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INTRODUCTION

It has been suggested that resonance absorption of low frequency

magnetohydrodynamic waves could be responsible for heating the solar corona

(lonson, 1982; Hollweg, 1984). In this paper an improved method for

calculating the resonance absorption heating rate is discussed and the results

are compared with observations in the solar corona. To accomplish this, the

wave equation for a mildly dissipative, compressible plasma is derived from

the linearized magnetohydrodynamic equations for a plasma with transverse

Alfven speed gradients. For parameters representative of the solar corona, it

is found that a two scale description of the wave motion is appropriate. The

large scale motion, which can be approximated as nearly ideal, Pms a scale

which is on the order of the width of the loop. The small scale wave,

however, has a transverse scale much smaller than the width of the loop,

0.3-250 km, and is highly dissipative. These two wave motions are coupled in

a narrow resonance region in the loop where the global wave frequency equals

the local Alfven wave frequency. Formally this coupling comes about from

using the method of matched asymptotic expansions to match the inner and outer

(small and large scale) solutions. The resultant heating rate can be

calculated from either of these solutions. A formula derived using the outer

(ideal) solution is presented, and shown to be consistent with observations of

heating and line broadening in the solar corona.

DERIVATION OF _ BASIC BQUATIONS

The linearized momentum and induction equations can be written as

av vp 1

at Po 4_P0

(B0.v) + (B.v) B° J +

q
j_2v2

2

B v + 7 v(v.v) (1)

8B

('V'V) - ('V'V) B -/" C_2V2B-- = (Bo.v)v - B° o
at

(2)

where _2 = c2/4_a, _2 = Nl/po and 72 = Nll/po. The functional forms for the

viscosity coefficients, _, and the electrical conductivity, a, are given in

Braginskii (1965). By neglecting derivatives of the dissipation coefficients

themselves, it is implicitly assumed in the equations above that dissipation

processes are important only in a narrow layer, and that over this layer terms

which are proportional to derivatives of the dissipation coefficients can be

neglected. This is easily verified a posteriori. It is further assumed that

all variations in B o and _ are transverse to the field so that v A = VA(X)
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only. The plasma is assumed to have _ << i so that the transverse gradients

of B 0 can be neglected and the total pressure p can be approximated as p =

B0B z/4_. Take the time derivative of the momentum equation and use the

induction equation to eliminate all derivatives of B. Since dissipation is

assumed to be small, one can neglect terms which are proportional to products

of the dissipation coefficients. Assume that the loop is driven at z = 0 and

that at z = L there is a perfectly reflecting boundary (see Hollweg, 1984 for

more discussion on this point). Fourier transform the equation using

oo

v±(x,y,z,¢) = -- X Cos (kzn z) -- e V±n(X,y,w )
L n=O 27r

(3)

This form automatically satisfies the boundary condition at z = L as long as

kzn = (2n + i)_ / (2L) with n = 0, I, 2 .... Define the following

dimensionless parameters VA z (X) = VA 2 (X)/VAo , R = VA0/%0_2, Prll = _2/_2, and
Pr± = 72/_ 2 , where VA0 is some typical value of the Alfven speed within the

loop, R is the magnetic Reynolds rmmber and Pr_L and Prll the magnetic Prandlt

numbers associated with shear and compressional viscosity. With these

definitions, all lengths measured in units of d the transverse scale of the

loop, and K2(X) = (_/VA2 (x) - _2 ), the equation for the velocity can be

written in the dimensionless form

. i {iv±(v.v±) + _ v± 2 -

R VA (x) #0
P0Win + Pr±_TZV±n + Prll_7i(V.v) (4)

The terms on the left hand side of this equation are the terms obtained from

ideal MHD. Solutions of the ideal equation for various forms of the Alfven

speed profile have been discussed by several authors in the context of solar

coronal heating (lonson, 1982; Rae and Roberts 1982) and in the context of

solar wind _celeration in coronal holes by Davila (1985). These

investigations have demonstrated that this equation describes the propagation

of M_HD surface waves and guided wave modes in an inhomogeneous plasma.

The terms on the right are all due to dissipation and are therefore non-ideal

MHD terms. In the solar corona these terms are "small" in most locations

since they are all multiplied by the inverse of the magnetic Reynolds number R

which is on the order of 1012 for typical solar parameters. The exception to

this ordering is at the location x = x A where g2(XA) = 0. At this location

the first term on the left can only be balanced by the dissipative terms on

the right even though they are small. Sufficiently far from xA, in the outer

region, the ideal MHD solution is a reasonable approximation to the actual

solution. However, near _ , in the inner region, the character of the

solution changes (the equation changes from second to fourth order) and the

assumption of ideal MHD is not valid. This is a classic example of a singular

perturbation (Nayfeh, 1981). In the following paragraphs singular

perturbation theory and the method of matched asymptotic expansions will be

used to obtain a solution which is valid both outside and inside the resonance

layer. To do this one must first reduce the coupled equations for the vector
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components of the velocity to a single equation for one velocity component,

say vX.

To illustrate the basic idea of the resonance absorption layer and to

demonstrate the matched asymptotic solution method, let us assume that the

dominant dissipation mechanism _ shear viscosity. This assumption cannot be

completely justified at this point so it must be regarded simply as an ansatz.

An investigation which incorporates ohmic, compressive viscous and shear

viscous dissipation self consistently in a numerical solution is currently

underway. The results of this investigation will be published when they

become available. Under these assumptions the wave equation can be written

2 = _72
VJ_(V'VJ_ n) + _ Vln i_ vj_n (5)

where _ = (i + Pr±)/ (R VAZ ) . An equation for Vxn correct to first order in

can be obtained for the apppropriate ordering i >> k72 >> mz z >> _z

2
d _ dv i c d 4 v

xn 2 xn

dx k z dx x n k 2 dx 4
Y Y

(6)

The outer solution is obtained by expanding the velocity, Vxn , as a power

series in the small parameter E. The lowest order term must then satisfy

2 (0)
d _ dv

2 Co)
xn + _v = 0

dx k 2 dx xn

Y

(7)

Detailed solutions of this equation have been obtained before (Rae and

Roberts, 1982; and Lee and Roberts, 1986). For our purposes it is only

necessary to obtain the solution near the resonance layer, i.e. where x _ xA

with x A defined by the resonance condition m2(xA) = 0. In this region, the

first term dominates and the solution can be approximated as

(o) (8)
V = A in (x - x )
xn A

where A is the wave amplitude determined by matching boundary conditions at
the driver.

The inner solution can be obtained by considering the scale stretching

transformation given by _ = (x - XA)/a , where a is the small scale parameter

to be determined in the problem. For the case presented here a 3 = _/l where

= -kz2 d(in p)/dx. Using the shear viscosity and resistivity coefficients

given in Braginskii one can estimate a = 0.3 km. This is below the resolution

of current instruments. Using the largest viscosity coefficient in Braginskii

one can estimate am ax=250 km. If this second estimate is more nearly correct,

these sheets could be observed with instruments with resolution on the order

of 0.i arc second. Using the transformation described above, the inner

equation can be written
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d [ d2 ] dVxn-- -- 7_f -- = -J-k 2a2

d_ d[ 2 d[ Y [Vxn

(9)

Assume a power law expansion of Vxn with a 2 as the expansion parameter, then

the solution of the zeroth order equation is

oo 3

v (_) = C C dp exp (- - ) (i0)
xn 1 2 fn

o

In the limit as _ _ _ it can be shown that

Vxn(f ) _ -iC2 in (x - XA ) (ii)

This shows that by proper choice of the constants, namely C 2 = iA, the inner

and outer solutions match as is physically required.

Although in the steady state the details of the velocity profile within the

resonance layer do depend on the dissipation mechanism (eqn i0), the heating

rate does not. The result presented below is obtained by considering the

outer solution and integrating the Poynting flux over the entire surface of

the resonace layer (Chen and Hasagawa, 1974). An equivalent result could be

obtained from the inner solution by integrating the volumetric heating rate of

Braginskii (1965) over the volume of the resonance layer. The result is

B 2 1 d (2) * I] x

H = A o [_ ) [A[2 im { in (x _ x + i_) J[ 2 (12)
s 8_d k 2 dx A x

y i

where x I and x z denote the positions of the two surfaces of the resonance

layer and A s is the surface area of the resonance layer. If we consider the

limit of this equation as (_-_) _ 0 and use causality to choose the proper

analytic continuation (McPherson and Pridmore-Brown, 1966; Kapraff and

Tataronis, 1977; Mok and Einaudi, 1985; Einaudi and Mok, 1985; Bertin et al,

1986) the resulting heating rate is

2 2
B k

H= A o z 2
s 8 _d k 2 = IAI (13)

Y

To determine whether this heating rate is consistent with observational

constraints, let us simply equate it to the observed radiation rate in soft

x-rays to obtain an expression for the RMS velocity amplitude required to

explain the observed emission. Using typical values of the parameters, B0=100

G, d=5xl0Scm, A(T)=I0 -2z (Rosner et al. 1978), P=300 sec, ky=2k z and fneZdl =

i02s-29 (Webb et al. 1986) one obtains an estimate of Vrm s = 2-6 km/sec using

the following expression.
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2 _d In 1/2z dl

V = [ A(T) --_- Je ]rms (14 )
2 2

(Bo2/8 9) (kz /ky )

This is comparable to the observed value of 10-20 km/sec regularly seen from

observations of non-thermal line broadening in the corona.

CONCLUSIONS

The primary conclusion to be drawn from these calculations is that to the

level of the approximation adopted here, the observations of the heating rate

and non-thermal line broadening in the solar corona are consistent with

heating by the resonance absorption mechanism. This basic agreement is

gratifying but several problems remain. The plane symmetry assumed here is

highly idealized. It has been shown in the plasma physics literature that for

the tokamak problem introducing cylindrical symmetry has presented no new

physics. Nevertheless, when considering the heating rate to an accuracy of

say factors of 2-5 the geometry factors must be properly accounted for.

Second, observations of the turbulent power spectrum at the base of the corona

are badly needed as input for the theory. These observations should be

carried out in ions which are present at or above the transition region

temperatures. It seems that EUV observations would be the most appropriate.

Finally, other sources of dissipation must be considered. For although the

heating rate is independent of the _ssipation mechanism for any reasonable

value of the coefficients, the amplitude of the velocity inside the resonance

layer, and the width of the layer, both depend on the magnitude of the

dissipation coefficient. High resolution instruments such as POF may be able

to observe velocities within the narrow resonace regions in the reasonably

near future. Therefore it is worthwhile to consider theoretically the

observational consequences of various dissipation mechanisms now. In the

work presented here, shear viscosity was assumed to be the dominant

dissipation mechanism. This is not necessarily the case for solar
conditions.
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