J) is determined by linear interpolation from a table.
i. The power coefficient of the propeller and hub is
\[
\begin{equation*}
\operatorname{CPPROP}(\mathrm{J})=\mathrm{PW} /\left(\operatorname{RHO} * \operatorname{NPROP}(\mathrm{~J})^{3} * \operatorname{DIAP}(\mathrm{~J})^{5}\right) \tag{Eq.H-29}
\end{equation*}
\]
\[
\begin{aligned}
& P W=P W 2(J) \text { if } K P W=0 \\
& P W=P W 1(J) \text { if } K P W=1
\end{aligned}
\]
j. The propeller efficiency is
\[
\begin{equation*}
\operatorname{ETAP}(\mathrm{J})=\operatorname{CTPROP}(\mathrm{J}) * \mathrm{JP}(\mathrm{~J}) / \operatorname{CPPROP}(\mathrm{J}) \tag{Eq.H-30}
\end{equation*}
\]

\section*{F. Exhaust Calculations}
1. Calculate exhaust duct Mach number (rake position) using
a. Duct static pressure
\[
\begin{equation*}
\operatorname{PSTATIC}(\mathrm{J})=\frac{\sum \operatorname{PST}(\mathrm{I}, \mathrm{~J}) * \operatorname{KPST}(\mathrm{I}, \mathrm{~J})}{\sum \operatorname{KPST}(\mathrm{I}, \mathrm{~J})} \tag{Eq.H-31}
\end{equation*}
\]
b. The pressure ratio at the duct rake is

PR/PTR(J) = PSTATIC(J)/PTENG(J)
(Eq. H-32)
c. If PR/PTR(J) \(=\operatorname{PSTATIC}(\mathrm{J})<.5283\), use the Newton Raphson method for MD(J).
\(\mathrm{MD}(\mathrm{J})=\sqrt{\frac{5}{6} *\left(\frac{7 * \mathrm{MD}(\mathrm{J})^{2}-1}{6}\right)^{5 / 7} *\left(\frac{\mathrm{PR}}{\operatorname{PTR}(\mathrm{J})}\right)^{-2 / 7}}\)
d. If \(\operatorname{PR} / \operatorname{PTR}(\mathrm{J})>.5283\), use this calculation of subsonic duct Mach numbers for \(\mathrm{MD}(\mathrm{J})\).
\[
\begin{equation*}
\mathrm{MD}(\mathrm{~J})=\sqrt{5 *(\operatorname{PR} / \operatorname{PTR}(\mathrm{J}))^{-2 / 7}-5} \tag{Eq.H-34}
\end{equation*}
\]
2. The ratio of \(A^{*}\) to Area at the rake position and at the exit is
a. Calculate \(A * / A\) at the rake station using
\[
\begin{equation*}
\operatorname{ASTR} / \mathrm{A}=(1.728 * \mathrm{MD}(\mathrm{~J})) *\left(1+\frac{\mathrm{MD}(\mathrm{~J})^{2}}{5}\right)^{-3} \tag{Eq.H-35}
\end{equation*}
\]
b. Calculate A*/A of the exhaust exit using
\[
\begin{equation*}
\operatorname{ARATIO}(\mathrm{J})=\operatorname{ASTR} / \mathrm{A} * \operatorname{AD}(\mathrm{~J}) / \operatorname{AE}(\mathrm{J}) \tag{Eq.H-36}
\end{equation*}
\]
3. Calculate the exhaust Mach number at the exit using an iteration technique on the formula
\[
\begin{equation*}
\operatorname{ME}(\mathrm{J})=\frac{125}{216} *(\operatorname{ARATIO}(\mathrm{~J})) *\left(1+\frac{\mathrm{ME}(\mathrm{~J})^{2}}{5}\right)^{-3} \tag{Eq.H-37}
\end{equation*}
\]
4. The exhaust static temperature calculation is
\(\mathrm{TE}=(\operatorname{TTENG}(\mathrm{J})+459.67) *\left(1.0+\frac{\mathrm{ME}(\mathrm{J})^{2}}{5}\right)^{-1}\)
where

TTENG(J) comes from Equation B-9.
5. The exhaust sonic velocity is
\[
\begin{equation*}
\mathrm{CE}=49.021179 * \sqrt{\mathrm{TE}} \tag{Eq.H-39}
\end{equation*}
\]
6. The exhaust velocity is
\[
\begin{equation*}
\operatorname{VE}(J)=\operatorname{ME}(J) * C E \tag{Eq.H-40}
\end{equation*}
\]
7. The exhaust static pressure is
\[
\begin{equation*}
\operatorname{PE}(\mathrm{J})=\operatorname{PTENG}(\mathrm{J}) \quad *\left(1+\frac{\mathrm{ME}(\mathrm{~J})^{2}}{5}\right)^{-7 / 2} \tag{Eq.H-41}
\end{equation*}
\]
8. The total propeller pitching moment is
\[
\begin{equation*}
M Y P T=\sum M Y_{i} \tag{Eq.H-42}
\end{equation*}
\]
9. The total propeller normal force is

NUMENG
\[
\begin{equation*}
\mathrm{FNPT}=\sum_{\mathrm{i}=1} \mathrm{NF}_{\mathrm{i}} \tag{Eq.H-43}
\end{equation*}
\]
10. The total propeller axial force is
\[
\begin{equation*}
\text { FAPT }=\sum_{i=1} \text { AF }_{i} \tag{Eq.H-44}
\end{equation*}
\]
11. The axial force coefficient in the body axis with propeller and jet thrust removed is
CAPRS = CAAERO + FAPT
12. The drag coefficient in the stability axis with propeller and jet thrust removed is
CDPRS = CAPRS COS ALPHA + CNAERO SIN ALPHA
13. The side force coefficient in the stability axis with propeller and jet thrust removed is
CSPRS = CSAERO
14. The lift coefficient in the stability axis with propeller and jet thrust removed is
CLPRS = CNAERO COS ALPHA - CAPRS SIN ALPHA
15. The rolling moment coefficient in the stability axis with propeller and jet thrust removed is
CRPRS = CRAERO COS ALPHA + CYAERO SIN ALPHA
16. The pitching moment coefficient in the stability axis with propeller and jet exhaust removed is
CMPRS = CMAERO
17. The yawing moment coefficient in the stability axis with propeller and jet exhaust thrust removed is
CYPRS = CYAERO COS ALPHA - CRAERO SIN ALPHA
18. The drag coefficient in the wind axis with propeller and jet thrust removed is
\[
\begin{equation*}
\text { CDPRW }=\text { CDPRS COS BETA }- \text { CSPRS SIN BETA } \tag{Eq.H-52}
\end{equation*}
\]
19. The side force coefficient in the wind axis with propeller and jet thrust removed is
\[
\begin{equation*}
\text { CDPRW }=\text { CSPRS COS BETA }+ \text { CDPRS SIN BETA } \tag{Eq.H-53}
\end{equation*}
\]
20. The lift coefficient in the wind axis with propeller and jet exhaust thrust removed is
CLPRW = CLPRS
21. The rolling moment coefficient in the wind axis with propeller and jet exhaust thrust removed is
CRPRW = CRPRS COS BETA + CMPRS SIN BETA
(Eq. H-55)
22. The pitching moment coefficient in the wind axis with propeller and jet exhaust thrust removed is
CMPRW = CMPRS COS BETA - CRPRS SIN BETA
23. The yawing moment coefficient in the wind axis with propeller and jet exhaust thrust removed is
CYPRW = CYPRS
```

