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ABSTRACT

I have studied condensation modes in magnetized cylindrical plasmas,
concentrating on how magnetic field affects the stability. It is found that
the effects of magnetic field (shear, twist, and strength) on the
condensation modes are different depending on the wave vector. For modes
whose wave vector is not perpendicular to magnetic field lines the plasma
motion is mainly along the field lines; the effects of magnetic field on the
modes are negligible except on the heat flow parallel to the field line.
For a mode which is localized near a surface where the wave vector is
perpendicular to the field line, the plasma moves perpendicular to the line
carrying the field line into the condensed region; magnetic field affects
the mode by building up magnetic pressure in the condensed region.

The stability of condensation modes strongly depends on how density and
temperature vary with field twist. The stable nature of global quiescent
prominence magnetic configurations implies that prominences form for low
field twist for which ideal MHD modes are stable; plasma temperature should
increase with field twist for stable prominence formation.

I. INTRODUCTION

Solar prominences are a very intriguing phenomenon. They are cool
dense material imbedded in hot and tenuous coronal plasmas. After
Field(1965) various authors(Nakagawa 1970; Hildner 1971; Heyvaerts 1974;
Chiuderi and Van Hoven 1979) have studied condensation modes in a plane slab
geometry to understand the prominence formation. I have studied the
condensation modes(An 1984a, 1985) assuming that prominences are formed in a
cylindrical magnetic geometry(Anzer and Tandberg-Hanssen 1970; Pneuman
1983). This magnetized cylindrical plasma is subject to ideal MHD as well
as radiative(condensation) instabilities. For coronal conditions, the
radiative time scale(tr_lO ) sec.) is much longer than the MHD time
scale(t_l sec.), and condensation modes appear as a first order of

(:(t_/tr) _ i0 ) (An 1985). The possible coexistance of ideal MHD
and condensation modes with very different time scales requires a careful
analytic manipulation for the study of condensation modes. I developed a
mathematical techique for the study(An 1985).

Questions about condensation modes in magnetized plasmas are how
magnetic field (twist, shear, and strength) affects the modes and how the
stability depends on different choice of temperature and density profiles.
Here, magnetic shear arises from different field twist on each flux surface.
Magnetic shear is an important stabilizing mechanism for ideal MHD
instabilities and has been considered to be important for condensation
modes(Chiuderi and Van Hoven 1979). I will show that magnetic structure
(twist and shear) does not have important effects on condensation modes and
will prove mathematically the insignificance of MHD effects on the modes for
general magnetic field configurations. Since condensation modes are
hydrodynamic in nature it is necessary to study the stability of an
equilibrium with different temperature and density profiles for better
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understanding the prominence formation and stability.

II. DERIVATION OF CONDENSATION MODE EQUATION

I assume that the plasma is governed by ideal MHD equation with

radiation and heat conduction. The ambient heating rate is assumed constant

in time and the optically thin radiative energy loss rate is used. Due to

the two components of magnetic field (longitudinal Bz and poloidal Bo ),
the field lines are twisted. Since MHD and radiative time scales are very

different we make the governing equations dimensionless. Physical

quantities, P, B, _ , T are normalized with their standard values and time t

is normalized by the radiative time scale tr • Here radiative and IIHD time

scales are defined as tr =Po/R and t_= foa_ /B,_ respectively. The

quantity _ is defined as _ =(tr,/t r )" which is much smaller than 1 for

coronal plasmas. The quantities Po, _o, and Bo are standard ambient
coronal plasma pressure, density, and magnetic field and a is the radius of

the cylinder cross section. H is the ambient heating and R is the radiative

energy loss rate. # is defined as Po/B_ . I derive the linear

stability equation by linearizing the governing equations and assuming that
the perturbed quantities have the form _e(r,c)-aCCr)eXF[_(_O+_)+w_].

The second order differential equation for linear stability has the
following form,

LX=O
(I)

Here X is an eigenfunction and L is a second order differential operator and

depends on w , _, and equilibrium quantities. The condensation mode

equation can be derived, noting £<<1, by expanding L and X in power of

and by taking zero and first order equations. The explicit expression of
zero and first order equations are as follows.

d_ ;_ drJ-IL 7_ ÷; (k_o_;-2s, _ j_xo:o (2)

(XoPo_' FXoPo(7 - l)dR/dr7'
CoX,+\ _r / -L_r(¢po+_-h-oo_J

+ X S2kBstkB_ -- raB'/r)P°[(;' - 1)/r]dR/dr
r3K(k " Bo)2J r

-Here K=k z +m _ /r z and ¢ (),-l)To _RPo _ •

Prime(') denotes a derivative with r.

r°_:--2 1k (k • Bo)"
B_ t,

(3)

For the derivation of eq.(2) and(__) we assume that _.B _ 0 and qbfo+y_w :0

in the plasma. The conditionk. B_O means that the plasma should be stable

to the ideal MHD mode. In order to study condensation modes, we have to

solve equation (2) and (3) for a given boundary condition of Xo and Xt .
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Ill. STABILITY

The effects of magnetic fields on condensation modes vary depending on
whether lE'.l_is zero or not in the plasma. Let us discuss how the magnetic

field affects the mode of k.B=O. We cannot use Equ.(3) because it is

derived assuming _.l_O in the plasma. According to An(1984b,c) the

eigenfunction of Equ(1) becomes localized near r=rs wherel_.-B=O as m and k

go to infinity. In this limit the growth rate of the condensation mode is

Here,

(4)

P = po(C2.+ C,:)

- T c. c:+i _ -y T'

c.c,(, - l)=4po_(eR)W= 2B_ dR 2 2.,
-7 (i,-i)# d-;- . Pr3a_Fi."

Ci = flYPo/Po, C_ = B2o/Po;

) (),_R (_R Po _R,= _ (_,- i)To _"

y
B_a B_,(q'/q)2 2B_a fifo 4B_ fl;'Po

4rBo + r2Bo + r3Bo(ao + fl;'Po)'

The growth rate, Equ.(4}, does not have a heat conduction term because the

term appears with 1T,]_, which is zero at r =r.. The local mode will stay
unstable while other global modes are stabil'ized by heat conduction.

Equ.(4) shows that magnetic field directly affects the stability. If W<O,

magnetic shear plays a stabilizing effect through Y which determines ideal

MHD stability. As the magnetic field goes to infinity with plasma pressure

fixed, co becomes the isochoric mode growth rate; magnetic pressure does not

allow plasma condensation.

Forl_._*O, Equ.(3) can be used for condensation modes. I have studied

the stability of two different equilibria with a longitudinal current

density profile defined as g_Cr) --_},(l-r_) _.

The magnitude of o_ determines magnetic shear; a higher value of o_ produces
higher shear. Profile(A) has the density and temperature profiles defined

as (_(r)=l_S_O-r')and T(r)=P(r)/ e(r) respectively w_ile profile (B) has

T(r)=l- ocz(1-r_ ) and _(r)=P(r)/T(r). Since plasma pressure increases with

field twist, T(r) of (A) and O(r) of (B) increase with the twist while
(_(r) of (A) and T(r) of (B) do not change. By solving Equs (2) and (3) for

different q we study the stability of condensation modes for profile (A)

and (B). Here qo is q(=21T B_r /ABe ) at r=O and A is an aspect ratio, q

stands for the degree of field twist; higher q implies lower field twist.
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Fig. 1 shows growth rate (_ v.s. qo for profile(A). Note that the
temperature increases but density is constant as twist increases(i.e, lower

qo values). Higher field twist stabilizes the condensation mode due to the

increase of temperature (higher heat conduction and lower radiation loss).

Growth rate increases with _ for given qo because density at r=O increases

as 1+ SI resulting in higher radiation rate. Fig.(2) shows the stability of
profile(B). It shows that the mode becomes more unstable as twist increases

because density of (B) increases with field twist. The growth rate of

_=0.53 is higher than that of Sz=O.4 for a given qo because temperature

at r=O decreases with _a as 1- 6"2 resulting in lower heat conduction and

higher radiation. Fig.1 and 2 have poloidal and longitudinal mode number m

and n equal to 1, aspect ratio A=IO, and longitudinal magnetic field 10

Gauss. Because we use _ =0 the equilibrium does not have shear, in other

words, every flux surface has same field twist. Fig. 3 shows the stability
of equilibria with different _ values. The result seems to show that

magnetic shear affects the condensation mode. However, a careful study

shows that the different stability is not due to magnetic shear but due to

different pressure profiles caused by different choice of _.

It is found from the resuli_that the effect of magnetic field on the
lobal condensation modes with k,B_O is negligible while the local mode with

•l_=O is affected by magnetic field. Why are the effects of the field on

the two modes different? We find the answer by deriving a relation between

parallel and perpendicular components of plasma displacements.

Ii 2kB, B:oy2-- X + _• - kB, X' - B_oK(_ x Bo) , k_- mB=/r
= Cpoco2(_• Bo) •

If-k-_O the perpendicular displacement is Ee,,_ _" times the parallel

component. Since E _ 10-6 the equation implies that plasma moves mainly
parallel to the field line when it condenses. For l_.l_=Oparallel motion is

zero, in other words, plasma moves perpendicular to the field lines carrying

the field lines into the condensed region; magnetic field affects the modes.
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IV. CONCLUSION

The stability of condensation modesstrongly depends on how density and
temperature vary with field twist. If plasma temperature increases with
twist but density does not (e.g. profile(A)), then condensation modes are
unstable for low field twist-when ideal MHDmodesare stable. This result
implies that prominences form in a globally stable magnetic configuration,
which may explain the stable nature of prominences. On the other hand, if
plasma density increases with twist but temperature does not (e.g.
profile(B)), condensation modes becomes more unstable. If plasmas obey
profile (B), we may not observe stable quiescent prominences.

If the effect of magnetic field on condensation modesis insignificant,
what is the role of the field on the prominence formation? Wemay say that
the magnetic field has active and passive roles in the formation. The
passive role is to insulate the prominence material from hot corona and to
guide the plasma motion along the field lines whencondensing. The active
roles are to trap the outflowing plasmas (solar wind, spicules, and etc.)
which then accumulate on the field lines, and to hold and support them
against gravity. Depending on the strength and configuration, the magnetic
field can trap the plasma effectively, enhancing the density sufficiently to
initiate condensation, and can support the condensedplasmas to form a
prominence(An, et.al 1986). Without the passive role, however, no
prominence can form in a hot coronal plasma.

This research is supported by NAS/NRCand NASA Office of Solar and
Heliospheric Physics and Office of SpacePlasma Physics.
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