
N87120941

The stability of Coronal and Prominence Magnetic Fields

by A W Hood, Applied Mathematics Department

St Andrews University, St Andrews, Scotland

INTRODUCT ION

The magnetic fields in Prominences and Active Regions (Coronal Arcades ) may be

susceptible to a variety of instabilities. Ideal MHD instabilities are the

fastest growing and criteria for checking stability are complicated by the line

tying effect of the dense photosphere. In general, the line tying introduces a

coupling of modes and obtaining stability cirteria for a given prominence or

arcade field involves either solving partial differential equations (Hood and

Priest 1981, Hood 1983, Cargill et a] 1986) or coupled O.D.E's (Einaudi & Van

Hoven 1983) (from a truncated Fourier series). This can be a very time consuming

exercise. What is needed is a simpler test applicable to any field.

LOCALISED MODES

Progress can be made by studying localised instabilities or Ballooning modes

(Conner et al 1979; Dewar and Glasser 1983). By using a _B approach, (Dewar and

Glasser 1983), the idea is to study instabilities localised about a given

magnetic flux, with a fast variation perpendicular to the equilibrium field and a

slow variation along the field lines. This filters out the stable Alfven and

magnetoacoustic waves. Thus, all displacements to coronal arcades are of the
form

i(s(r,0,z)/e + -,t)
_(r,o,z,t) = _(r,o)e (i)

where e, the instability length scale, ,, R o the equilibrium length scale and

S(r,e,z), _ and the amplitudes _(r,e) are all 0(i) quantities. (For coronal

loops see Hood 1986a). The slow variation along the field occurs only when

k.p. ffi vs.s = o. (2)

For cylindrically symmetric fields, with the photosphere situated at 8 = ±_/2, a

solution to Eq (2) is

S = S(r) + z - qe, (3)

where q ffi rBz/S e. Substituting (I) and (3) into the linearised equations of

motion (Hood 1986a) gives

B
ds ds

(4)
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____0B0L_0•B[__ ...,lJ•_"B'_=0.0 (s)

where, for cylindrical arcades, Bd/ds = Bed/rde, K s = _B_rB z, dp/d_ =

-(dp/dr)/Be, k a = IVSl a. Strictly speaking the solutions to Eqs (4) and (5) with

the line tying boundary conditions define a dispersion relation for k z =

kZ(r;_Z). The radial integration must satisfy a Bohr Sommerfeld condition (Dewar

and Glasser 1983, Hood 1986a) and this defines the physical growth rate. However,

if the least stable mode is of interest, the procedure is simpler. Now set S'(r)

i 0 and solve Eqns (%) and (5) to obtain _Z(r). The mlnlmum value of _Z(r)

defines the physical value of _z for the least stable mode. If _z • O, then

there is an instability but, if _z _ O, the localised modes are stable.

For example, Hood (1986a) considered the field

B e = So(r/b)/(I + rZ/b z) B z = B o /(I + rZ/b z)

.p = BZo(Z - _z)/z(x + rZ/b z)

and solved equations (4) and (5) to obtain _Z(r) as shown in Fig. i.
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Fig. I. The eigenvalue _z of equations (4) and (5) is shown as a function of

the radial coordinate for various values of A. The physical value of _z, for

the least stable mode, is given by the minimum value. _z is measured in units

of v_ = B_/._ z and y = 1.
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Equations (4) and (5) can be converted into quadratic form by multiplying by

and _, respectively and integrating. Then the sign of _z can be determined by

trial functions. Thus, it can be shown, (Hood 1986a), that the field is def/nltely
unatable if

yppB_

rZ( 7_P + Hz )
o (6)

(see Spicer 1976 for a heuristic derivation with y = 0). Equation (6) has been

derived using the rigid boundary conditions, _ = 0 on the photosphere but y = O

simulates the flow through boundary conditions of _z = 0 and _,, _ 0 (Einaudi and

Van Hoven 1983). The first term is the shear stabilisation, the second term is

the driving term due to adverse pressure gradients. The last two terms provide

line tying stabilisation due to Alfven waves and compressional slow waves.

A CHECK ON LINE TYING CONDITIONS

Using the ballooning approximation, the photospheric line tying conditions can be

investigated (Hood 1986b). Equations (%) and (5) were solved including a density

variation along the field lines and, when the density difference between the

photosphere and corona was increased to realistic values, the value of _z rapidly

approached the value predicted by the rigid boundary conditions. In addition,

the values of ( and _ at the photosphere tend to zero. This suggests that the

rigid boundary conditions are the correct boundary conditions (at least for

localised modes).

THE EFFECT OF GRAVITY

The effect of gravity has been included by, for example, Zweibel 1981, Melville

et al 1986a. Melville et al considered the linear equilibria of Zweibel and

Hundhausen (1982) and showed that as soon as a magnetic island appeared the field

became unstable. Interestingly enough, each field line (except the O point

itself) was unstable before it formed an island. The analysis has been extended

to other fields (Melville et al 1986b), and preliminary results suggest that, as

the effect of gravity is increased, the fields become more susceptible to the

Rayleigh-Taylor instability. However, a simple test, similar to Equation (6),

has yet to be developed.

CONCLUSIONS

The significance of the localised instabilities is not yet fully understood. The

nonlinear coupling of these u_des may give rise to an explosive instability, with

the modes coupling to longer wavelengths, (Mondt and Weiland, 1985). On the

other hand, if the modes saturate early, then the main effect of the instability

maybe an enhancement of transport coefficients. Nonetheless, Equation (6)

provides a simple test for the stability of cylindrical magnetic fields.
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