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The fully nonlinear development of Gortler vortices in growing boundary layers

by Philip Hall, Mathematics Department, University of Exeter
and William D. Lakin, Mathematics Department, Old Dominion University.

Abstract

The fully nonlinear development of small wavelength Gortler vortices in a growing
boundary layer is investigated using a combination of asymptotic and numerical methods.
The starting point for the analysis is the weakly nonlinear theory of Hall (1982b) who
discussed the initial development of small amplitude vortices in a neighbourhood of the
location where they first become linearly unstable. That development is unusual in the
context of nonlinear stability theory in that it is not described by the Stuart-Watson
approach. In fact the development is governed by a pair of coupled nonlinear partial
differential evolution equations for the vortex flow and the mean flow correction. Here the
further development of this interaction is considered for vortices so large that the mean flow
correction driven by them is as large as the basic state. Surprisingly it is found that such
a nonlinear interaction can still be described by asymptotic means. It is shown that the
vortices spread out across the boundary layer and effectively drive the boundary layer. In
fact the system obtained by writing down the equations for the fundamental component of
the vortex generate a differential equation for the basic state. Thus the mean flow adjusts
so as to make these large amplitude vortices locally neutral. Moreover in the region where
the vortices exist the mean flow has a ‘square-root’ profile and the vortex velocity field
can be written down in closed form. The upper and lower boundaries of the region of
vortex activity are determined by a free-boundary problem involving the boundary layer
equations. In general it is found that this region untimately includes almost all of the
original boundary layer and much of the free-stream. In this situation the mean flow has
essentially no relationship to the flow which exists in the absence of the vortices.

This work was supported under the National Aeronautics and Space Administration
under NASA Contract No. NAS1-18107 while the authors were in residence at ICASE,
NASA Langley Research Center ,Hampton ,VA 23665.




Introduction

Our concern is with large amplitude Gortler vortices in viscous incompressible flows
over walls of variable curvature. Much of the recent interest in the Gértler instability
has been motivated by practical problems such as Laminar Flow Control or the flow over
turbine blades. A particular cause for concern in Laminar Flow Control is the question
of whether Gortler vortices are likely to induce premature transition because of their
effect on the receptivity of the original boundary layer to Tollmien-Schlichting waves or
crossflow vortices. As yet little progress has been made with the latter problem but
the corresponding internal fully developed flow problem has been discussed by Hall and
Bennett (1986), Bennett and Hall, (1987) and Hall and Smith (1987). Thus, for example,
Bennett and Hall (1987) showed that fully, nonlinear Taylor vortices in a curved channel
can have a massive influence on the growth of lower branch Tollmien-Schlichting waves.
The absence of a fully nonlinear description of Gortler vortices in external flows means that
a similar interaction problem cannot yet be attempted for these flows. Here we shall show
how the required large amplitude vortex flows can be described asymptotically. However
it is perhaps useful if we first describe earlier work on the Gortler problem.

The original work of Gortler (1940) and the later work of, for example, Hammerlin
(1955, 1956), Smith (1955) and Floryan and Saric (1979) did not take care of boundary
layer growth in a selfconsistent manner. Unlike the corresponding Tollmien-Schlichting
instability problem, where the fact that instability occurs at relatively high Reynolds
numbers renders parallel flow calculations reasonably accurate, the neglect of non-parallel
effects in the Gortler problem leads to inconsistent and, in some cases, physically absurd
results. Thus as extreme examples some of the results predicted by these calculations
showed instability at zero Gortler number or zero wavenumber.

In fact at high wavenumbers the above theories gave consistent results and Hall (1982a)
showed that in this regime an asymptotic solution of the non-parallel problem is possible.
The vortices are found to become linearly unstable at a particular downstream location and
to concentrate themselves at some depth in the boundary layer. This depth corresponds to
the position where Rayleigh’s inviscid instability criterion for the boundary layer is most
violated. At O(1) wavenumbers no asymptotic or self-consistent parallel flow calculation is
possible and the linear instability partial differential equations must be solved numerically
as was done by Hall (1983). These equations are parabolic in the downstream variable
and so can be solved by a marching procedure and the neutral location for a disturbance
inserted at a given position can be calculated. Hall (1983) showed that the neutral curve
produced by such a calculation depends on the nature of the initial disturbance. However
each such neutral curve has none of the obvious anomalies of the parallel flow neutral
curves and at high wavenumbers the different neutral curves merge into the asymptotic
result.

The initial nonlinear development of Gortler vortices of small wavelength was discussed
by Hall (1982b). It was found that the nonlinear interaction is dominated by a ‘mean-field’
type theory in which the fundamental mode and mean flow correction reinforce each other.
The higher harmonics play no role in this interaction so the Stuart-Watson approach is



not applicable. In order to motivate the asymptotics to be used for much larger vortices
it is instructive to summarize the essential details of the calculation of Hall (1982b)

Suppose then that a vortex of nondimensional wavenumber ¢! is locally neutrally
stable at the downstream location z = z of a two-dimensional boundary layer flow (@, 7).
If the most unstable part of the boundary layer is at a depth y = 7 it is necessary to define
variables X and ¢ by

Xz(x—:z)’ s‘=y—g
€ €

(1.1a,b)
and the total downstream velocity component expands in the neighbourhood of (z, ) as

u = (%, 5)+eX0(Z,7) + e ¢y (Z,5) + - + eTup (X, ¢)

3 1z (1'2)
+ €2 [Uy(X,¢) exp(?) +C.Cl+---.

For a boundary layer which has a local Gortler number increasing faster than the fourth

power of the local wavenumber the evolution equation for ujps, the mean flow correction,

and the fundamental U; take the form

8 8 d )
(5 ~ox) =g 10

3 20 1,
{Eg-gﬁ-—zf +X}U1——2U1

auM
d¢

. (1.3a,b)

The linearized form of (1.3) shows that U; can be expressed in terms of parabolic cylinder
functions. Otherwise (1.3) must be solved numerically by a marching procedure. However
at large values of X it was shown by Hall (1982b) that uas and U; develop a surprisingly
simple asymptotic structure. In fact ups and U; can be written down explicitly in terms of
X and a similarly variable £ in a finite interval &; < £ < £;. Near {1, &2 the fundamental
satisfies a nonlinear Airy equation and is reduced to zero exponentially whilst ups persists
above £, and below £;. Of crucial importance is the fact that when this structure develops
up ~ X3/2 Uy ~ XV/2 50 that the total mean flow correction €3/2u s is comparable with
the basic state for X ~ 1/e. Thus if z — Z is O(1) the vortices will drive a mean flow
correction as big as the original mean state.

The remarkable feature of the latter regime is that the nonlinear Gortler equations can
still be solved asymptotically in this region. Thus we are able to describe asymptotically
a large amplitude disturbance capable of altering at zeroth order the basic state. The
structure of the large X solution of Hall (1982b) continues to describe the flow but with
the major change that the depth of the fluid where vortex activity persists is now O(1). In
this layer the mean flow is driven by the vortices and indeed is determined as a solvability
condition on the equations for the fundamental there. The downstream mean velocity
component in this layer then has a simple square root profile and the mean equations
drive a finite amplitude vortex. Thus there is an exact reversal of the usual roles of
the equations for the mean and fundamental obtained by Fourier- analysing the spanwise




dependence of the disturbance. The situation is not unlike the scenario postulated some
years ago for turbulent flows by Malkus (1956). We recall that Malkus argued that the
‘mean’ part of a turbulent flow would organize itself so that any ‘modes’ were marginally
stable. We shall refer to the layer where the vortex activity is concentrated as I. This layer
is bounded by ‘transition’ layers of depth €2/3 where the vortices are again reduced to zero
as solutions of a nonlinear Airy equation. We refer to these layers as IIa,b respectively
and the remainder of the flow is denoted by regions IIIa,b as shown in Figure 1.

In regions IIIa,b there is no spanwise dependence for the flow and the velocity field
satisfies the boundary layer equations. The solutions of these equations must be matched
with those emanating from ITa, b whose positions are unknown functions of the downstream
variables. Thus a complete description of the flow requires the numerical solution of a free-
boundary partial differential system.

The region I of vortex activity in general grows as the flow moves downstream until
it eventually occupies almost all of the extent of the boundary layer which would exist in
the absence of the vortices. In fact the only part free of vortices is a thin layer at the
wall and the vortices even take over part of the free stream. At this stage the flow has
effectively no relationship with the flow which would exist in the absence of the vortices.
The procedure adopted in the rest of this paper is as follows: in §2 the nonlinear Gortler
vortex equations are derived. In §3 an asymptotic solution of these equations for large
amplitude small wavelength vortices is given. In $4 an asymptotic solution of the initial
and ultimate downstream stages of the free-boundary problem obtained in §3 is discussed.
In §5 a numerical scheme which we have used to solve this free boundary problem is
described. Finally in §6 we discuss our results and draw some conclusions.

2. Formulation of the nonlinear Gortler equations.

We consider the flow of a viscous fluid of kinematic viscosity v, density p, over a wall
of variable concave curvature a~!x(X/L). Here X denotes distance along the wall, a is a
typical radius of curvature and L is a typical length scale along the wall. If Uy is a typical
flow velocity we define a Reynolds number Rg by

UoL
R = — 2.1
E v ’ ( )
and a curvature parameter § by
s=L. (2.2)
a

We confine our attention to the limit Rg — oo with the Gortler number G defined by
G =2R%5 (2.3)

held fixed. We take (X,Y,Z) to be co-ordinates along the wall, normal to the wall and in
the spanwise direction respectively. If (U,V,W) denotes the corresponding velocity vector
we define dimensionless co-ordinates (z,y, z) and velocity (u,v,w) by

L 1
(z,y,2) = L YX,YRZ,ZR})



and
(U,V,W,) = Uo(u,vR5"*, wR5""?).

We restrict our analysis to flows with © — 1,y — oo so that the pressure P can be written

in the form .

Ug
= p— 2.4
P=pp-p (2.4)
The Navier-Stokes equations for the flow can be written in the form
du + dv n ow
dz Oy 9z

Ju du Ju

Vu:u-a—x--i—v%—i—w—a—z,
1 ap ov dv dv
Vv—Gxul — = =u— — —
v Ay u6z+v8y+waz’

ow ow Jw
- 2.5a,b,¢,d
3z "oz Uay waz’ (2:52,b,¢,d)
2 2
where V = —a—y—z + 3.2
note that we have assumed that the flow is steady.

and terms of relative order REI/ ? have been neglected. We further

In the absence of any Gortler vortex we can write (uv,v,w) = (%, 9,0) in which case
u, v satisfy

ou _odu 0%

e + 0o = :
5z oy~ ag?
ou 0v
—+ =0, (2.6)
dx Oy
2=9=0,y=0, u—1, v — 00, z=1,z=0,y > 0.

Thus (% ¥ 0) is just a Blasius boundary layer until a Gortler vortex begins to grow at some
downstream location

Finally in this section we note that our analysis can easily be modified to take care of
pressure gradient driven flows. In that case P in (2.4) must be altered so as to contain an z
dependent component of size pUZ and the boundary conditions in (2.6) must be modified.

We shall obtain a solution of (2.5) which satisfies

= = :0, = 0.
pmvEw v (2.7a,b)

u—1,y— oo.

In fact we shall see that when y — oco,v — v(z),w — 0; in general v(z) is not the
y velocity component at infinity of a Blasius boundary layer so the higher order outer
‘inviscid’ problem associated with (2.5) is modified by the instability.




3. The evolution equations for large amplitude Gortler vortices

We now develop an asymptotic solution of (2.5) valid in the limit of small vortex
wavelength. We suppose that the boundary layer (#(z,y),v(z,y)) becomes linearly un-
stable to Gortler vortices at £ = z*. Furthermore we assume that the curvature function
x(z) is such that the flow becomes more unstable with increasing z. Thus if the boundary
layer is a Blasius boundary layer we require that x increases more rapidly than z>. This
restriction is discussed by Hall (1983) and is a direct consequence of the scaling of the right
hand branch of the neutral curve for Gortler vortices.

The discussion of §2 suggests that beyond z = z* the flow will support fully nonlinear
Gortler vortices. The flowfield is therefcte split up as shown in Figure 1. The vortex
activity is therefore confined between y;(z) and y2(z). The layers denoted by regions
IIa,b are required in order to smooth out the algebraically decaying vortices in region I.
Later we will see that these layers must be of thickness €2/2 in the limit e — 0. We expand
the Gortler number G in the form

G=Goe*+Ge 3+, (3.1)
whilst in region I the appropriate expansions of u,v,w and p are

=g+ ety +--+ {eE(UL + U} +---) + €E*(UZ + U} +---)---+ C.C.}
v=To+ €0+ -+ {EEVE+ eVl +-) + CEXVE + Vi + 1) -+ C.C}
w=EW!+eWl+..)+eE? W+ eWE+--)---+C.C.

p=Po+epr+- - +{EEPL+ePl +--)+E*(VE+eVEi+--)---+C.C}

Here ‘C.C.’ denotes ‘complex conjugate’ whilst E = exp(iz/¢). In the absence of a vortex
the flow reduces to the basic state w = p = O,u = %,v = . We note that the only z
dependence in (3.2) is through E so that #o,0p, etc. are functions of £ and y only.

The expansions (3.1), (3.2) are then substituted into (2.5) and like powers of € for
each Fourier component are equated. The mean flow (%,¥p) is determined from the
zeroth order continuity and z momentum equations. The pressure field po is then found
from the normal momentum equation. The equations to determine @y and vy are

Oug 07g
gr L 7% o
oz t dy ’

2o % day 008 N -, QU

= Woild + Wit (3.3a,b)
Yy




Thus the boundary layer equations are now driven by the nonlinear interaction of the
Gortler vortex with itself. The zeroth order equations for the fundamental terms in the
core are

1
Vo +1Wd =0,
dy
Jug
Us+Vo 5, =0 (3.4a,b,¢,d)
Vol + C“;’OX[](:)I.HO =0,
—iP} = W}.

The consistency of equations (3.4b,c) requires that throughout the core

auo
=1 3.5
and (3.3) then becomes
dug 97y
— —_— 0
oz + dy ’
dugp _ Odig a? Uuo 81!.0
U e —_—— ——— = 3.6 b
u08x+06y e { | Vo 1%} (3.6a,b)

Thus (3.5) determines the mean flow streamwise veloc1ty component in the core whilst
(3.6b) then determines | Vg |2. It follows that in the core the boundary layer flow is now
being forced by the vortex which from (3.6b) is itself driven by the boundary layer. This
is, of course, the exact reverse of the roles played by these equations in the linear or weakly
nonlinear descriptions of this problem. In fact the interaction described by (3.5) and (3.6)
is not unlike that postulated some years ago by Malkus (1956) for turbulent flows. In the
latter theory it was argued that the ’mean flow’ for a turbulent flow organizes itself so as
to make any possible instability marginally stable. In the large amplitude Gortler problem
this mean flow adjustment is achieved by centrifugal effects and is described by (3.5). We
can integrate (3.5), (3.6) to give

o — va(z) +2y
0 fg-—ox ’

GV ORI R LA
0= 2v/GoX 6+/Goxx

(3.7a,b)

"“where a(z) and b(z) are arbitrary functions of z and a dash denotes a derivative with

respect to z. The function | Vi |? is found by integrating (3.6) to give

2.1
()+2auo|V1|2 b\/a+2y+ 1 (a+2y)*x 1

— , 3.8
vVGox 12 Gox? Vva + 2yv/Gox (38)



where B(z) is another function of z to be determined. The function | V3 |? cannot be
negative so y; and y2 which determine the edges of I satisfy (3.8) with Vg = 0. If B(z) is
then eliminated we obtain

bv/a + 2y, + 1 (a+2y1)%x’ N 1 _
VGox 12 Gox? va +2y1v/Gox (3.9)
bm 1 (a+ 2y;)2%x’ 1 .
VGox 12 Gox? Va+ 2y2v/Gox

The above equation is not of course sufficient to determine a, b, y; and y; so we are not yet
able to determine the location of the layers ITa,b. The thickness of these layers is deter-
mined by a balance between diffusion across the layers and convection in the streamwise
direction. This balance shows that the layers are of thickness €2/3 so that in ITa we write

{y— yz}.

2/3

£€=

Hence in IIa we replace :_x and 6ay by 56; - :1{73 68 : nd 21/3 3¢ respectively. We can
see from (3.8) that | VJ |2~ y2 — y when y — y2_ in which case the fundamental velocity
components and pressure in (3.2) decrease by O(e!/3) where y — y; = O(e*/2). The

appropriate expansions in IIa therefore take the form
u =T+ e/ 3T +- A {2 EUor+ €30y, +- ) + /2 B2 (Uoa +€¥/2Uyp+- ) +++ -+ C.C}

=0o+€2/3%, +-- '+{E_2/3E(V01+€2/3V11+' . -)+e2/3E2(V02+52/3V12+- )4+ C.C}
w = ,5—1/3]_rg(w01 + 2/3Wy, + - )+ 51/3E2(W02 + 23Wyp + - - )+---4+0C.C}
p="Py+ 35, + -+ {e3E(Pyy + &3Py + ) (3.10)
+ €/PEX(Pos + €/*Prp +-+) +--- + C.C.}
The coefficient in the above expansions are functions of z and £.

It has been anticipated above that the first harmonic functions also decrease in size
in ITa; this decrease is forced by the form of the equations for U2, V# in the core. The
appropriate equations are

, 0o
AUE+VEi—= 5y = o (3.11a,b)

4V02 + GOXUozﬁo = F2,

where F; and F, are quadratic in U?, V. The forcing terms are therefore O(e%/2) in IIa
and so UZ, V#, W2, P2 must be rescaled in that layer as indicated in (3.10). We note that
(3.11) can always be solved in the core since #g satisfies (3.5). A similar analysis applies
to the higher harmonics so we conclude that the fundamental effectively drives the mean
flow and all the higher harmonics. The situation is quite different from the usual type




of weakly nonlinear based on the Stuart-Watson method where the mean flow remains
essentially identical to that present before any instability occurs.

We now return to the solution of (2.3) in the transition layer ITa. The first two terms
in the expansion of the mean flow in this layer satisfy

3250 8251

Er e T

and the solutions of these equations which match with the solution in the core are

= va + 2y

— ¢
Ty = -, T = . (3.12a,b)
°T VGox VGoxva + 2y2

The function %, is forced by the fundamental terms in (3.10) so that we cannot proceed
further without solving for the latter terms. The equations to determine (Upy, Vo1) and
(U11,V11) are found to be

+Vo1
Uo1 =0,
VGoxva + 2y
Vo1 + Uoiv/Goxva + 2y, = 0,

Vi du, 8%Uy
=-Vooo7r+ —7
VGoxve + 2y o¢ o€

—/G %
Vi1 + UiV GoxVa + 2y, = \/a———%(fm + 276-2—1-
2

Ui +

(3.13a,b,¢,d)

The equations (3.13a,b) are of course always consistent but (3.13c,d) are only consistent

if an orthogonality condition holds. To obtain this condition we must proceed to higher
order in the mean flow expansion.

The first order solution for 7y is found to be

_ —d'vaT2Zy;  {a+2y:}3%
Vo =

— b,
2v/Gox 6v/Goxx
whilst u, satisfies
%y  —x'[a? + 2y,) b 2 )
g 3x2Go

_ — — | Ve 12
‘/GOX‘/G+2y2) \/Cox\/a+2y2 a€ | Oll

which can be integrated once to give

o,

—————~€ x’[a+2y2] b 2|V01 |2
¢

_ i 3.14
VGoxva + 2y2 VGoxva+ 2y2 +/ (8.14)

3x2Go




Here f(z) is another function which can only be determined at higher order; for our

.y - . . . ou .
purposes here it is not required here. Having determined 6—2- we can now write down the

appropriate solvability condition for (3.13b):

3%V, 2 '
8{21‘ + S(z)€Vor = 3 | Vo |2 Vo1V + 2y2v/Gox + Gox(a + 2y2) Vo1 f- (3.15)
where 1 '(a + 2y2)?
x'\a+2y;
S(g) — _ e 22
(2) —— [ 5 +bv/GoxVa + 2y2]

This equation is a particular form of the second Painleve transcendent and has been shown
by Hastings and Mcleod (1978) to have a solution such that

2
S§~§|V01 1> Va + 2y21/Gox, £ — —o00, |Vo1l|—0, — 00

It follows that in I7a the fundamental terms decay to zero so that the finite amplitude
Gortler vortex is trapped below region I1Ia. We note that a similar analysis for the higher
harmonics shows that these functions also decay exponentially to zero in Ila. However
the mean flow is virtually unaltered by the presence of IIa, thus the first two terms in the
expansion of the mean flow in IIa are simply obtained by expanding the mean flow in I
in terms of . This means that the mean flow in I1Ja must to zeroth order have @,%, and
¥ defined by the coreflow solution evaluated with y = ys.

An identical analysis to that above shows that the 2-dependent part of the flow is
reduced to zero exponentially in IIb. Hence in IIIb there is only a mean velocity field.
Thus in I1Ia,b we write

u =+ O(e¥/3), v =17+ O(e%/?), w=p=0, (3.16)
so that (%, o) defined in (0,y1) and (yz, o) satisfies

_Ou  _du _ d%u

u,& + v@ 3y2’

da 0O (8.17)
35 55 =
These equations must be solved subject to
a=v=0, y=0, (3.18)
a— 1, Yy — 00, (3.19)

and

U= — 7]

VGox = ! VGoxa+2y;

—
(4%}



10

dvat2y; e+, I
2v/Gox 6v/Goxx ’ ”

The equations (3.17) — (3.21) together with (3.9) specify a free boundary problem for y;,y2
and the functions a(z),b(z). Clearly no analytical solution to this problem is available. In
fact it is also necessary to specify something about the ‘upstream’ nature of the instability.
This amounts to finding an asymptotic form for the solution of this system close to the
value of = where the original boundary layer becomes linearly unstable. This will also be
discussed in §5 where a large = solution of the system will also be developed. In §5 a scheme
which we have used to solve the system numerically will be described. However there is a
special case where a similarity solution of the system can be generated. This corresponds
to the case when the undisturbed boundary layer is Blasius flow and x is proportional to
z/2, Though this particular case is perhaps not of much practical importance its solution
is instructive in that it suggests how to solve the full free-boundary partial differential

system numerically. For that reason we now indicate how the similarity solution can be
calculated.

7=—

j=1,2. (3.21)

Consider then the curvature distribution x(z) defined by
x(z) = V2z. (3.22)

If the undisturbed flow is a Blasius boundary layer the local Gortler varies with z2
as does the fourth power of the local spanwise wavenumber. This is consistent with the
scaling of the right hand branch of the neutral curve discussed by Hall (1982a). Hence on
the basis of linear theory the flow is either stable or unstable for all values of z. We define
the similarity variable n by

Y
=9 3.23
== (3.23)
and seek a solution of (3.17) by writing
= 7 o 1 /
_ ’ — — _Inf' — ) 3.24
w=r),  o=—=lof' =1} (3:24)
The functions a and b then take the form
a=av2z,b= ——5— (3.25)
Vaz

We can then show that the free boundary problem specified by (3.9), (3.17) and (3.21) is
equivalent to

7y ff =0, (3.26)

on
0<n<m,n2<n<oo

subject to

= f, = 0’ f, = 0, (3.27)
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and
f'(o0) =1, (3.28)

together with the matching conditions
va+2n;
f'(nj) = ——=,
( J) \/@0-
av/a+2n; (a+29,)%2 -
f(ﬂj)=’71f'(ﬂj)—{ B CA. ) 1Y

j=1,2, (3.29a,b)

and the scaled form of (3.9):

bv/a@ + 271 + 1/12{&—{— 2n1}2 1 _
e IR == oy s
bvVat2ns 1 {@+ 2n2}? 1 -
+ = + — 3.30)
VGo 12 Go Va+ 2n2/Go
Yj

Here we have replaced by n; for y = 1,2. Thus in the special case x = v/2z we have

Vaz
a free boundary ordinary differential system to solve. The unknowns are a,b and 1,72,
the boundaries of the region where a finite amplitude vortex exists. These constants and

the function f were obtained by following the procedure shown below.

(i) Integrate (3.26) forward from n = 0 with f(0) = f/(0) = 0 and an initial guess for

f"(0). This integration is stopped at n = n; where f'(n1)f"(m) = 4/ 52;

(ii) Using f(n1), f'(n1) calculate &,b from (3.29a,b) with j = 1.
(iii) Now calculate n2 from (3.30).

(iv) Finally integrate (3.26) from n = 7, to some suitably large value of n with
f(n2), f'(n2) defined by (3.29a,b) with 7 = 2 and using

f'(n2)f"(n2) = \/Gzo

(v) If f'(00) # 1 we return to step (i) and alter the initial value of f” at the wall in
some suitable manner.

The above procedure was found to converge when used with Newton’s method to
update the value of f”’ at the wall. We found that, as expected, a solution exists only for
Go > 4.2 the neutral value of Gy. Beyond Go = 4.2 the values of n; and n2 respectively
decrease and increase from their limiting value 7, = 72 = 1.56 when Go = 4.2. At larger
values of Go, s varies linearly with Go whilst 7; goes to zero like G5 2. These scalings
can be recovered by an asymptotic investigation of (3.26) — (3.30) in the limit Gy — 0.
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Such a calculation shows that for Go >> 1, 7, ~ %Go, = -12G53 and the value of
no predicted in this limit is shown in Figure 2 where we have shown the result of a full
numerical solution of (3.26) — (3.30).

Thus for the particular case x = 1/(2z) the partial differential system governing the
development of the mean flow can be reduced to an ordinary differential one. Moreover the
results shown in Figure 2 suggest the type of behaviour for y;, y2 which we should expect
for the general problem when z increases beyond its neutral value. At large values of z
we shall see that a structure essentially identical to that shown in Figure 2 for Go >> 1
is set up. Finally we note that for other similarity boundary layers we can always choose
a particular curvature distribution x(z) which leads to an ordinary differential system for
the mean flow.

4. The initial and ultimate downstream developments of the instability.

We first describe the development of the instability close to the downstream location
where the boundary layer (@,v,0) becomes linearly unstable. The description of the flow
in this region is similar to that given by Hall (1982b) in the weakly nonlinear regions so
we shall not give all the details here. Suppose then that vortex with wavenumber ¢!
is linearly unstable for z > z* and the instability originates in a layer of thickness e!/2
centred on y = y*. The weakly nonlinear theory of Hall (1982b) suggests that the finite
amplitude vortex occupies a region of depth O(z — z*)/2 for | £ — z* |<< 1. We therefore
expand y; and y, in the form

y1=v* — (z—2*) 7§+ O(z — z*),

y2 = y* + (z~ ) ¥§ + Oz — %), (4.1a,b)

It is convenient for us to now define a similarly variable £ by

_ Y-y Y
§= (z—z*)1/2  X1/2 (4-2)
so that
d o £ 9 0 1 0
—_— e — e —, —_— ——— —
dr 00X 2X 98¢ dy  X1/29¢
In region I we express (%o, Up) which satisfies (3.5) in-the form
o =@+ X3 2up (&) + -+
o =0+ Xvp(€) +--- . (4.3a,bd)
Here (&, v,0) is again the boundary layer flow which exists in the absence of the instability.

In the neighbourhood of (z*,y*) %, 9, and the curvature x expand as
= uoo + X €uyo + X{€%uz0 +uo1} + X7 €usy + -+,

= voo + X7 €vyg + X{&%v30 + vo1 } + XF vy e,
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X=x0+Xx1+X%x2+-. (4.4a,b,¢)

If we substitute (%o, Vo) from (4.3) into (3.5) and use (4.4) then, equating like powers of
X°, Xz, X we obtain
GoXouoot10 = 1,

2
ujg + 2ugou20 = 0,

— du 36%u,0u Ug1U
X1 _ M+u11+ 3 1020+ 0110.

= 4.5a,b,c
Gox3uoo o¢ %00 %) ( <)

Equation (4.5a) is satisfied if z* is the neutral location whilst (4.5b) holds because y* in
the linear theory is chosen so that

2 0% _, -,
ay ay - ¥ y"—y'

Equation (4.5¢) can be integrated once to give

UM = Aof - Alfs (4.6)
where
Ao = X1U10 Uo1%10
0= Uil — -
Xo Uoo
and

UioU20
AL =
Uoo

(4.7a,b).

We have anticipated in (4.7) that u,s is an odd function of £; this would otherwise have
been determined at a later stage.

The Gortler vortex function V{ in region I expands as
| Vo [*=XF(&) +--

and F (&) can then be found from the zeroth order approximation to (3.6b). This equation
can be integrated once and F(¢) is found to vanish at §{ = {4 where

C + Ao (48)

s I'= =1,
1+ 5u00Xo :

Here C is an unknown constant of integration to be determined later. It follows from (4.1)
and (4.8) that
&= -y, E+ =g.

In region ITa the forcing of the mean flow ceases and | V' | is reduced to zero exponentially

in the manner described in §3. It remains for us to determine the constant C' appearing
n (4.8). We can write down the mean flow in regions I1la,b in the form

T=T+XUp(€) + -+
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=0+ XVpm(&)+--- (4.9)

It is easy to show that Ups(&) and Vis(€) are odd and even functions of ¢ respectively so
it is enough for us to consider ITIa where £ > £,. The functions Ups and V) satisfy the
equations

Uy 1 d
T g {egg oo =0
oV 3 dUn

and in order to match with the core solution (4.6) Ups must satisfy
Unm = Aoy — 163, Uhe = do — 30163, £=¢&y. (4.10)

Since Ups must also tend to zero when £ — oo (4.9a), (4.10) constitute a nonlinear eigen-
value problem for £, . After some manipulation we find that

Moy — Ai€3) exp{—222[¢? — E2]}U(F, /532¢)

Upn = .
M U(L, v/ 5565)
¢
o0

where U(a, z) is a parabolic cylinder function. The eigenrelation for £ is then found to

be —
oo 4U(%, ;OO £+) " ’_‘Qﬁ - M_ (4.12)
V2 (UG VB V27 dogr - el

and C is then given by (4.8). Moreover y; and y; are then known correct to order (z—z*) 1/2

The functions a(z) and b(z) are found by comparing (3.7) and (4.3) with @, 7, x given
by (4.4). Thus, for example, we find that a(z) is given by

2yx*
“(f’?) = Gox {ugo - _cﬁj;(; T 2Xuoo[um — Aoy * —u11] + .- } (4.13)

for X << 1. Thus we can construct an asymptotic solution of the free boundary partial
differential system of §3. This asymptotic solution can of course be used to start off a
numerical solution of this system by a marching procedure.

Next we suppose that the curvature distribution function becomes large when £ — oco.
More precisely we suppose x(z)/ T5 — 00,z — 00 so that the flow is unstable on the basis of
linear theory when £ — co. In this limit it is convenient to perform an asymptotic analysis

directly on the solutions obtained in §3. For definiteness we assume that x = z™, M > %
when z — 0.
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The scaling for x — oo is suggested by the large G solution discussed in §3 and can
be inferred from (3.7). It is easy to show that a solution of the ‘upper problem’ in IIa

requires that yo >> z% and that @ = O(1) when y = y2. Thus I must be of depth O(x);
the core solution for y = O(x) can then be written

[ 2y
g = —_— .. 4.14
to GozM (4.14)

. GQ:BM
2
%o — 1+ --- when y — y2—. We then find that

and if we take

Y2

G'()MII:IM_1

Vo — 6 +...’

when y — y2—.Thus a solution of (3.17) for (%,%) in the upper layer IIIa takes the form

P= —— ..., (4.15a,b)

If y2 #

the resulting upper layer problem for (¥,7) does not have a solution. The depth of the
region I1Ib can now be inferred from equation (3.9). The dominant term on the right
hand side of this equation is O(z™~!) so a balance with a comparable term on the left
hand side can only be achieved if a +y; ~ X% 3™, Thus y; and @ must be O(z?~3M) and
we therefore write

y1 = y10z> M 4.

a=apz? M 4 ... (4.16a,b)

The solution for (&,%) in I1Ib can then be developed in the form
g = Ngl=2M(ys3M-2) 4 ...

v
2

Here N is an unknown constant to be determined. Finally the continuity of the normal
velocity component at y; requires that we expand b in the form

g=—(M-1)zM 2~ 4... | (4.17a,b)

b=bor? M ... (4.17¢)
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The conditions (3.20), (3.21) for j = 1 then require that

1
— = N2y,
Go Y10

vao +2yi0 N
—————— = N0,
vGo

and
3
_ (M—-1) yfo = b, (8M —2)v/ao +2y10 + _A{wﬂ: (4.18a,b,¢)
2 24/ Go 6 A% Go

It follows from {4.18a,b) that ag = —y; so it remains for us to determine y,o. The required
equation follows from the zeroth order approximation to (3.9) which yields

9Go
Yio = M2
and then N and by follow from (4.17a,c) respectively Thus in the limit z — oo with
x ~zM, M > 1/2 the locations y; and y; have the asymptotic forms
9Go o_
Y1 = ﬁgmz 3M+
GoMzM
ys = —-02—”" (4.19a, b)

and between these positions the mean velocity component in the z direction is given by
the square root form (4.14). Thus for a curvature distribution x = zM the initial and far
downstream regions where a finite amplitude vortex exists are as indicated in Figure 3 for

M > 1/2. The intermediate region can only be completed by a numerical procedure of the
type we discuss in the next section.

5. A numerical scheme for the determination of the free boundaries y;,y,

We shall now outline a scheme which we have used to solve the problem specified
by (3.17) — (3.20). For convenience we drop the ‘-’ notation for %,7 and assume that a
solution of the problem is known for £ < Z. The scheme which we have used can be used
to advance this solution downstream to Z + € for sufficiently small values of €. In general

the state for £ < Z must be calculated using the approach of §4 in a neighbourhood of
where the vortices first become unstable.

The first step in our calculation is to define a variable ¢ by

y . .
§=;,J:1,y5y1, ]:2ay2y2,
J
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so that (3.17) is now to be solved on (0,00) in terms of ¢ with boundary conditions at O,
and oo together with ‘jump’ conditions at ¢ = 1. Thus (3.17) is now written in the form

ou 10% v du y] ou
+ —=Su-—

Uor— == ——— — — ——
Oz  y?a¢? y; 8¢y R

dv du Y; du
— =y —— 5.1a,b
¢ y’{ 6m+§y,8c} (5-10,)
where y = 1 for ¢ < 1 and 7 = 2 for ¢ > 1. The required boundary conditions are
u=v=0, ¢ =0, u—1, ¢ — 00 (5.2)

and the ‘discontinuous’ conditions at ¢ = 1 may be written

VGox VGoxv/a+2y;

vy = a'\/a+2y; {a+2y, 5x'
2v/Gox 6vVGox x
Here the + signs correspond to the limits ¢ — 14, ¢ — 1_ and the index j = 2 is

associated with the + sign and 5 = 1 with the negative sign. Finally the system is
completed by the jump condition (3.9).

—b. (5.3a,b,¢)

We first advance the solution of (5.1a) for ¢ in the range [0,1]. This is done using the
scheme

- € . . -
unun_W{un-}-l - 2u, + un—l} =
’ . ., (5.4)
9 €Uy €EnY;Un

Uy — 2yjh{un+1 - un—l} + _zy_j’:‘—{un—i-l - un—l}-

where h is the vertical grid spacing and a tilde denotes a quantity evaluated at the position
Z + €. The index n refers to a quantity at the grid point ¢ = nh. In order to solve the
tridiagonal system (5.4) we must make a guess for §j; and set y = (§; — y;) /€. When
solving (5.4) we satisfy the required condition on u at ¢ = 0 and (5.3b) with j = 1. The
continuity equation (5.1b) is then discretized as

VUpn+1 — Un—1 Uy, — Uy §ny” [ﬁn+1 - ﬁn_1]
=y { - - = - (5.5)

2h Z 7

so that ¥ can be determined at Z + € for 0 < ¢ < 1. However the equation for v is only
of first order in ¢ so only the boundary condition at ¢ = O can be satisfied during this
procedure. Thus the solution of (5.1) for 0 < ¢ < 1 has been calculated at z + € but, as



18

yet, (5.3a,c) with j = 1 have not been satisfied. However these conditions are now used to
obtain an improved value of §; and a value for @ by writing these conditions in the form

2§, = Goxi? —a

(6 —a) vVa+ 2y 4 {a+ 2371}%)('
€ 2/ Gox 6v/Goxx

and iterating until @ and §; converge. Here b is the current guess for b at z-+ €. The scheme
used to find u,v at z + € for 0 < ¢ < 1 can be applied in a similar manner to the region
¢ > 1. The u equation is solved subject to u — 1,¢ — oo and (5.3b) with j = 2, whilst the
v equation is solved subject to (5.2¢c) with 7 = 2. Finally (3.9), (5.3c) are written in the
form

b_+b=

5{\/5+2171_\/3+2372} x'

m \/GO_X = 12G0x2{(a+252)2 - (&+2371)2}
1 1

1
+ - ]
vaox{va+2yz va+2y1}

2372 = Goxﬁ_z*_ — &

The second of these equations determines a new value for §2 and the first one then deter-
mines a value for 5. Thus we now have values for u,v,a,b,y1,y2 at =+ €. We then repeat
the whole procedure using the new values of @, b, §;, J, obtained in the first iteration until
converged values of these quantities are obtained.

The above numerical scheme was found to converge for sufficiently small values of €
the step length in the z direction. It was found that A = .1, € = .005 gave a stable scheme
for the cases investigated and produced values for y;,y, and the other flow quantities
correct to two decimal places. The first flow considered had Gy = 5.,x = v/2z and the
free boundary value problem of §3 was integrated for z > .5. At z = .5 the initial values
of y;,ys etc. were calculated from the similarity solution of §3. In Figure 4 we have shown
the values of y;, y2 calculated using the scheme outlined in this section. In the same Figure
we have indicated the values of y;,ys predicted by the similarity solution of §3. We see
that there is excellent agreement between the results from the different solution methods.

As an example of a non ‘self-similar’ Gortler vortex we considered the case x =
2z,Go = 4.176. This curvature distribution has a basic state which is linearly unstable
beyong z* = .5. The small (z — z*) asymptotic solution of §4 was used to generate initial
values of y1,y2,a,b and the velocity profiles at £ = .51. The numerical scheme described
in this section was then used to advance the solution beyond z = .51. The results obtained
for y; and y; are shown in Figure 5 for .51 < £ < 1.8. In this Figure we have also shown
the corresponding results predicted by the small £ — z* and large z asymptotic solutions of
§4. We see that, apart from an apparently constant horizontal translation, the numerical
scheme predicts values of y; and y2 which rapidly approach their large z amplitude values.
This translation is not unexpected since the large z solution of §4, to the order given, has
an arbitrary origin for z.
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In Figure 6 we have shown the streamwise velocity component produced by our scheme
for the numerical solution of the free boundary problem in §3. The Blasius flow appropriate
to this position and the large z asymptotic solution for u are also shown. It can be seen
that at £ = 1.8 the asymptotic and numerical solutions are virtually identical. Thus at
larger values of z we can approximate u by the asymptotic solution of §4. In Figure 6d
we have shown the result of making this assumption to calculate u at z = 7.5,15. We see
that by this step the boundary layer has been substantially thickened by the effect of the
vortices. This is because the asymptotic solution has y; ~ x ~ z whilst the undisturbed
boundary layer grows like z¥.

In Figures 7 and 8 we have shown the eigenfunctions Vg and U] at the downstream
locations z = .6,1.0,1.4,1.8. The corresponding large z asymptotic solutions for V; and
U} can be derived using the analysis of §4. For £ = 1.8 such a calculation produces
results virtually identical to the ones shown. In Figure 8 we see that when z increases the
streamwise velocity component of theGaortler vortex develops a shear layer near the lower
boundary. The development of the shear layer is caused by tlhe fact that the transition

Vo
Va+2y,

layer IIb approaches the wall when z — oco. Thus U& ~ increases rapidly from

zero to an O(1) value in the neighbourhood of y;.

The implication of the above calculations is that we can reasonably expect that the
large z solution of§4 will give accurate predictions for the vortex induced flow quantities at
relatively small values of z. Thus in practical situations we might expect to obtain sensible
results by using that approach rather than the numerical scheme for the free boundary
problem. Moreover such an approach produces velocity profiles whose lower stability to
Tollmien-Schlichting waves can be readily investigated.

6. Conclusions

It is perhaps useful at this stage to remind the reader that the small wavelength ap-
proximation wehave used does not make our calculation physically unrealistic. This is
because it is known experimentally that when Gortler vortices develop their wavelength
is conserved as they move downstream. Thus for a growing boundary layer the effective
wavenumber increases in the downstream direction so that a small wavelength approx-
imation eventually becomes justifiable. We have no reason to suppose that in the non
linear case the downstream position where the small wavelength results approach the 0(1)
wavelength results will differ significantly from that for the linear case.

The discussion in §3-5 has been concerned with flows for which yx increases at least
as quickly as z5 when z increases. Otherwise the basic state will become linearly stable
at a finite value of £ and the structure we have found will terminate at some value of z.
The termination of the finite interval of vortex activity is simply the *mirror-image’ of the
small (z — zx) solution of §4. This result can be confirmed from the weakly nonlinear
theory of Hall (1982b) so that at some value z, say z*, y; and y, will have the asymptotic
form yt + y*t+(zt — z)7 where y*,y*t are constants. In Figure 9 we have shown the
development of y;,y2 for Go = 4.176 with x =2z, z <1, x = 422 -3z, z>1. We
see that the region of vortex activity which begins at linear neutral position z = .5 stops
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at £ ~ 1.5. In the absence of a finite amplitude vortex beyond z = .5 this flow is linearly
stable for £ > 1.854. Thus the presence of the vortices in the range .5 < z < 1.5 produces
a boundary layer which is stable in a regime where it would have been unstable if the
vortices had not developed.

However the effect of the vortices on the boundary layer does not end when the layer
of vortex activity terminates. This is because the initial velocity distribution at z = z™*
for the subsequent boundary layer will in general be quite different from that appropriate
to the undisturbed flow. Furthermore there is no reason to suppose that y* should equal
y* the location of the vortices according to linear theory applied to the undisturbed state.
Thus the decay of the vortices at £ = £+ does not in any sense allow the boundary layer
to return to its undisturbed state. It follows that Gortler vortices might have a significant
effect on separation subsequent to a region of concave curvature. Indeed it is known from
the work of Hall and Bennett (1986) that triple-deck flows can support Taylor-Goértler
vortices so the properties of these flows might also be significantly altered in the presence
of vortices.

In some flows it is possible that there will be several intervals in £ where vortices can
develop. We might expect that the steady boundary layer over a wavy wall might support
vortices at regular intervals along the wall. In the intervals where vortices do not develop
the basic state will in general be altered from its undisturbed state by the vortex activity
in the previous undisturbed interval.

The most surprizing feature of our calculation is that the fully nonlinear state driven
by large amplitude Gortler vortices can be described in a relatively simple manner. The
major effect of the vortices is to gradually expand into the boundary layer to give the
mean flow there a simple square root profile. If the location increases faster than z% this
layer thickens until it occupies the whole of the boundary layer apart from a thin layer at
the wall. In addition the layer of vortex activity expands into the free stream and thus
thickens the undisturbed boundary layer.
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