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ABSTRACT

Effective procedures are presented for the response analysis of
the SSME turbopumps under transient loading conditions. Of particular
concern is the determination of the nonlinear response of the systems
to rotor imbalance in presence of bearing clearances. The proposed
procedures take advantage of the nonlinearities involved being local-
ized at only few rotor/housing coupling points.

The methods include those based on integral formulations for the
incremental solutions involving the transition matrices of the rotor
and housing. Alternatively, a convolutional representation of the
housing displacements at the coupling points is proposed which would
allow performing the transient analysis on a reduced model of the
housing. The integral approach is applied to small dynamical models
to demonstrate the efficiency of the approach

For purposes of assessing the numerical integration results for
the nonlinear rotor/housing systems, a numerical harmonic balance
procedure is developed to enable determining all possible harmonic,
subharmonic and nonperiodic solutions of the systems. A brief account
of the Fourier approach 1is presented as applied to a two degree of

freedom rotor-support system.
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I. INTRODUCTION

The dynamic transient response analysis of the SSME turbopumps is
essential for further development and prediction of the engine perfor-
mance under various load levels and required maneuvers. Childs [1]
conducted numerical analysis for critical speed-transitions of the
HPOTP. A rubbing condition was predicted for that earlier configura-
tion at the turbine floating-ring seals during shutdown. More recent-
ly, Childs [2] concluded a series of studies concerning the develop-
ment of a reliable RPL engine and a description of new problems which
are being encountered in developing FPL performance. The analysis was
based on a modal method developed earlier by the same author [3].
Childs {[2] demonstrated that although a linear transient analysis
remains an efficient procedure for general characterization of the
turbopump's rotor-dynamics, nonlinear analysis is essential. An
important case considered by Childs is that of the effect of the
radial clearances provided at the outer races of the bearings. The
results of the nonlinear analysis showed a significant reduction in
the subsynchronous rotor motion. More significantly, the bearing
clearances can drop the peak-vibration running speed into the
operating range where the synchronous whirling loads might pose a
serious threat to bearing life.

For large complex rotor systems, such as the SSME turbopumps,
various modeling and analysis techniques vary in their ability to

accurately describe the systems' behavior. This ability mainly



depends on the configuration of the systems analyzed and on the for-
cing conditions. In rotating components, this also involves whether
the rotating speed is constant or varying with time. A hybrid repre-
sentation by various types of coordinates and formulation for the
various components of the systems may prove valuable.

Different procedures have been utilized by analysts to determine
the transient response of large order rotor systems. The procedures
can be recognized as falling under one of two basic approaches. Those
using physical or modal coordinates of the complete system and those
using the coordinates of the individual components of the system. The
methods also differ in the numerical integration methods selected for
the analysis.

Rouch and Kao [4] employed Guyan (static) reduction method to
arrive at a reduced size model in terms of the remaining physical
coordinates. Accuracy of the results could be expected to be accept-
able since the rotor is basically a train of mass-stiffness subsys-
tems. Nordmann [5] attempted to minimize the inaccuracy of static
condensation by applying the static reduction technique to an arbi-
trarily substructured rotor system and then assemble the reduced sub-~-
structures to form a reduced system. The procedures is very laborious
and no guarantees of accuracy are apparent.

Childs [6] utilized free-interface modes of the various system
components to represent the assembled SSME turbopumps. The method,
using fourth order Runge-Kutta integration, dces not provide for
accommodating accurate modal representation of the large housing model

while maintaining a small size for the model. Nelson et al. [7] on




the other hand used fixed-interface complex component modes to assem-
ble a reduced size model. For systems with large number of coupling
points among the components, the approach suffers the problem of
introducing higher frequencies resulting from excessive number of
constraints imposed at the coupling (or boundary) points. In a tran-
sient analysis, this will necessarily result in much smaller time
increments and consequently, will lead to excessive computational time
and larger round-off errors.

For nonlinear large rotor systems, only a few analysts have pre-
sented techniques for the general transient analysis of such systems.
Adams [8] used a normal mode representation for the rotor in terms of
its undamped, free symmetric modes and treated gyroscopic and non-
linear terms as pseudo-external loads. The method presented by Childs
[6] makes use of a similar procedure to couple the rotor to its flex-
ible housing. Nelson et al. [7] developed a general computer code for
the transient analysis of large rotor systems. The user may utilize
time-step integration in the constrained-rotor (fixed-interface) modal
space. Again, all connection points, including those at the non-
linearities must be constrained, leading to the same shortcomings
described previously.

None of the above studies have adequately addressed the problems
of attempting to use reduced size, accurate models and the associated
efficiency of computation. A judicious selection of the system con-
figurations and the numerical methods is essential for achieving the

required efficiency while maintaining acceptable accuracy.



In this study, integration methods based on the transition
matrices [9] of the separate rotor and housing are used to efficiently
determine the nonlinear transient coupled system response under imbal-
ance forces and in presence of bearing clearances. Pragenau [10]
utilized the transition matrix for integration, stating that it offers
the simplicity of the Euler method without requiring small steps.
Pragenau maintained that for constant subsystems, the stability and
accuracy of the method are acquired through the closed form solution
of the transition matrix.

Alternatively, a discretized Duhamel [9] (convolution) integral
method can be used to an advantage to represent the response at the
housing coupling points to the rotor. Kubomura [l1] used a convolu-
tion based method to achieve dynamié condensation of a substructure to
its coupling points to other structures. Convolution was also used in
[12,13] to reduce system coordinates to that of the nonlinearities.

Along with the response analysis in presence of bearing clear-
ances under imbalance forces, a numerical harmonic balance method is
developed toward verifying possible steady state synchronous and sub-
synchronous rotor response. This 1is essential to ensure that no
possible potentially damaging solution is missed due to unfortunate
selections of particular initial conditioms. The harmonic method
locates all possible periodic solutions. The method 1is briefly
presented here from references [14] and [15]) as applied to a modified

Jeffcott model.



II. THE TURBOPUMP MODEL
Housing:

The modal equations of the housing in the X-Z, Y-Z planes in
terms of a truncated set of its modal coordinates {qH}, normalized

with respect to the mass matrix, can be written as [16,17]
oo % [+ _ T
lagd + 12 g A2 fag) + M) o) = (4,7 {F) (1)

where §H and AH are the modal damping coefficients and natural fre-
quencies, respectively, Fy is the vector of coupling forces to the
rotor, including the balance piston axial force. The axial force is a
function of the axial displacement and velocity as well as the spin-
ning speed. The coupled physical displacements in the X and Y direc-

tions at the coupling points to the rotor are given by
W= Y= [a.] f) (2)
H Y AHC H

where [AHC] is the normalized modal vectors, with respect to the

mass matrix, associated with the coupling points.
Rotor:

As 1in the case of housing, the symmetric-rotor equations of
motion may be written in terms of a truncated set of modal coordinates

{QR} of the free-free nonspinning, undamped rotor as

G} + D) @)+ [L) @)= (4 1T @ + 2y) (3)



where DR and PR are nondiagonal matrices which are speed, é, depen-

dent, and Pk is the imbalance forces which is, in general, functions

of @ and @: The vector FE represents the interaction forces with the
housing such as the bearing, seal, side loads (which are functions of

¢), etc. the physical displacements at these coupling points are

given by

X T
R ! T
W) = (5 = [“re (,)T] fag) = [Az ] {ap) (4)
R 0 ARC

Interaction Forces

The coupling forces between the housing and rotor can be

expressed as (see Fig. 1) [17]
- {Fy} = [c] (w,} + [K] w,} - [c] W} - [K] W} (5)
and {FR} = {FH} (6)

where [C] and [K] involve direct and cross coupled stiffness and damp-
ing forces as well as spinning velocity dependent coefficients. The

coefficients of the bearing forces allow for presence of clearances

(deadbands).
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Figure 1. Coupling elements and forces in the HPOTP.



III. TRANSITION MATRIX FORMULATIONS

The rotor's modal equations of motion are written in the first

order form

(0} = lay) {u) + {F,) (7
where{u ) = OR) o1 = (% I (8)
R i * R -T, D,
and
{F) = {a " {F) + 1Y) (9

Similar first order equations can be written for the housing.
The solution of equations (7) with constant rotating speed and
the analogous ones for the housing in terms of the associated transi-

tion matrices of the rotor and housing takes the form [9]

t
{w(e)} = %t (woyy + of e [F1E "D (pe 1)) dan (10)

This representation can be cast in discretized form as

‘t)

felCtyy
e

t
{u, .} = e[a]T{Ui} + t] i+l {F(t)} at (11)

i+l i

where {ug} = {u(ey)}

and T = Ci+1 ~ ty (12)



The force vector in eq. (11) can be either treated as (i) con~
stant within a small time increment T or (ii) a linear function of
time. Clearly, the linear representation would result in more accuracy
for a given increment T. An assumption of a step load (constant load

within an increment) allows equation (11) to be written in the simple

form
{Ug41} = [(T)] {Ug) + ([&(D)] - [T.0) [l {Fy) (13)
_ lalT
where [B(T)] = e , {F3} = {F(ty)} (14)
® n
e[a]T = %&_ [a]® (15)

n=0

Tn n
! [a] ) (16)

so that (&(T) -I) [11]_l =11 + ]
n=1

Both expressions in (15) and (16) converge very rapidly for small
increment, T, and when used as above (constant [a]), need only be
calculated once for the entire time response history of the coupled
rotor/housing system.

A more efficient algorithm can be constructed by representing the
coupling forces as linear functions of time within each increment T,

or

t -t

{F(t)} = {Fy} + ——

T {Fy41} - {F4H) (17)

Using this representation, and after some manipulation, the solution

(11) can be shown to take the form [10]
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(Usp1} = (8103 + [18] - (T3] [} . {Fi+1}°{Fj}\
i+l - i J 1 lal ({F;4} + [al] 7 3

- lel™t ({Fga1) - (Fy)) (18)

An incremental solution using equation (18) for the rotor and a simi-
lar matrix equation for the housing, along with equations (5) and (6)
in first order form, can be employed to construct the response time
history of the turbopump considered. The particular recurrence proce-
dure used will depend on the type of transient response sought as well
as on the accuracy versus computational time tradeoffs. Some discus-

sion of the computational procedure is presented in a later section.

Use of The Duhamel Integral

An efficient incremental representation of the housing displace-
ments can be achieved using the convolution integral. As with the
transition matrix formulation, the coupling forces are treated as
external loads on the housing and may be assumed linear in time for
every increment T. The response at any time t is given for zero

initial conditions, using equation (1), as

t 1 °§nwn(t-‘r) tr
W 1= [AHle [‘Tu e sin w(t=-7) J[A )" F() M (19)
o d
or
N ) ¢ "«Enu%](t"r)
= (3) utr (3) e
W)y = T Ay gyt [ =
j=1 o J

(20)
sin wj(t-'c) F(r}dx
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Where LAHC}(j) is a reduced column matrix of elements of the jth
eigenvector associated with the coupling points of the housing and
rotor, wy is the damped natural frequency of the nth mode and "tr”
stands for a transpose.

To enhance the accuracy of the modal representation of the hous-~
ihg, the deleted higher housing modes can be approximately accounted

for through the residual flexibility corresponding to these modes, or

at any time t,

{WH} = [AHC] {qH} + [GH] {FH} , (21)

where [Gy] is the residual flexibility matrix corresponding to the
coupling points on the housing's nth mode of the uncoupled housing.
For the purpose of demonstrating the method in simpler terms,

consider the generalized housing coordinate of the undamped nth mode

t
qn(t) = ;}g [ sin wy(t=t) Py(T) dt (22)
(o]

where P,(T) is the unknown modal coupling force. If the force is
assumed linear in time within each increment, the generalized dis-
placement in equation (22) due to a coupling force applied between

tj and tj4y is given by

ti+l Tt

qp(t) = é J {Pn(ti) + -Ti (Pn(ti+1)—Pn(t1))}Sin wa(t-t)dt (23)

€y

After some manipulation, the integration in equation (23) can be

written in closed form in terms of the unknowns P,'s as




LN
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1
qp(t) = -5 {cos wht (Pn(ti+1) cos Wnpti4] - Pp(ti) cos wity
Wn
Paltiyy) - Boley) )
W (sin wpti4] = sin wpty)
+ sin wj,t (Pn(ti+1) sin wptyy) - P(ty) sin w,ty
P (t, ,) =P (t)
+
+ o il ™ n i (cos wptij4] — cos wnti))} (24)
or qp(t) = —%— (a9 cos wt + 1) s1n w,t} (25)
w
n

The total response at time t due to the contribution of the coupling

forces from zero to time t (= N.T.) is

N
qp(t) = -%* [cos w, NT ) Agj) +
. i
Wn i=0
N .
sinw, NT )} B; (1)) (26)
i=0

The generalized velocity can be expressed as

L] N

1 (1) JNEP
qp(t) = ZT'[COS W,N.T Z B - sin wy N.T 2 A ] (27)
The generalized acceleration can be obtained from
[ ) 2
qn(t) = =W, qp(t) + Pp(t) (28)

The generalized displacements and velocities of the rotor in incremen-

tal form are given previously in the form of equation (18). Equations
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(18), (27), (5) and (6) can be readily employed to calculate the

response time history for the coupled rotor/housing system.

Computational Procedures and Results

Various alternative procedures have been explored for the
efficient implementation of the integral formulations based on the
transition matrices and the convolution integral. Although studies
are continuing to fully make use of the computational advantages
of fered by these formulations, the following appears to be the most
attractive to date.

For both the transition and convolution methods, a linearized
representation of the coupling forces (including those at the bearing
deadband) are utilized. Equations of the form of (18), (26) and (27)
are used along with the coupling forces relations given by (5) and
(6). If the rotor system is linear, the forces are expressed in terms
of the displacements at the coupling points. The system is then
represented by a simultaneous system of equations involving the hous-

ing and rotor coupling coordinates so that at each increment of time

wt1+1 (wti ti) (29

where f stands for a function.

Another alternative which proves to be very effective specially
in presence of the bearing deadband nonlinearity is by again using a
lineared force variation within each time increment, but including an

iterative procedure at each time step. The iteration work as follows,
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where F stands for coupling forces: Predict the response at the

coupling points at tj4; from those at tj

' = W
wHi+1 fH ( Hy ’ wRi’ FHi)
(30)
! =f_ (W W F imbalance forces)
Ri+1 R “THy * "Ry’ "Ry
Then predict the forces at tj4; from
F' = f' (W! W! )
Hiy1  "H "THis) ° "Riy)
(31)
! = f' (W! W! imbalance forces)
Ri+1 "R ""Hi4p’ "Rysp’
Correct the displacements at tj4] as
W =f (W F FLo)
Hi4) H "THy? Hy? THyy
(32)
W = f W F F! ,» imbalance forces
Risp TR Ry TRy FRyyy c ces)

Re-iterate using equations (31) and (32). If the maximum differ-
ence between the displacements in two consecutive iterations is
smaller than a specified tolerance, the iteration is stopped and the

final values of displacements at tj;] are taken as

' 1%
Hisy Hi4
(33)

Risl ~ "Risl

The transition matrix method was applied to a system consisting
of damped two subsystems of three and two degrees of freedom interact-
ing through a clearance. The results are presented in the Appendix,
in which comparisons to the results obtained using an iterative Runge-

Kutta method are made. The results show the transition matrix method
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to be more efficient than that of the numerical integration procedure
for a given time increment. However, more work is needed to devise an
alternative iterative technique which would expand the range of
convergence of the method.

For a subsystem to which the form of the convolution integral
(19) is applicable, a solution procedure similar to that involving
equations (30) to (33) can be applied using equation (26).

Alternatively, a one step procedure can be utilized if the coup-
ling forces are assumed to be constant, rather than varying linearly,
within each time step. In that case, the expression for qp(t) is

obtained by setting
Pp(ti41) = Pp(ty) = Py

The efficiency of this formulation can be greatly enhanced by util-
izing a Taylor series expansion for the displacements at time tj,; in

terms of the displacements and their derivatives at tj, or

1) = W + W (t -t
ti+1 ey T Wey (B11 7 00D
1 °° 2
+ 5 wti (t14) - ti) (34)

(-] (-]
where Wey and Wg4 are given by appropriate expressions of the forms

given by equations (27) and (28). The displacements (and velocities)
as in equation (34) are used to calculate the coupling force in each
time step.

An approach combining the Duhamel representation for the housing

of a rotor system and a tramsition matrix algorithm for the rotor
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could be wutilized to an advantage in determining the transient

response of the system. The approach is yet to be applied to rotor-

housing systems.
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IV. NUMERICAL HARMONIC BALANCE METHOD

A method is developed [15] in order to check all possible nonlin-
ear responses of simple rotor systems under periodic imbalance loads
in presence of bearing clearances, rubbing, seal forces, side forces
and others. The method requires the spinning speed of the rotor to be
constant so that the model is represented by a nonhomogeneous system
of nonlinear equations of constant coefficients. The developed method
is a modification of that due to Yamauchi [18].

The early work in nonlinear rotordynamics by Yamamoto [20] intro-
duces a nonlinearity to the Jeffcott equation by including the effect
of bearing clearances. The Van der Pol self-sustained vibration
theory was used for the analysis under the assumption of small clear-
ances. Due to the symmetry of the gaps, only the harmonic response
was considered. Recently, Childs [21] presented an explanation for
the subharmonic response of rotors in presence of bearing clearances
and a side load, using perturbation techniques under the assumption of
small nonlinearity. The potential destructive vibration of the LOX
pump in presence of rub in the SSME (Space Shuttle Main Engine) has
been considered by Beatty [22].

Glease and Bukley [23] used a direct numerical integration method
to analyze the rotor response, including seal and nonlinear bearing
forces. However, the results only show the transient response before
a steady-state 1is reached. Since the damping is usually small in
rotor systems, a steady-state response is often established after a

relatively long period of integration time. For the steady-state
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response, Yamauchi [18] developed a numerical harmonic balance method
using the FFT (Fast Fourier Transformation) algorithm for nonlinear
multiple degrees of freedom rotor systems, in which transfer matrix
formulations were used to describe the system. Saito [19] calculated
the nonlinear unbalance response of horizontal Jeffcott rotors. Both
studies of Yamauchi and Saito were concerned only with the harmonic
response. No analysis for the important case of subharmonic rotor
response was attempted.

The procedure developed in [15], and presented here, is based on
a modified numerical harmonic balance method using discrete Fourier
transformation and its inverse. This transformation, rather than an
FFT procedure, was utilized in order to reduce computational time and
errors. This is achieved by calculating the complex exponential
values at the beginning of computation and then store them in active
memory for subsequent calculations. Subharmonic and superharmonic
responses are also accounted for by the method. An account of the
method and some results obtained for the response of the modified
Jeffcott rotor system selected for the analysis is outlined in what

follows.

The Modified Jeffcott Model

The rotor model is depicted in Fig. 2. 1In the figure, W is the
shaft speed which is assumed constant, and ¢ is the angle of the disk
rotation with respect to the inertial coordinate system y - z and is
referred to as the whirl angle. The displacement of the rotor center

+
from the origin of the inertial references frame is denoted by r. The




=

Figure 2. Coordinate system of rotor.
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eccentricity, e, denotes the displacement of the mass center from the
geometric center of the shaft.

The forces considered in the formulation of the equation of
motion include bearing forces, seal forces, an imbalance force and a
side force. The bearing forces can be assumed as piecewise-linear and
occur only when the displacement of the shaft is greater than the
clearance (or deadband) between bearing outer race and support. Fric-
tion due to rubbing between shaft and bearing support during contacts

is also considered. The bearing forces, Fy, can be expressed as

follows.
> > > >
> Kp(r-bup) + pKpuy X (r-bup)  ; ,rl >
Fp = (35)
0 : |r| <8
> >

in which u, and uy are unit vectors in the r and x direction, respec-
tively, K, is the bearing stiffness, § is the deadband and p is the
coefficient of friction between shaft and bearing. The "X" stands for
a vector cross product. The assumed form representing the seal forces
is given by

> > > > >
Fg = ~Cgr - Kgr + Qguy X 1 (36)
Where Kg is the seal direct stiffness, Cg is the seal damping coeffi-
cient, and Qg is the seal cross-coupling stiffness. The side force is
assumed to be due to gravity. The gravity loading provides a side
force in the negative direction.
The force equilibrium equations for the rotor can be written,

with respect to the y - z inertia reference coordinates, as follows:
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My + Cgy + Kgy + Qgz +Kb|(y -y———é——)
/y2+22
8 2
- UKy |(z - 2 )l = Mew‘ coswt - Mg (37-a)
VI
* e . 6
Mz + Cgz + Kgz -st+Kb,(z -z —=—)
J/ 2 2
y +z2
6 2
+ PKbl(Y -~y )I = Mew<sinwt, (37-b)
/y2+22

in which M is the mass of the disk, g is the acceleration of gravity,
and | , denotes that the nonlinear bearing forces occur only when
/yz + z2 > ; otherwise, they are zero. In the above equations, the
rubbing between stator and blade tip instead of bearing rubbing (which
is usually small) can be calculated by changing Kp to that of the
stator stiffness.

The equations of motions, (37-a) and (37-b), can be put in
nondimentionalized form using the deadband, &, as the reference
displacement and the natural frequency of the associated linear prob-
lems (8 = 0) as the reference frequency. This natural frequency is
not that of the nonlinear system, although due to small clearance the

periods of maintained contact during rotation may lead to a frequency

close to that of the associated linear frequency. Let

2 K "

A = — B =

% %
K Kg (38)
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=X < Z
Y=7% 2=5% R= g2 4 22
c
=& = _8 £
€T3 ¢ May ¢ 2
T
vl = wt
AN

where © is a normalized time, and vV is the subharmonic order. Using

the parameters in equation (38) with equations (37-a) and (37-b) leads

to
2 2 2
Y" + %\i Y' + _G’.V_zY + Y V—ZZ + G(8) - pF(®) = Evzcos(ve) + d)v— (39-a)
Q Q Q2
2Cv av2 v2 2
Z" + 552+ =2 - ¥ =Y + F(8) + uG(e) = ev sin(ve) (39-b)
Q Q
where
() eovl1 - (39-c)
o2 l R ’ ¢
v2 1
F(8) = B—z|(1 - )| (39-d)
Q

in which a prime denotes differentiation with respect to the normal-
ized time © and the nonlinear restoring forces are established when-

ever R is greater than unity.

Method of Analysis

The steady periodic solution of equations (39), including any
subharmonic, superharmonic or harmonic vibration can be written as

Fourier series, or
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N

Y(8) = ayp t+ 2 2 (ayn cos n® - bypsin nd) (40-a)
n=]
N

Z(9) = azg+ 2 ) (ay, cos n§ - bysin ng) (40-b)
n=1

where N is the number of harmonics to be taken into account in the
final solution under the assumption of small frequency bandwidth. The
multiple of two and the minus sign associated with the b, are adopted
to facilitate accommodating complex Fourier coefficients when discrete
time data is used. In the same say, the time series representation of
the nonlinear bearing forces, occurring only when ' R I > 1, can be

expressed as Fourier series of the form:

N

G(8) = cyp + 2 2 (cyn cos nb - dypsin nd) (41-b)
n=1
N

F(0) =cyg+ 2 ) (czg cos 06 - dypsin nb) (41-b)
n=1

Since these nonlinear bearing forces are a consequence of the exist-
ence of a deadband in the system, the Fourier coefficients of the non-
linear restoring forces are functions of the Fourier coefficients of
the steady periodic solution sought. Substituting equations (40) and
(41) into equations (39-a) and (39-b) and applying a harmonic balance
procedure yields 4N + 2 nonlinear simultaneous equations involving 8N
+ 4 unknowns. The harmonic balance procedure gives for the constant

term:
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2 2 2
\4
ig_ ayp + cyo * Y';f dzo ~ MKCzQ = ¢é§ (42-a)
2 2
-g;— azg + czg - v ? ayp + pcyp = 0 (éz—b)

the cosine terms:

2 2Cv v \J
M ayp - N _%‘ byn + &5 ayp * cyn + Y5 azn ~ Mezn
Q

0.5mev2 (42-c)

2 2
2 2
T 8zp TN _él bzpn + “25 azn * Czn - Yxf ayn * ucyp = 0 (42-d)
Q Q
and the sine terms:
2 2
2 2Ly v v
0 byy - n —%— ayn ~ o5 byp - dyp - Y55 bzn + pdzp = 0 (42-e)
2 2
n2bzn -n 2%2 azn ~ “25 bzn —dzn *+ Yxf byn = udyn = 0.5mev®  (42-6)
9, Q

in which

Another set of 4N + 2 equations can be found from the relation-
ships between the Fourier coefficients of the nonlinear bearing forces
and those of the steady-state periodic solution. These relationships
can be found by determining Y(8) and Z(©) from the Fourier coeffi-
cients of the steady-state periodic solution using the discrete

inverse Fourier transformation,
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N-1
d, = Real( z Dy
k=0

i (200
e1(2 kr/N)) (43)
where Dy stands for the Fourier coefficient, and dy, for discrete dis-
placement. Using equations (35), discrete time series of the nonlin-
ear bearing force can be found. The inverse discrete Fourier trans-
formation of the time series solution for the nonlinear bearing forces

will yield the Fourier coefficients of the nonlinear bearing force as

N‘l _ H
Dy = ( z dri( 2 kr/N))

r=0

(44)

The resulting nonlinear simultaneous algebraic equations can be
handled using a Newton-Raphson method. The Newton-Raphson method uses
an incremental procedure in determining the values for the next itera-
tion as follows. Let

S = S0 + As, (45)

where S represents the Fourier coefficients of the steady-state solu-
tion, and the superscript "0" denotes current state while AS stands
for the increments of the coefficients during one step of iteration.
For example,

0

ayn = ayp +ba

yn
Similarly, the Fourier coefficients of the nonlinear restoring

force can also be expressed as follows:

B+ 8% +4B, (46)
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For example,
_ 0
Cyn = Cyp * Bcyy

in which the increment AB can be expressed using the total derivatives

with respect to all the Fourier coefficients of the steady-state solu-

tion, SO, so that

4N+2 0
AB = g-’;— AS, (47)
n=1 n
For example,
N dc n oc n N 3c dc I
Acyn = ] (—Laayn bayy + L% ba,,) + I (g™ abyp + S5 4bsp)
n= n=1 yn z

where the partial derivatives are to be calculated at the current

state value.
In order to account for the large nonlinearity in the system, the

increments, ASp, must be chosen small as compared to S, whenever
numerical differentiation is performed. The numerical differentiation

is performed using forward differentiation. For example, to obtain
dc

the derivative 3;35, a new cyp 1s calculated at ayy = ;3n + dayp from

the nonlinear relations of equations (39-c) and (39-d). The numerical

differentiation is then given by

oc c - c0
yn _ _yn yn
aayn Aayn
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The numerical differentiation procedure can be done using forward

differentiation as follows:

1.

ag 1s changed by adding the preset small Aag, but other
Fourier coefficients, ap and b,, are not changed.

The newly assumed discrete displacements, Y(€) and Z(8), are
generated using a discrete inverse Fourier transform.
Discrete nonlinear forces, G(6) and F(8), are calculated
using equations (39).

The Fourier coefficients of the discrete nonlinear force,
c0, Cpn, and dp, are calculated using Discrete Fourier Trans-
formation.

dc dc ad

The differential values of -—Jl i and —— are calculated

dag’ dap’ dagp
The calculations in step ! to 5 are repeated for each aj and

by~

Substituting equations (45) and (46) into equations (42), the

following incremental form will result,

2
av

Q2

av

QZ

2

Aayp + Acyp + Y5 Aagze - pAcgQ
Q

2
v av 0 0 v 0 0
=65 -7 ay0 "~ Cy0 " Y 5 3z0 * kCz0 (48-a)
02 2 y o2
2

v
Aazp * Aczp - 75‘2‘ Aayo *+ pAcyg

avz 0 2

0 v 0 0
":;E azp - czo ty gi'ayo = KCy0, (48-b)
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for the cosine terms:

2 28v v2 v2
-n Aayn -n < Abyn + a—é- Aayn + Acyn + ‘Y-;- Aazn - pAczn
Q
2. 20 2tv 0 V2 2 9 0

v
0.5 mev® + n ayn +n ‘Er'byn - aaf agn = Cyn " YEE ayn + Hcyp (48-)

2 2
2Cv \ v
- n2ha; - n o 8bzn + “éz Bazp + Bepp - '92 Bayp + MAcyy

20 2Cv .0 vz 0 0 vz 0 0

n az, +n BN byn - GEZ- azpn —Czp t+ 'Y? ayn - “Cyn (48-d)

and for the sine terms:

2 2
2Cv v Y
n2Aby - n S5 —hay, - aéi Bbyy - Adyp - YSE Dby + uAd,,
2.0 2Cv 0 V2 0 0 V2 0 0
= -n byn +n—Q—ayn + C!? an+ dyn + 'Y-Q—2 bzn - lezn (48-e)
2 2
2Cv v v
n28by, - m g Bazp - “92 Bbzn = Bdzp + YQ2 Bby, - BAdy,
2 2.0 20V 0 v 0 0 v 0o 0
= 0-5 meEV - 1N bzn + n T azn + bzn + dzn - Y_ byn + den (48‘f)

o2

o?

in which

Equations (48-a) to (48-f) can be put in the matrix form

(k}{&x} = W} (49)
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Where [K] corresponds to the Jacobian matrix whose elements are evalu-
ated at every step.

This diteration is continued until all the components of the
correction vector {W} become sufficiently close to zero. The calcula-
tion procedure presented here is basically an iterative procedure. By
setting the initial values to zero, a linear solution is calculated in
the first iteration. The linear solution is modified as the iteration
progresses. For the next frequency ratio, the final solution of the
previous step frequency ratio is used to facilitate the convergence of

the iteration.

Numerical Results and Discussion

A comparison between results using direct numerical integration
and those of the FFT method is shown in Fig. 3. The numerical inte-
gration is carried out using the central difference method with the
nondimensional equatiomns (39-a) and (39-b). To find the steady-state
solution within a reasonable duration, the damping factor, &, is
chosen to be relatively large. For the application of the FFT method
in a numerical procedure, four harmonic coefficients are taken into
account for each of the displacements, Y and Z. Also, sixteen dis-
crete data points are chosen in one period to avoid the aliasing
effects. The mean displacements, ?: 2: and ﬁ; are defined as half of
the sum of the maximum displacement and the minimum displacement in a
steady-state response. As shown in Fig. 3, the frequency response

results using the FFT method demonstrate good agreement with those of

the direct numerical integration method.
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Figure 3. Comparison between numerical and FFT solutions;
= 0001, B= 1., Y= O, C= 005, € = 1.5, ¢= 1-5, =0
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In Fig. 4, the nonlinear response of the system is shown in pres-
ence of the side force due to gravity. To ensure the occurrence of
subharmonic response, the damping factor, {, was set to zero. As
depicted in Fig. 4, a second-order superharmonic resonance occurs near
the frequency ratio of 0.5. A second-order subharmonic resonance
occurs below the frequency ratio of two, while a third-subharmonic
resonance appears below the frequency ratio of three. These trends
have already been demonstrated experimentally by Bently [26] and Erich
[27]. The nonlinear steady-state analysis also reveals the co-exist-
ence of harmonic response with the subharmonic response. The occur-
rence of a specific type of response depends upon the particular
initial conditions (due to proximity to a corresponding domain of
attraction).

A comparison between the nonlinear respomse and harmonic motions
in the y-z plane can be made by examining the results presented in
Fig. 5, 6, and 7. The shaft center traces noncrossing paths in a
harmonic response case, or otherwise the paths will be of more compli-
cated shapes and larger radii (a less desirable behavior in rotating
machinery). The existence of second-order subharmonic resonances is
examined for various values of the nondimensionalized side force

factor, ¢ = _§—3 in Fig. 8. The figure shows that subharmonic vibra-

w,d
tion would not exist for either zero or relatively large values of ¢.
This is because only symmetric motion is maintained for these particu-
lar values of ¢. Fig. 8 also shows that a smaller ¢ value results in

a subharmonic response within a broader frequency range. The choice

of a smaller clearance or a softer bearing stiffness can, therefore,




251

~N
o

I
i
i
i
{
s of I
g v=1 : v=2 v=3
B 15 :
= |
[ -]
E" 1
i
10t t ,
! !
| !
H - l!
!
5t . ./-
- /

32

0. 5 T 1.5 2. 2.5 3.
Frequency ratio,

Figure 4. Superharmonic and subharmonic resonance in rotor
dynamic response; @ = 0.01, B= 1., y=0, C =0,
€ =1.5, ¢ = 1.5, p = 0.
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: Second-order superharmonics

61 e«e++: Fundamental harmonics

Figure 5.

Superharmonic response at R = 0.45;
a 0.01, B =1., vy =0, =0,
e = 1.5, ¢ =1.5, u=0.



Figure

6.

Second -order subharmonic response at Q = 1.7;
a=0.01, B=1., yY=0,C =0, € = 1.5,
¢ = 1.5, u =0
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Figure 7. Third-order subharmonic response at £ =
a 0.01, B =1.,Yy =0,C =0,¢ = 1,5,
¢ 1.5, b = 0.

2.7;
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; Frequency ratio, Q

Figure 8. Effect of side force on nonlinear rotor dynamic
response; % = 0.01, B=1., y=0, C=0.1,
€ = 1.5, + =0.
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reduce the possibility of a damaging resonance. The effect of eccen-
tricity can be deduced from the examination of Fig. 9. A larger
eccentricity influences the horizontal motion (z-direction) more than
it does the vertical motion.

Other results concerning the effect of rubbing due to friction,

damping, and cross-coupling stiffness can be found in reference [15].
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Figure 9.

Frequency ratio,

Effect of eccentricity on nonlinear rotor dynamic
response; @ = 0.01, B =1., Y =0, € = 0.1,
O = 1.5, B = 0 v « ¢« ¢ o o o o o o o o s s o o o o
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V. USE OF COMPONENT MODE METHODS

A modified fixed interface component mode procedure of Glasgow
and Nelson [24] can be applied to certain nonlinear rotor systems with
flexible housing. The nonlinearity is assumed to arise from the exis-
tence of clearances at the bearings. The coupling between a rotor and
its housing occurs through bearing, seal, fluid and other interaction
forces.

The modified analysis procedure can be carried out as follows.
The rotor and housing are coupled at their points of interaction
except at the bearings with deadband clearances. The eigen-parameters
of the coupled system are obtained with the rotor and housing fixed at
the locations of the deadbands. The coupled system is then repre-
sented by a truncated set of these modes plus a static constrained
mode [24] corresponding to the degrees of freedom at the location of
the bearing clearances.

The fixed-interface component method was applied to two simple
multi-degree of freedom subsystems and the results showed it to be
more accurate than the original Nelson's method for the same total
combined number of dynamic and static modes of the system. This is so
since the method as modified above allows including more numbers of
dynamic coordinates of the components in the analysis. The modified
method becomes more efficient than the original method in cases where
interaction forces occur at relatively large numbers of locations
between the rotor and housing. The modified approach would allow

first coupling the housing and rotor using more numbers of modes than
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currently being used, then reduce the number of modes of the resulting

coupled system.



VI.
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DISCUSSION AND RECOMMENDATIONS

Hybrid component representation and numerical incremental proce-
dures for the transient response analysis of complex rotor
systems can lead to more efficient methods.

The explicit integration methods based on the transition matrices
and convolution can be very effective in determining the transi-
ent response of large flexible rotor/housing systems such as the
SSME turbopumps. The methods are particularly efficient in cases
concerning constant spinning rotor speeds and in presence of
bearing deadband clearances. More work is, however, still needed
to exploit and further develop the methods to their fullest
potential.

A modified fixed-interference component mode method could be used
to construct a reduced size rotor/housing system which is more
accurate than that of the original method of reference [24]. The
modification concerns the use of smaller number of connection
points as the fixed interfaces of the system. Similarly, the
hybrid coupling method of McNeal [25] could be extended for
application to rotor systems.

A numerical harmonic balance method using discrete Fourier Trans-
formation is developed and applied to a modified Jeffcott model
including bearing clearances, seal cross coupling forces, a side
force and friction due to rubbing. The method can be used to
determine all possible steady state solutions for the rotor. The

method can be extended to larger rotor systems, taking advantage
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of the nonlinearities involved being localized. Application of
the method will ensure that no potentially damaging periodic non-
linear response of a given rotor will be missed by solely depend-
ing on numerical integration methods. Arbitrarily selected
initial conditions may not necessarily lead to a possible peri-
odic solution using integration techniques. The determination of
the domains of attraction with multiple solutions and the exten-
sion of the algorithm to multi-degree of freedom rotor systems

are currently under consideration.
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APPENDIX

The Transient Response of a Test Model

Two single mass spring subsystems interacting through a gap are
utilized to form the test model (see Fig. A.l1). Modal representation
of the subsystems is utilized. The transient analysis is carried out
using both the integral transition matrix method and an iterative
Runge-Kutta-Verner integration scheme. A comparison of the computa-
tion time of both methods is shown in Table A.l. The comparison shows

the transition matrix procedure to be more efficient.
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TABLE A.l1. Comparison of the Solution Time Calculated by Direct
Integration and the Transition Matrix Methods
I. USING ALL THE SUBSYSTEMS MODES
CPU Computation Time
Time Step Number
Size of Steps Runge -Kutta-Verner Transition Matrix
1 x 1074 45000 15 min. 26.7 sec. 4 min. 20.5 sec.
3 x 1074 15000 10 15 4 19.1
1 x 1073 4500 8 46.3 4 17.8
2 x 1073 2250 8 27 diverge
3 x 1073 1500 9 1.2 diverge
II. USING ONE MODE OF SUBSYSTEM B AND TWO MODES OF A
1 x 1074 45000 8 min. 59.8 sec. 5 min. 22.4 sec.
3 x 1074 15000 3 16.6 2 35.9
1 x 103 4500 3 2.8 1 43.6
2 x 1073 2250 3 12.3 diverge
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The test model.




