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Introduction

With the emergence of the general-purpose supercomputer, it has become
possible to perform accurate numerical simulations of a wide variety of com-
plex, three-dimensional scientific problems. Yet there are many problems of
interest which are so complex that, in order to simulate them numerically,
supercomputers with computation rates and storage capacities orders of magni-
tude larger than those of current supercomputers are needed. Furthermore, the
computational requirements of such problems will continue to surpass the
performance of general-purpose supercomputers for at least the next decade.
As a result, increased attention has been directed towards an emerging class
of parallel-processing supercomputers.

One such parallel-processing supercomputer is the "Navier-Stokes
Computer® (NSC) [1, 2], which is being developed by Daniel t-wlosenchuck and
Michael Littman at Princeton University. The NSC consists of multiple (up to
128) local memory parallel processorsg, called Nodes, interconnected in a
hypercube network. Each Node has the power and speed of a Class VI super-
computer, giving a projected, full 128 Node NSC a storage capacity in excess
of 262 Gbytes, and a peak speed in excess of 61 GFLOPS,

The computational speed and efficiency of the NSC are derived in part
from a Nodal architecture which provides parallel operation of both the memory
and the computational units. Parallel operation of the memory is attained by
distributing the local memory of a Node over multiple interleaved memory
planes, all of which may operate simultaneously. Multiple operand vectors may

then be streamed from memory into a Reconfigurable Arithmetic and Logic Unit




(RALU), while multiple result wvectors are simultaneously routed from the RALU
back to memory. The RALU architecture involves the interconnection of multi-
ple high-speed floating point and logic processing units into single or multi-
ple parallel pipelines. Since the RALU is dynamically reconfigurable, many
different parallel pipeline configurations may be formed from the processing
units. Efficient implementation of an algorithm on the NSC thus entails the
effective utilization of not only the coarse grain parallelism associated with
distributing the problem over the Nodes, but also of the fine grain parallel-
ism associated with confiquring the parallel pipelines and with routing multi-
ple vectors between the RALU and memory.

Although the NSC was originally designed for the numerical simulation of
flows governed by the Navier-Stokes equations, it provides a means for effi-
ciently solving most any problem for which the computation is numerically
intensive, and for which the algorithm makes use of long vecto;s and may be
parallelized with a coarse granularity using local rather than shared memory.
The objective of this paper is to detail the procedures involved in implement-
ing one such algorithm on the NSC. Particular attention is focused on proce-
dures for mapping the computational grid into the Nodes, for configuring the
RALU pipelines, and for allocating memory planes for storing variables such
that multiple vectors are efficiently routed between memory and the RALU. The
resulting analysis constitutes virtually an assembly language level descrip-
tion of algorithm implementation on the NSC.

The specific finite-difference algorithm considered herein was developed
for the direct numerical simulation of laminar-turbulent transition in wall-

bounded shear flows by solution of the incompressible Navier~Stokes equations.




Recent work in this area [3, 4, 5] indicates that numerical algorithms for
performing this simulation are quite mature. However, it has not been
possible to continue the simulations up through the onset of fully turbulent
flow, since current supercomputers do not have the storage capacity and speed
needed to satisfy the extreme resolution demands of the later transition
stages, Furthermore, current transition simulations must resort to using the
parallel flow assumption, because the resolution demands of a true spatially
developing flow are an order of magnitude more extreme. Hence, the numerical
simulation of laminar-turbulent transition exemplifies the need for new super-
computers like the NSC, which have the power and speed requisite for perform-
ing these simulations.

In formulating the algorithm, the Navier-Stokes equations are temporally
discretized using a splitting technigue in conjunction with low storage Runge-
Kutta treatment of the advection term, Crank-Nicholson treatment of the dif-
fusion term, and backward Euler treatment of the pressure term. The resulting
algorithm requires the solution of a Helmholtz eguation for each velocity
component and of a Poisson equation for the pressure, at each Runge-Kutta
stage. Solution of these equations, which constitutes the bulk of the compu-
tational work, is analyzed for two iterative methods, namely, Red-Blaék SOR
and ZEBRA 1. Red-Black SOR is a two-color explicit point method in which a
point Jacobi type iteration is applied at alternating points. Z2ZEBRA 1 is a
two-color implicit 1line method in which 1line relaxation is applied along
alternating lines.

It should be emphasized that the purpose of this analysis is to detail

the procedures involved in implementing a representative algorithm for simu-



lating the laminar-turbulent transition problem on. the NSC. The algorithm
considered in this analysis was chosen for its simplicity, particularly in
regard to the use of second-order discretization methods and single grid
iterative methods. More suitable algorithms Wwill surely use higher order
discretization methods, and employ conjugate dgradient or multigrid methods
based on the single grid iterative methods considered here. However, the
implementation procedures detailed herein are indicative of the procedures
required for implementing the more complex algorithms on the NSC.

In the two following sections, architectural details of the NSC and
formulation of the algorithm are briefly discussed. Details of the procedures
for implementing the algorithm on the NSC, and projected timing results for a
particular problem, are presented in the subsequent section. Some concluding

remarks are presented in the final section.

Architectural Overview of the NSC

The NSC is a multi-purpose parallel-processing supercomputer which is
designed to perform numerical simulations of a wide variety of large, numeri-
cally intensive, complex scientific problenms. Rapid solution of these
problems is attained through a global architecture which distributes the
computations over a fairly small number of powerful local memory parallel
processors, called Nodes. A broad overview of the global and Nodal architec-

tures is presented below.




As the NSC is currently in the developmental stége, certain architectural
details have not been finalized. For instance, tradeoffs between having the
Nodal memory distributed over 8 memory planes rather than 16 memory planes (as
assumed herein), are still under review. However, such alterations in the
architectural details are likely to affect the algorithm implementation pro-
cedures to only a limited extent. It should also be noted that the modular
design of the NSC allows for relatively easy upgrading of the hardware compo-
nents. Hence, the memory/speed characteristics of the final design may differ
from the characteristics detailed herein, which are based on the utilization
of mid-1986 technology.

Global architecture. - The global architecture of the NSC involves the

interconnection of the Nodes through two communication networks. The first
network utilizes a global drop-line bus to link the entire Node array to a
front-end computer, Although the global bus is primarily used to transfer
data and commands between the front-end and the Nodes, it may also be used to
transfer data between any two Nodes of the array. The second communication
network involves the interconnection of the Nodes in a hypercube network
[6]. Internode communication links for the hypercube network are implemented
with fiber-optic transmission lines, providing data transmission rates orders
of magnitude faster than those provided by the global bus. Consequently,
during execution of the calculatiuu p...cdures for a given algorithm, most (if
not all) internode data transfers are routed through the hypercube network. A
séhematic of the global architecture, where a subset of the Nodes and a simple
2-D nearest neighbor interconnect network are illustrated, is presented in

figure 1.



The front-end is a general-purpose computer which provides the operating
environment for the NSC. 1In-line it is used to load data and commands to the
Nodes and to monitor the Node array. Off-line it provides program develop-
ment, work station support, and data analysis capabilities.

Nodal architecture. - The Nodal architecture is designed to permit paral-

lel operation of both the memory and the computational units, providing large
throughput rates for a wide variety of computational procedures. Architec-
turally central to this operation are the multiplane interleaved memory, the
dynamically reconfigurable ALU (RALU), and the Memory-ALU-Switch Network
(MASNET). The interconnection of these devices is illustrated in figure 2.
Computations are begun by streaming multiple operand vectors from the memory
pPlanes to the input ports of MASNET. The operand vectors are then routed
through MASNET, which essentially is a 16x16 nonblocking switch, and enter the
input ports of the RALU. Result vectors from the RALU are then routed back
through MASNET and sent to the appropriate memory planes for storage.

The multiplane interleaved memory consists of sixteen 128 Mbyte memory
planes, giving each Node a local memory of 512 Mwords for 32-bit words.
During a given process, each memory plane may be connected to either an input
port or an output port of MASNET, but not both. Consequently, a memory plane
cannot be used to store elements of a result vector while simultaneously being
accessed for elements of an operand wector, Elements of the vectors are
stored in and accessed from the memory planes using either constant stride or
scatter—-gather addressing. Each of the memory planes has complete address
translation capabilities to provide full "scatter-gather" capability. The

address translation information is stored in high-speed look-up tables.




The RALU is a pipeline which performs multiple sequential and/or parallel
operations on vectors. It contains twenty-four floating-point processing
elements, eight logic units, and various pipeline support hardware elements
which are interconnected to form the processing pipelines for particular
computational procedures, The entire pipeline is reconfiqurable within one
clock period, which provides a dynamically changing vector processing environ-
ment.

Of the floating-point processing elements, twenty-two elements perform
addition, subtraction, multiplication, floating to fixed-point, or fixed to
floating-point operations. In addition, upon performing one of the above
operations, the element may also be used to change the sign of the result, or
take the absolute value of it. For these elements, the startup cost asso-
ciated with processing the first value in a vector is one clock period. Each
of the other two elements actually consists of four chips which are pipelined
to form a single element. These elements may be used to perform division,
evaluate transcendental functions, or take the square root of thé input
values. The startup cost for these elements is four clock periods. The
nominal operation rate of the processing elements is 20 MFLOPS, providing a
Nodal peak speed of 480 MFLOPS.

Associated with each of these elements is a constant parameter latch,
These latches are used to input constants to the elements, and may be set with
either ALU or scalar results. It takes two clock periods to reset a constant
parameter latch, and only one latch may be reset at a time.

The logic units may be used for fixed point addition, subtraction, multi-

plication, or division, or to perform logical comparisons on either fixed or



floating-point values. The startup cost for the logic units is four clock
periods for performing division, or one clock period for performing any of the
other operations. As with the floating-point processing elements, the opera-
tion performed by a logic unit may be changed every clock period.

An illustration of how the hardware elements in the RALU are confiqured
to form the parallel processing pipelines is provided in figure 3. This
particular pipeline performs a point Jacobi iteration of the central-
differenced 3-D Poisson equation,

v’e =G,

on a uniform grid. Here, fifteen of the available floating-point processing
elements and one logic unit have been configured in a tree structure. Nine
operand vectors are accepted in parallel at the pipeline entrance. Operations
on these vectors are then performed in parallel, with results from the opera-
tions immediately routed to subsequent levels of the pipline. Note that once
the residual value, Rijk' is available, it is routed simultaneously to the
remainder of the pipeline for updating P, and to a pipeline for performing a
local convergence check, In this example, the convergence criteria is
IRijkl<€ « Upon satisfaction of this condition at all grid points, the con-
vergence flag interrupts the microsequencer, and the pipeline is reconfigured
for execution of the next calculation procedure in the algorithm. The nominal
operation rate for execution of this point Jacobi iteration procedure is 300
MFLOPS.

As alluded to above, the processing elements and logic units, along with

various pipeline support hardware elements, are configured into specific

pipelines by a microsequencer. In general, this unit is used to confiqure the




pipeline at the start of an array operation, and the pipeline remains fixed
until completion of that operation., However, results from logical comparison
operations may be used to conditionally reconfigure the pipeline at every
clock period, without (in general) requiring a pipeline flush., This capa-
bility permits the vectorization of many powerful algorithms which are not
vectorizable on conventional vector architecture supercomputers.

It should be noted that since the NSC is still under development, speci-
fic details of the RALU architecture, and thus the degree to which the RALU
may be reconfigured, have not been finalized. 1Indeed, a major purpose of this
study was to identify specific pipelines to be included in the final design.
Therefore, it is assumed in subsequent sections of this paper that the only
constraint in forming a pipeline is that the number of elements utilized may
not exceed the number of elements to be contained in the RALU.

As mentioned previously, the flow of vectors between memory and the RALU
is controlled by the Memory-ALU-Switch Network (MASNET). MASNET consists of
fifty-six 32-bit switch elements, where each element has two input ports, two
output ports, and a bidirectional port to a 32-word local memory. Words may
be stored in the local memory of an element and delayed for up to 16 clock
periods when two vector streams are input, or up to 32 clock periods when a
single vector stream is input. MASNET is formed by the interconnection of the
switch elements into a 16x16 nonblocking switch. The entire switch may be
rerouted every clock period. MASNET is used to route operands from memory to
the RALU inputs, route results from the RALU to memory inputs and/or RALU
pipeline inputs (for vector recursion), and to transfer memory contents be-
tween memory planes. MASNET is also utilized for internode communications,

which are implemented by transferring data between each Node's MASNET.



Another important feature of MASNET is that it permits the generation of
multiple, parallel vector streams from a single source. In this process, as
values which constitute a given vector are routed through a switch element,
they are simultaneously stored in the local memory of the element. During
subsequent clock periods, the values are retrieved from memory and routed out
of the switch through the second output port, as a second vector. Since the
order in which the values are retrieved need not be the same as the order in
which they are stored, the generated vector may deviate in local ordering from
that of the original vector. By applying this process over a series of switch
elements, multiple vectors may be generated from a single source.

A second means for generating multiple vectors from a single source
involves utilization of the vector delay and regeneration unit. This unit is
located between the MASNET outputs and RALU inputs. It may be used to perform
the same process described above, except that the ordering of values in the
generated vectors must be the same as that of the original vector. However,
whereas MASNET may be used to delay vectors for 224 clock periods at most, the
vector delay and regeneration unit may be used to delay vectors for thousands
of clock periods.

The operation of the Node is controlled and monitored by a Node manager.
The Node manager is primarily used as an intelligent interface between the
Node and the front-end. It provides initialization, checkpointing, and data
store handling capabilities, and decodes "macromachine instructions” which are
used to configure the RALU. In addition, the Node manager provides scalar
operation capabilities at a rate of 2 MFLOPS. However, it should be empha-
sized that the Node manager rarely becomes involved in numerical computations

other than for evaluating expressions for use as constants in the RALU.
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Internode communication. - Internode addressing on the NSC is supported

by two addressing modes, global addressing and explicit boundary point defini-
tion (BPD). In this analysis, only BPD addressing is considered. BPD
involves the explicit definition of all boundary-point data (i.e., data asso-
ciated with points on the boundary of the computational subdomain, which are
to be transferred to other Nodes): the source Node of the data, and all desti-
nation addresses.

The internode communication process begins as results enter the first row
of switch elements in MASNET. If a result has been defined as a boundary-
point value, it is routed to the boundary cache of the source Node while
simultaneously being routed through the switch element. The boundary cache is
linked to all of the switch elements in the first row of MASNET by a common
bus. The clock for the common bus (and the "hyperspace router") runs four
times faster than the clock for MASNET and the RALU, Thus, every clock
period, it is possible to route a boundary value from each of four switch
elements to the boundary cache. Once the data is received in the boundary
cache, it is immediately routed to the local "hyperspace router" of the Node,
and sent to the boundary cache of the destination Node. Then when boundary-
point data is needed in an ongoing computation of the destination Node, it is
accessed from the boundary cache of the destination Node and inserted into
MASNET at the last row of switch elements. As with the first row of switch
elements, all the elements in the last row of MASNET are linked to the bound-
ary cache by a common bus. A schematic of the hardware interconnects between

MASNET, the boundary cache, and the hyperspace router is presented in fiqure 4.

~11-



The local hyperspace routers are nonblocking permutation switch networks
which are used to route boundary-point data to the appropriate internode
communication links. The data are self routing in that the destination
addresses, which are carried with the data, are used to set the hyperspace
router switch states. For a 128 Node NSC, the hyperspace routers contain 8x8
switch networks, and the hypercube internode communication network links each
Node to seven neighboring Nodes. Although internode communication is most
easily accomplished for data transfers in which the destination Node is
directly 1linked to the source Node, data may be transferred between any two
Nodes by routing the data over a series of hyperspace routers.

The internode communication 1links are implemented with fiber-optic
cables, providing data transmission in byte-serial format at a duplex rate of
1 Gbyte/sec. The boundary cache of each Node consists of a 1 M-word write-
through cache. For BPD addressing, the boundary cache is continuously updated
by pre-communicating the boundary point data as it is generated in the source
Node. Thus, current boundary data is usually maintained within each Node,
which eliminates most of the internode communication overhead.

Internode communication delays, which result in the temporary suspension
of computations, may occur in a number of situations. One such situation is
when boundary-point values are not present in the boundary cache of the Node
at the time they are required in the ongoing computation. The computations
must then be suspended while those values are retrieved from other Nodes.
This type of delay is likely to occur in problems for which the amount of BPD
data required by each Node is greater than the storage capacity of the bound-

ary cache. A second situation for which communication delays occur is when
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the operands for computing a particular term include more than four boundary-
point values. In this case, since only four values may be accessed from the
boundary cache each clock period, routing of the operands must be delayed for
at least one clock period while all of the boundary-point values are inserted
into MASNET.

Delays may also occur in routing the BPD data out of the hyperspace
routers. This situation arises during burst transmissions where a significant
portion of the BPD data is transferred between Nodes which are not directly
linked by the hypercube network. Since the BPD data must then be routed over
a series of hyperspace routers, the switch networks of the routers may become
overloaded. If the overloading is severe enough, the BPD data will not be
present in the boundary cache of the destination Node at the time it is
required in an ongoing computation, causing a temporary suspension in the
computations. This type of internode communication delay is most likely to
occur in algorithms where the computations are not localized (e.g. global
spectral methods). For algorithms in which the computations are 1localized
(e.g. finite-difference methods), the amount of data which must be transferred
between Nodes is small enough that delays in routing the data out of the
hyperspace routers are unlikely to cause a suspension in the computations,

particularly since the data is pre-communicated.
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Numerical Simulation of Laminar-Turbulent Transition

The particular problem considered in this analysis is the numerical
simulation of laminar-turbulent transition in plane Poiseuille flow. The
channel flow geometry is illustrated in fiqure 5. The governing equations are
the incompressible time-dependent Navier-Stokes equations with constant vis-
cosity. Employing the usual scaling for the channel, the lengths are scaled
by the channel half width, £ , and the velocities are scaled by the centerline
velocity for the mean flow Uy Written in rotation fornm, the

nondimensionalized equations are

u, =u xw- VP + (1/Re) VZQ - fi

~t
(1)
Vou=0
where
w=Yxuy

P=p+1/2 |uf?

azuo(y)

ay2

uo(y) denotes the mean flow velocity, and Re = Uoz/v the Reynolds number. The

£

{1/Re)

forcing function f represents the mean pressure gradient which drives the mean
flow.

Boundary conditions implied in this formulation are the no-slip condition
at the walls, and periodic boundary conditions in the spanwise direction. For
a true spatially developing flow, appropriate inflow, and outflow boundary
conditions are applied in the streamwise direction. However, determination of

an appropriate outflow boundary condition (a problem which has yet to be
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The temporal discretization of the above equatiéns involves a low storage
second-order Runge-Kutta treatment of the advection term and a Crank-Nicholson
treatment of the diffusion term in the velocity step, with a backward Euler
pressure correction applied after each Runge-Kutta stage. For simplicity,
second-order Runge-Kutta is used in this analysis. However, higher order
Runge-Kutta schemes may be incorporated with only minor modifications to the
solution procedure detailed herein. With minor changes in notation from egs.

(2) and (3), the time discretized equations may be written as

g* - (h/4re) Vur = u" + (/2) ¥ + (h/are) VA (4)
(2/h) (un+1/2_ u*) = _vpn+1/2
(5)
Vogn+1/2 =0
u** - (h/4Re) VZE** = EF+1/2+h(En+1/2 '1ﬁzﬁn) + (h/dRe) V2Q§+1/2 6)
(2/h) (gn+1 _ E**) - —VPn+1
+1 (7)
voul =0

-~

where F = u x o - £fi, and h denotes the time increment. In order to make the
pressure correction step amenable to solution, the divergence of the pressure
equation is taken and the incompressibility constraint is enforced on it.

Absorbing the time increment into the pressure value, then from eq. (5),

2Pn+1/2

v =V our (8)

(Equation 8 is the consistent Poisson equation. It represents the composition

of the discrete divergence operating on the discrete gradient of the
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resolved adequately) 1is particularly difficult ih that conditions at the
boundary are not known a priori. Although the outflow boundary conditions
utilized in previous low resolution simulations of spatially developing shear
flows have a relatively small upstream influence on the solution [7, 8], it is
unclear as to whether these boundary conditions are adequate for a full
laminar-turbulent transition simulation., If the parallel flow assumption is
made, periodic boundary conditions are applied in the streamwise direction.
The initial condition is that of a small disturbance superimposed upon fully

developed plane Poiseuille flow.

Algorithm formulation. - The solution algorithm is based on a time-
splitting scheme in which the solution is advanced from t = t? to t = £+ as
follows: in the first step,

2 o
g =uxo + (1/Re) V'u - fi (2)
is integrated from t" to the intermediate time t*; in the second step,
g, = -vp (3)
Vou-=20

is integrated from t* to g+, Application of the boundary conditions for
this scheme is discussed in detail by Zang and Hussaini [9], and will not be
covered here. However, it should be noted that whereas a staggered grid is
used for the pressure in the formulation of [9], a non-staggered grid is used
in this formulation. Use of the non-staggered grid not only changes the form
of the spatially discretized equations, but also necessitates the application

of a consistent artificial boundary condition for the pressure [10].
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pressure.) Upon solution of this Poisson equation for the pressure, the

velocity is corrected from

= u* - VPn+1/2 (9)

~

En+1/2

The pressure correction step after the second Runge-Kutta stage is treated in
a similar manner.

Formulation of the algorithm is completed by spatially discretizing the
equations. Since the NSC is tailored towards algorithms in which the computa-
tions are 1localized, central-differencing is used in the spatial discreti-
zation of this formulation. The computational grid for this problem is
Cartesian with uniform spacing in the streamwise and spanwise directions, and
arbitrary stretching in the vertical direction. Grid stretching is used in
the vertical direction so that grid points can be concentrated near the walls,
where gradients in the primitive variables are especially large.

Solution procedure. - The procedure for advancing the solution from

t = 0! begins with the calculation of the three components of the advection

term,
Fro=u x Qn - fi (10)

The second step of the procedure entails calculating the right hand side of
the Helmholtz equation for the x velocity component, and then solving the
Helmholtz equation to update u to the intermediate time level t*. This proce-
dure is then repeated for the y and z velocity components. Denoting the right

hand sides of the three Helmholtz equations as L, then the equations are

1" = o + (h/2) B + (h/are) VA" (11)
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u* - (h/4Re) vzxy = I:n (12)

Upon updating the velocity components, the right hand side of the Poisson
equation is calculated, and then the Poisson equation is solved for Pnﬂ/%

where

K* = V o u* (13)

v2pt1/2 _ g (14)

Corrected values of the velocity components are then determined from

En+1/2 n+t/2

= ll*__VP (15)

The above procedure is then repeated for the second stage of the algorithm to

advance the solution to tn+1. The only difference in the second stage calcu-
lations is that F" is absorbed in the calculation of §n+1/2 , as
En+1/2 - gn+1/2 x &P+1/2 - fi - (1/2) En (16)

As mentioned previously, two iterative methods for solving the Helmholtz
and Poisson equations are considered in this analysis. The first method is
Red-Black SOR. This is an explicit two-color point method in which a point
Jacobi type iterative scheme is utilized. A complete iteration involves
updating red points (i+j+k odd) first, and then updating black points (i+j+kﬁ
éven) using the latest available values in calculation of the residual.

The second method is ZEBRA 1, which was developed as a means for perform-

ing line relaxation in a vectorizable manner [11]. It is a two-color line
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scheme in which line SOR is performed along alternating lines, where the grid
in planes normal to those lines has a checkerboard pattern. In this algorithm
the 1line relaxation is performed in the vertical direction, which is the
direction of grid stretching. The tridiagonal systems of equations generated
for the vertical lines are first solved along red lines (i+j even), and then
solved along black lines (i+j odd) using the latest available values in the
residual calculation. The tridiagonal systems of equations are solved using
the Thomas algorithm.

This section of the paper is concluded with a brief discussion on
enforcement of the boundary conditions, since this subject has been avoided up
to now. In many algorithms, and in this algorithm in particular, enforcement
of the boundary conditions involves minor modifications to the discrete
equations at the boundaries. These modifications generally consist of either
adding or deleting a few terms from the discrete equations, without changing
the form of the equations. On the NSC, incorporation of snch modifications to
the RALU pipelines involves a reconfiguration in which a few processing ele-
ments are either added to, or deleted from, the pipeline. Since the RALU is
reconfigurable every clock period, in most cases the reconfiguration may be
performed without interrupting the routing of operands through the pipeline.
Therefore, on the NSC, the treatment of boundary conditions has little or no
effect on the implementation of computational procedures, or on the computa-
tion rate. For this reason, and in order to keep the remainder of this analy-
sis as simple as possible, the treatment of boundary conditions is avoided in

subsequent sections.
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Implementation of the Algorithm

Implementation of the aforementioned algorithm begins with a determi-
nation of how the computational domain is to be distributed over the Nodes.
For now it is assumed that an LxMxN computational grid is subdivided into 128
subdomains of dimension IxJxK, where I = L/8, J = M/4, and K = N/4. In order
to simplify the computational procedures, it is further assumed that I is an
even number, and that J and K are multiples of 4. Conceptually, the computa-
tional domain is mapped into a three-dimensional 1lattice of Nodes. For
finite-difference algorithms then, each interior Node need communicate only
with its adjacent Nodes., Boundary Nodes (i.e. Nodes into which grid points
from the boundary of the computational domain have been mapped) must also
communicate with non-adjacent Nodes in situations where periodic boundary
conditions are to be enforced. The hypercube network does not provide direct
links between all adjacent Nodes in a three-dimensional lattice, or between
apposite non-adjacent boundary Nodes.

With this mapping of the computational domain, the Nodes typically per-
form identical processes., In fact, the only situation for which processes
differ is when boundary Nodes are evaluating terms in which the boundary
conditions are enforced. As discussed in the section on algorithm formu-
lation, treatment of the boundary conditions requires only minor modifications
to the RALU pipelines. Hence, the procedures for implementing the. algorithm
in the boundary Nodes are nearly identical to the procedure implemented in the

interior Nodes.
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Oon the nodal level, a procedure for allocating memory planes to store the
variables must be chosen. This allocation procedure is crucial to efficient
implementation of the algorithm as it not only affects the ordering of values
in the operand and result vectors, but also influences the actual configu-
ration of the RALU pipelines. 1In the following analysis, the same allocation
procedure is used for the Red-Black SOR and ZEBRA 1 solutions of the Helmholtz
and Poisson equations. Hence, the procedures for computing the explicit terms
in the algoithm are identical for the two iterative methods.

Schematics illustrating the memory plane allocation procedure for storing
the primitive variables u, v, w, and p are presented in fiqures 6, 7, 8, and
9, respectively. Here, two-dimensional subsets of the grid in x-y planes are
illustrated. The two numbers above each grid point denote the (i, j) indices
of the point; the number below each grid point denotes the memory plane in
which the particular variable is stored. Grid points on the dashed lines
indicate points which have been mapped into adjacent Nodes. The sequences for
allocating the memory planes in the vertical direction are repeated for every
fourth x-y plane.

To illustrate the ordering in which a variable is stored within a given
memory plane, storage of the primitive variable u within memory plane 0 (MPO)
is considered. From figure 6, with k set equal to 1, grid point (1, 1, 1) is
the first point for which u is stored in MPO. Consecutive grid points are
determined by moving across the grid in x, then up the grid in y. Hence,

consecutive memory locations in MP0O contain the values of u for grid points
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(1, 1, 1), (2, 1, 1), (3, 1, 1),00eee, (I, 1, 1),
(1’ 5, 1), (2, 5’ 1), (3, 5, 1),00..., (II 5' 1)’

(1, J-3’ 1), (2, J-3, 1), (3, J-3, 1),..0.0, (I, J-3, 1)

Moving up the grid to plane k=3, the next set of consecutive memory locations

in MPO contain the values of u for grid points

(1, 3, 3), (2, 3, 3), (3, 3, 3),000ee, (I, 3, 3),
(1, 7, 3), (2, 7, 3), (3, 7, 3),e00e., (I, 7, 3),

(1' J-1’ 3), (2, J-‘, 3)’ (3, J-1, 3),0.-.., (I, J-1, 3)

This sequence for storing the values of u is repeated for planes k=5 and
7., k=9 and 11, etc., up through planes k=K-3 an k=K-1. It follows that the
values of u for one-eighth of the grid points are stored in MPO. The remain-
ing values of u are distributed over MPs 1-7, using similar procedures to
assign the array elements to consecutive memory locations.

Comparison of figures 6, 7, 8, and 9 indicates that at every grid point
for which u is stored in MPO, the values of v, w, and P are stored in MPs 8,
2, and 10, respectively. Consequently, the sequence for storing the values of
v,w, and P at these grid points is identical to the sequence for storing u.
Similar relationships between the variables, and the memory planes in which
the variables are stored, hold at all other grid points.

The manner in which the variables are stored suggests a natural ordering
for values in the operand and result vectors. In general, the seguential

order of values in a given vector is the same as the order in which those
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values are stored. This natural ordering gives vector lengths of IxJxK/8.
There are two occasions when orderings other than the natural ordering occur.
One occasion is when elements of an operand vector are accessed as BPD data
from neighboring Nodes, in which case those values are inserted into the
vector as the operands stream through MASNET. The other occurrence is in the
iterative solution of the Helmholtz and Poisson equations, as will be dis-
cussed later in this section.

Calculation of the Advection Term. -~ The first term to be calculated is

the advection term for the first stage of the Runge-Kutta/Crank-Nicholson
temporal discretization, Using second-order central differencing in the
spatial discretization of Eq. (10), and denoting the (x, y, z) components of
the advection term and the vorticity vector as F = (F,G,H) and @ = (¢n, ),

the components of the advection term may be written as

n n I n I

Fisk ™ Vigx%iik T YijkMigk T (17)
61k = VigxGigk u?jkcgjk (18)
H?jk = u?jkngjk - v?jkEij (19)

where
Ek™ Mhgark Yigond/28Y - (A Vi gt am Vit 9 ViK1’ (20)
ng : 3 . 5 )/ 28x (21)

= - - W, ..
ik = Meigker T MYkt I55k-1 T Wieigx T Viegk

n

noo_ 0 -0
ij+1k ij=-1k

n
ik Vi+1jk Vio1yx)/28% (u

}/ 24y (22)

and dhy, dm., and d!,k denbte the coefficients for the first derivative in the

strectched coordinate direction at plane k.
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Calculation of the advection term components is performed using a two-
step procedure. In the first step, n, Z, and F are computed at one~eighth of
the grid points. The computation begins for the grid point (1, 1, 1).
Consecutive values in the result vectors will be for grid points (1, 1, 1),
(2, 1, 1), (3, 1, 1), etc. (i.e., the same series of grid points for which u
is stored in MPO). from Egs. (17), (21), and (22), calculation of n, r, and F
at grid point (i, j, k) reguires the values of uijk' uij+1k' uij-1k’ uijk+1'
Yiik-1r Vijks Visrjk’ Vi-1k’ Yijk’s Yi+1jks and Wi_y4xe  Looking at an
interior grid point associated with the result vectors, say point (2, 5, k)
(see fiqures 6, 7, and 8), the above operands reside in MPs O, 1, 3, 4, 6, 8,
8, 8, 2, 2, and 2, respectively. Likewise, at grid point (3, 5, k), the
operands reside in the next consecutive memory location of their respective
memory planes. This indicates that except for those operand values which are
accessed as BPD data from adjacent Nodes, the values for a particular operand
vector are accessed from consecutive memory locations of the same memory

plane.,

It should also be noted that the vectors for V‘jk' vi+1jk' and v,

i i-1jk @re

all generated from MPS. The process for generating these vectors, called
"vector latching,® utilizes the vector delay and regeneration capabilities of
MASNET. In the vector latching process, the values streaming out of MP8

constitute the values of the vector for v,

i+19k* As these values are routed

through one of the switch elements in MASNET, they are also stored in the
local memory of the element. One clock period later, the values are routed
out of the element as a second vector. This second vector contains the values

of vijk' which have been offset from the Vi+1jk values by one value., At the
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next switch element, this process is repeated to generate the vector for
Vi-1jk* Vector latching is also used to generate the vectors for Wi_19k’

wijk' and w,

1+19k from MP2,.

An illustration of the RALU pipeline configuration for calculating n, g,
and F is presented in figure 10, Here, the operand memory planes, and the
variable stored in each plane, are indicated at the top of‘the figure. The
vector latches for v and w are indicated by the paths the operands take in
MASNET. In this 17 operation RALU pipeline, the values of n and 7 are calcu-
lated in independent pipelines. Upon calculation of these terms, they are
routed both to memory, and to the remainder of the pipeline for calculating
F. The results for n, Z, and F are stored in to MPs 9, 11, and 12
respectively.

The second step of the advection term calculation procedure is to calcu-
late £, G, and H at the same grid points for which n, g, and F are calculated
in the previous step. From Egs. (18), (19), and (20), calculation of these

terms at grid point (i, j, k) requires the values of Uigkr Vigkr Vijk+1”
vijk-1' wijk’ wij+1k' wij-1k’ r&jk’ and Cijk « From figures 6, 7, and 8, the
values of the first seven operands reside in MPs O, 8, 12, 14, 2, 3, and 1,
respectively. From the previous step, the values of n and f reside in MPs 9
and 11, respectively. The 14 operation pipeline for performing the second
step computations is illustrated in fiqure 11. As indicated at the bottom of
the figure, the results for G and H are stored in MPs 4 and 13, respectively.
At this point in the computation, the three components of the advection

term will have been computed at one-eighth of the grid points. 1In order to

calculate the advection term at the rest of the grid points, this two-step
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procedure is then repeated seven times. The sequence in which the first and
second step calculation procedures are performed is outlined in tables 1 and
2. Listings of the memory planes in which the operand and result values for
each step are stored are also presented in these tables.

In order to project the amount of time it would take for calculation of
the advection term, the startup time, actual computation time, and internode
communication delay time must be determined. In the various steps of the
calculation procedure, once the pipeline is full, and assuming there are no
delays, results are generated every clock period. Consequently, for a given
step of the procedure the actual computation time, in clock periods, is
IXIxXK/8 (i.e., the length of the vectors). Hence, the actual computation time
for the advection term computation is 2 IxJxK clock periods.

For the first step in the procedure, startup time is accrued as the first
values of the operand vectors are accessed from memory and routed throuagh
MASNET and the RA%U, and as the first values for the result vectors are routed
back through MASNET and stored in memory. The initial startup time for this

process is

to Aaccess operands from memory

to route operands through MASNET, including the vector latch
to route operands through the RALU

to route results through MASNET

to store results in memory

24 clock periods

B

Additional delay time is accrued whenever the constant parameter latches which
contain the coefficients for the first derivative in the stretched coordinate
direction must be reset. For instance, after the operands for grid point

(I, J-3, 1) have been processed through the first row of floating-point
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processing elements in the RALU, the next operands to be processed in these
elements are for grid point (1, 3, 3). Since the value of the k index has
changed, the constant parameter latches containing the values of dhk, dm ,
and dzk must be reset before the computation can be continued. It takes 6
clock periods to reset these latches each time the computations proceed to
another vertical plane. Lumping this delay time with the initial startup
time, the total startup time for the first step is 24+6 (K/2-1) clock periods.

The initial startup time for the second step of the procedure is 22 clock
periods. The reason for this delay is that MPs 9 and 11, which are used to
store results in step 1, are accessed for operands in step 2. Since a memory
plane cannot be accessed for operands while it is being used to store results,
operands from MP 9 and 11 cannot be accessed until the last results from step
1 have been stored. Consequently, the computations must be suspended until
the first operands for the second step have been routed through MASNET.
However, in step 3, none of the memory planes which are accessed for operands
have been used to store results in step 2. Therefore, the only initial start-
up time for step 3 is the time to reset the constant parameter latches.
Determining thé startup time for the other 13 steps in a similar manner, the
total startup time for calculation of the advection term is found to bhe
162+48K clock periods.

In computing the advection term, BPD data for the variables u, v, and w
must be present in the boundary caches of the Nodes. Considering the variable
u, boundary-point values are required at all (i, 1, k), (i, J, k), (i, 3, 1),
and (i, j, K) grid points, for a total of 2(IxJ+IxK) values. Similarly, the

number of v and w boundary-point values required are 2(JxK+JxI) and
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2(KxI+KxJ), respectively. Thus, a total of 4(IxXJ+IxK+KxI) boundary-point
values are required for computing the advection term at all of the grid
points. Subdomains of dimension 420x420x240 are utilized in one of the
examples presented at the end of this section. For subdomains of this size,
computation of the advection term requires around 1.5%10° boundary-point
values. However, the boundary cache has a 1 Mword storage capacity, so it is
not possible to store all of the requisite BPD data within the boundary cache,
prior to beginning the computations.

In order to avoid situations where BPD data is not in the boundary cache
of the Node at the time it is required, the advection term is computed at one-
half of the grid points at a time. Thus, before beginning the computational
procedure, the boundary cache of each Node is reloaded with the BPD data for
performing the computations at the first half of the grid points (i.e. steps
1-8 in tables 1 and 2). For an interior Node, this requires the communication
of 2(IxJ+IxK+KxI) boundary-point values to its adjacent Nodes. Utilizing the
scatter-gather capabilities of the Nodal memory, and accessing the BPD data
from four memory planes at a time, the delay for this process is
1/2(IxJ+IXK+KxI) clock periods. Upon completion of the computations at the
first half of the grid points, computations are suspended while the boundary
caches are relcaded with the BPD data for computations at the second half of
the qrid points. The total internode communication delay for reloading the
boundary caches is IxJ+JIxXK+KxI clock periods. There are no other internode
communication delays in the advection term calculation procedure.,

Combining the startup time, actual computation time, and internode com-

munication delay time, the total time for computation of the advection term is
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164+ (48+2IxT )K+IxI+IxK+KxI clock periods. The operation count for the pro-
cedure is 31 IxJxK. Neglecting the startup cost and internode communication
delay cost, the nominal operation rate of the procedure is 310 MFLOPS,

Calculation of the Remaining Explicit Terms. - The next term to be calcu-

lated is the right hand side of the Helmholtz equation for the x velocity
component. Using second-order central differencing in the spatial discreti-
zation of Eq. (11), and denoting the components of L as L = (L, M, N), then
the x velocity component of the equation may be written as

Lh n

n
ijk = uijk + (h/2)Fijk + (h/4Re) ((u

. 2

n un
i+13k i-13k

) /Ax
(23)

I L R T LAY
where
B =Dm - 2/Mx° - 2/&y°
and th, Dmy, and le denote the coefficients for the second derivative in the
stretched coordinate direction.

The first step of the calculation procedure is to compute the values of L
for the vector beginning at grid point (1, 1, 1). From figure 6, the values
of u for this computation reside in MPs 0, 1, 3, 4, and 6. As indicated in
table 1, the values for F are accessed from MP 12, The 15 operation RALU
pipeline for calculating the right hand side of the Helmholtz equation is
illustrated in figqure 12, As indicated at the bottom of the figure, the
results for L are stored im MP 8.

The sequence for the remaining 7 steps of the calculation procedure, and

the memory planes utilized in each step, are listed in table 3. The startup

time and actual computation time for the procedure are 18+24K clock periods
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and IxJxK clock periods, respectively. The internode communication delay
time, which is accrued while the boundary cache is relocaded with the
2(IxJ+IxK+KxI) boundary-point values of u required in the computations, is
1/2(IxXIHIXK+KxI) clock periods. Note that for subdomains of dimension
420x420%x240, the storage capacity of the boundary cache is large enough to
store all of the BPD data for u. The operation count for this procedure is 15
IxJxK, and the nominal operation rate is 300 MFLOPS,

The next step in the solution algorithm is to solve the Helmholtz
equation for the x velocity component. The Red-Black SOR and ZEBRA 1
iterative procedures for solving the Helmholtz equation are discussed later in
this section. Upon solution of this equation, the next steps in the algorithm
are to compute the right hand side of the Helmholtz equation, and then solve
the equation, for the y velocity component, and then for the z velocity compo-
nent. The procedures for computing the right hand side of the Helmholtz
equation for the y and z velocity components are identical to the procedure
for the x velocity component, although different memory planes as utilized in
the various steps of the procedures. The total time to compute the right hand
sides of the three Helmholtz equations is 54+(72+3IxJ)K+3/2(IxJ+HIxK+KxI) clock
periods, and the operation count is 45 IxJxK.

The next step in the algorithm is to compute the right hand side of the
Poisson equation for pressure. Spatially discretizing BEg. (13), the term may

be written as

K¥. = {

ik )/ 2Ay

Y/2Ax + (vi*j -

* - * %
Uik T Uio1gx +1k T Vij-1k

(24)

* * *
A ImEse Tk
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In computing the values of K, 7 operands are required and one result is gener-
ated, using 8 of the MASNET output ports. Since 16 output ports are avail-
able, it is possible to compute this term for two distinct vectors at the same
time. The 22 operation RALU pipeline for performing this computation is
illustrated in fiqure 13. Here, the left side of the pipeline computes the
values of K for the vector beginning at grid point (1, 1, 1), and the right
side computes the values of K for the vector beginning at grid point
(1, 2, 1). The sequence for the steps of the calculation procedure, and the
memory planes utilized in each step of the procedure, are listed in table 4.
The total time to compute thé right hand side of the Poisson equation is
34+24K+(1/2) (IxIXxK+IxJHhIXK+KxI) clock periods. The operation count is 11
IxJxK, and the nominal operation rate is 440 MFLOPS.

The next step in the algorithm is to solve the Poisson equation for the
pressure. As for the Helmholtz equation, the iterative procedures for solving
the Poisson equation are discussed later in this section.

The last procedure for the first stage of the Runge-Kutta/Crank-Nicholson
temporal discretization is to correct the velocity values using the updated
values of the pressure. From the spatial discretization of Eg. (15), the

three velocity correction equations may be written as

n+1/2 _ _n+1/2

n+1/2_ _
Yisk = Uk T Pisge T Fioagi)/2M (25)
n+1/2 * n+1/2 n+1/2
- - - o
Visk = Visk T Figee T Figoik/2AY (26)
n+1/2_ _ n+1/2 n+1/2 n+1/2
wijk = wijk (dhkpijk+1+ dmkPijk + dzkpijk-1) (27)
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The 12 opeation RALU pipeline for performing the velocity correction computa-
tions is illustrated in fiqgure 14, 1In this figure, the memory planes indi-
cated are for the computation of u, v, and w for the vectors beginning at grid
point (1, 1, 1). The sequence for the eight steps of the calculation proce-
dure, and the memory planes utilized in each step, are listed in table 5. The
startup time and actual computation time for the procedure are 120+48K and
IxJxK clock periods, respectively. Note that the step prior to the velocity
correction procedure is the solution of the Poisson eguation for riressure.
Therefore, the boundary cache already contains the updated pressure values
which are accessed as BPD data in the velocity correction procedure. As a
result, there is no internode communication delay for this procedure.

Upon completion of the velocity correction procedure, the values for u,
v, and w no longer reside in the memory planes in which they were stored
initially. 1In order to simplify the implementation of subsequent procedures
in the algorithm, these values are transferred back to their initial memory
locations. As indicated in table 5, the values of u, which were initially
stored in MPs 0-7, reside in MPs 8-15. The memory plane-to-memory plane
transfers of these values, which are implemented by routing the vectors
through MASNET, may be performed for all eight vectors simultaneously. It
takes IxJxK/8 clock periods to perform this procedure. The values for v and w
are treated in a similar manner. Combining this transfer time with the start-
up time and actual computation time, it takes 120+48K+1.375 IxXJxK clock
periods to implement the velocity correction procedure. The operation count

for the procedure is 12 IxJxK, and the nominal operation is 174 MFLOPS.
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At this point in the algorithm, the primitive variables have been
advanced to the t=t"*1/2 tipe level. The next steps in the algorithm are to
perform the computations for the second stage of the Runge-Kutta/Crank-
Nicholson temporal discretization, to advance the solution to t=tn+1. Compar -
ison of the equations for the two stages reveals that the only differences
occur in calculation of the advection term, as indicated by Egs. (10) and
(16). However, the additional term which appears in each of the three
advection term component equations is easily treated with only minor modifica-
tions to the RALU pipelines. Hence, the calculation procedures for the second
stage are nearly identical to those for the first stage, and will not be
discussed here,

For advancement of the solution from t=t" to t=tn+1

, the time involved in
computing the explicit terms is 522+348K+13.75 IxIxK+6(IxJ+IxK+KxI) clock
periods. The operation count for these computations is 204 IxJxK. Neglecting

the startup time and internode communication delay time, the sustained opera-

tion rate is around 297 MFLOPS.

Red~Black SOR Solution of the Helmholtz and Poisson Equations: Red-Black

SOR is a two-color point method in which a point Jacobi type iterative scheme
is utilized. A complete iteration entails updating red points (i+j+k odd)
first, and then updating black points (i+j+k even) using the latest available
values in calculating the residual. Considering the first Runge-Kutta stage

of the algorithm, the Helmholtz equation for the x velocity component is
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u* - (h/4Re) V2u* =" (28)

After second-order central differencing Eg. (28), the residual equation may be

written as

m n v v 2 v v 2
(4Re/h)Rijk = (4Re/h)Lijk + (ui+1jk+ui-jk)Ax + (uij+1k+uij-1k)/Ay (29)
v v m
DB Uy PR ke T Bk
where
2 2
Bk = (4Re/h) + 2/Mx" + 2/Ay" -~ Dmk ’

v =m for red points, v = m+1 for black points, and m denotes the iteration

level. Applying successive over-relaxation (SOR), the update egquation becomes

m+1 o™
ijk ijk

+ W (4Re/h)R?jk/Bk (30)
where w denotes the relaxation parameter.

The first step of the computational procedure is to update the values of
u for the vector beginning at grid point (1, 1, 1), at red points only (i.e.
grid points (1, 1, 1), (3, %, 1), (5, 1, 1), etc.). Hence, consecutive values
in the operand vectors are accessed from every other sequential memory loca-
tion of the appropriate memory planes, rather than from consecutive memory
locations. This gives vector lengths of IxJxK/16 for each step of the compu-
tational procedure. The 17 operation RALU pipeline for calculating the resid-
vals, performing an in-line local convergence check, and updating the values
of u is illustrated in figure 15. The memory planes indicated in the figure
are for the first step of the procedure, where the values of u@ are

ijk
m+1
accessed from MPO and the values of uijk
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Subsequent steps in the computational procedure involve updating the
values of u for the remaining red points, and then updating the values of u
for the black points. The grid point at which the computations are begun for
each step, and the memory planes utilized, are listed in table 6.

In order to simplify the implementation of subsequent iterations, the
updated values of u are always transferred back to their initial memory loca-
tions. Hence, each step of the procedure also involves a memory plane-to-
memeory plane transfer of the updated values via MASNET, as indicated at the
right of figure 15, The memory planes utilized in the intranode data trans-
fers, and the sequence in which the transfers occur, are listed in the last
two cloumns of table 6. As indicated, the values of u which are updated in
the first step, are transferred back to their initial memory locations in the
third step.

The iterative solution of this Helmholtz equation requires 2(IxJ+JxK+KxI)
boundary-point values of u per interior Node. For the computational sub-
domains considered in this analysis, all of the BPD data may be stored within
the boundary cache. As an iteration proceeds and values of u are updated, the
updated boundary-point values are immediately routed to their destination
Nodes, replacing the old values. For a global mapping of the computational
grid as specified at the beginning of this section, the BPD data generated
from updating u at red points is not used in the destination Nodes until black
points are updated, and vice versa. For the sequence of computations speci-
fied in table 6, the time between updating a boundary-point value and
utilizing that wvalue in the destination Node is at least IxJxK/4 clock

periods. Thus, the BPD data is pre-commumicated long before it is regquired in
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an ongoing computation of a destination Node, but is never communicated before
the old values have been utilized. This not only ensures proper operation of
the iterative method, but also ensures that there are no internode communi-
cation delays for the computational procedure.

The total computation time for performing a Red-Black SOR iteration,
including the intranode transfer of all the updated values back to their
initial memory locations, is 36+48K+(1+1/16)IxIxK clock periods. Assuming it
takes h iterations to attain global convergence of the solution, the total
computation time for solution of the Helmholtz equation is hr (36+48K+IxJIxK)
+1/16(IxJIxK) clock periods. The operation count for the procedure is 17 h,
IxIJxK. The nominal operation rate is 340 MFLOPS.

The procedures for solving the Helmholtz equations for the y and z
velocity components are identical to that for the x velocity component,
aithough different memory planes are utilized in the various steps. Solution
of the Poisson equation is also quite similar, in that only minor modifica-
tions to the RALU pipeline must be made. After central-differencing Eg. (14),

the residual and update equations for the Poisson equation are

m \V v 2 v v 2
R,., = . ., + P, . + . . . .
ijk (P1+1jk l—1jk)/Ax (P13+1k + P13-1k)/Ay (31)
v v m
- - *
¥ OMePsgeer * PRPigker T BiePigx T Kk
m+1 m m
pijk = Pk + (uRijk/Bk (32)

where

B, = 2/Ax2 + 2/Ay2 - Dm

k k
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Comparison of Bgs. (31) and (32) with Egs. (29) and (30) indicates that there
is one less operation in the RALU pipline for the Poisson equation. However,
the computation time for performing an iteration is the same as that for the
Helmholtz equation. Assuming that 2 iterations are required to attain global
convergence of the solution, the total computation time for solving the
Poisson equation is p,. (36+48K+IxJxK)+(1/16)IxJxK clock periods, the operation

count is 16 P, XIxJxK, and the nominal operation rate is 320 MFLOPS.

ZEBRA 1 Solution of the Helmholtz and Poisson Equations: ZEBRA 1 is a

two-color 1line method in which 1line SOR 1is performed along alternating
vertical 1lines. The tridiagonal systems of equations generated for the
vertical lines are first solved for red lines (i+j even), and then for black
lines (i+j odd) wusing the 1latest available wvalues in computing the
residuals. Once again considering the Helmholtz equation for the x velocity
component at the first Runge-Kutta stage, the residual eguation for ZEBRA 1

may be written as

(4Re/h)Rni‘jk = (4Re/h)Lri‘jk + (u_‘:’\qjk + ui\)_1jk)/Ax2 + (u;)jﬂk + ui"j_1k)Ay2
(33)
+ Dh g T Byt Do gxey
where
B, = (4Re/h) + 2/&* + 2/8y% - pm_,
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v =m for red lines, and v = m+1 for black lines. After applying line SOR,

the update equation, written in delta form, becomes

m m m _ m
DL gy b B/ W Buy gy - Dy Auy gy, = (4Re/RIR, 5y (34)
where
m m+1 m

Aok = Y5k T Yigk

and w denotes the relaxation parameter. Utilizing the Thomas algorithm to

solve the tridiagonal systems of equations, a two-step procedure is developed

for updating the velocity. 1In the first step

t
]

m
ik ((4Re/h)Rijk + DzkEijk_1)/(Bk/w - leFijk_1) (35)

th/(Bk/w - Dzk ) (36)

Fijk Fi5k-1
are calculated from k = 1 up through k = K. 1In the next step

m m

- 37
Aok = Bigx t FigkYiik4 (37)
m+1 m m

ik = uijk + Auijk (38)

are calculated from k = K down through k = 1.

The computational procedure begins with the calculation of E and F for
the vectors beginning at grid point (1, 1, 1), at those grid points which lie
along red lines. Consecutive values of the operand vectors are thus accessed

from every other sequential memory location of the appropriate memory planes.
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Subsequent steps in the procedure involve the calculation of E and F at grid
points which lie along this same subset of red lines, moving up the grid in
the vertical direction. Due to the recursive nature of the Thomas algorithm,
the computations proceed up the grid in consecutive x-y planes. Hence, for
the memory plane allocation procedure utilized herein, the computations may
only be vectorized accross x~y planes, and the vector lengths are IxJ/8. Upon
completion of the calculation of E and F at all grid points which lie along

this subset of red lines, Au" and u™*!

are calculated along the same lines,
proceeding down the grid in the vertical direction. Again, the vector 1lengths
for this procedure are IxJ/8. Upon completion of these computations, u will
have been updated along one-fourth of the red lines.

The 22 operation RALU pipeline for calculating the residual, performing
an in-line local convergence check, and computing the values of E and F is
illustrated in figure 16. The memory planes indicated are for the vectors
beginning at grid point (1, 1, k). The sequence of steps in the procedure for
computing E and F for this subset of red lines, and the memory planes utilized
in each step, are listed in table 7. As indicated at the right of the figure
and in the last two columns of table 7, the computational procedure alsc
involves an intranode data transfer 6f the values of u';jk to a memory plane
for temporary storage. This memory plane-to-memory plane transfer is per-
formed so that in the second step of the procedure, where values of u‘:;l are
calculated, the updated values may be stored in their respective initial
memory locationse.

+1

The next step in the procedure entails computing A" and u™ at grid

points along the subset of red lines for which E and F are calculated in the
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previous step. The 9 operation RALU pipeline for performing this calculation
is illustrated in fiqure 17. In this pipeline, the computations are performed
in 3 consecutive x-y planes, simultaneously. Beginning at the left of the

figure, values of Au, .

15Kk+3 are routed to the RALU for use in the computation of

m

Au « The computed values of AuT

15k+2 i3k+2 then branched off to two indepen-

dent pipelines. In the left pipeline, the values of uw+1

ijk+2 are computed and

then routed to memory; in the right pipeline the computations for Au?jk+1 are

. . . . +
bequn. This process is repeated twice in order to compute u?;;+1 and uTj; .

As indicated at the bottom right of the figure, the values of Au?jk are
routed out through MASNET and temporarily stored in the vector delay and
regeneration unit. 1In the subsequent step, these values are then routed back
m

to the RALU for use in calculating Auljk-1

« The sequence of procedures for
updating u for this subset of red lines, and the memory planes utilized in
each step, are listed in table 8. Note that the sequence of calculations are
repeated every 12 x-y planes.

At this point in the computations, the values of u will have been updated
at the grid points for one-fourth of the red lines. Subsequent steps in the
procedure entail updating the values of u for the remaining red lines, and
then for black lines.

For the previously specified mapping of the computational grid into the
Nodes, where K = N/4, the grid points which lie along a given vertical 1line
are mapped into four different Nodes. For the ZEBRA 1 computational procedure
described above where the computations proceed up, and then down the grid in

consecutive x-y planes, three of the four Nodes will be idle at any given

time. 1In order to avoid this situation, a different mapping of the computa-
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tional grid is utilized in which the subdomains of dimension IxJxK have dimen-~
sional lengths of I = L/16, J = M/8, and K = N. To further simplify the
implementation of the procedures, K is assumed to be a multiple of 12.
Conceptually, the computational domain is now mapped into a two-dimensional
lattice of Nodes, where all grid points along a given vertical line are mapped
into the same Node. The hypercube network then provides direct links between
all adjacent Nodes in the 1lattice, and for interior Nodes, the number of
boundary-point values generated for each primitive variable is 2(IxK+JIxK),
rather than 2(IxXJ+JxK+KxI). This new mapping of the computational domain has
little effect on the computational procedures for the explicit terms, particu-
larly since the Nodal memory plane allocation procedure remains unchanged.b

As with the Red-Black SOR iterative method, the internode communication
requirements for the ZEBRA 1 method are such that there are no internode
communication delays for this computational procedure. Assuming it takes h,
iterations to attain global convergence of the solution, the total computation
time for solution of the Helmholtz equation is hz(1600 + 4IxJ)K/3 clock
periods. The operation count is 25 thxel(, and the nominal operation rate is
375 MFLOPS.

The procedures for solving the Helmholtz equations for the y and z veloc-
ity components are identical to that for the x velocity component. Solution
of the Poisson equation is also quite similar, although there is one less
operation in the calculation of the residual equation. Assuming that P,
iterations are required to attain global convergence of the solution, the
total computation time for solving the Poisson equation is pz(1600 + 4IxJ)K/3,
the operation count is 24 p,IxJxK, and the nominal operation rate 1is 360

MFLOPS.
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Projected Timing Results: The actual computation time for advancing the

solution from time t" to tn+1

is dependent upon the size of the grid sub-
domains, the relative dimensions of the subdomains, and the iterative method
used to solve the Helmholtz and Poisson equations. The size of the grid
subdomains which may be mapped into the Nodes depends upon the effective
number of variables which must be stored per grid point, including the tempo-
rary storage of intermediate results. For the computational procedures
detailed herein, both the Red-Black SbR and ZEBRA 1 algorithms require the
effective storage of 12 variables per grid point.

The relative dimensions of the LxMxN computational grid are dictated by
the directional resolution requirements for the particular problem to be
solved, For a true spatially developing flow, the projected resolution
requirements suggest dimensions of length L = 4xN and M =~ 2xN ., Considering a
computational grid of dimension 3360 x 1680 x 960, which contains roughly

5.4 x 10°

grid points, then the grid subdomains for the Red-Black SOR and
ZEBRA 1 algorithms are of dimension 420 x 420 x 240 and 210 x 210 x 960,
respectively. Storing 12 variables per grid point, subdomains of this size
require about 508 Mwords of storage, utilizing about 99.2% of the available
Nodal storage capacity.

The projected timing results for simulation of the true spatially devel-
oping flow are presented in table 9. For the explicit terms, comparison of
the actual operation rate with the nominal operation rate indicates that the
internode communication delay and startup costs constitute less than 0.5% of

the computation time. For solution of the Helmholtz and Poisson eguations,

the startup costs for the Red-Black SOR and ZEBRA 1 methods constitute less
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than 0.1% and 1% of the computation time, respectively. Timing results for
the Helmholtz and Poisson equation solutions are given as a function of the
number of iterations required to attain global convergence of the solution to
some specified accuracy. The accuracy to which the solutions must be
resolved, and the number of iterations regquired to attain this accuracy, must
still be resolved through numerical experimentation. However, for a computa-
tional grid of this size the spectral radius for both Red-~Black SOR and
ZEBRA 1 approaches 1, so both iterative methods require on the order of
thousands of iterations to attain global convergence of the solutions. Hence,
the sustained operation rate for the algorithm approaches the sustained
operation rate of the Helmholtz and Poisson eguation solvers, which is roughly
76% and 83% of the Nodal peak speed for the Red-Black SOR and ZEBRA 1
algorithms, respectively. The sustained operation rate for a full 128 Node
NSC is projected to be about 43 GFLOPS and 47 GFLOPS, respectively.

Despite the 1large operation rates at which the computations are per-
formed, this simulation requires a substantial amount of computation time.
Assuming that the ZEBRA 1 algorithm only reguires 1000 iterations to attain
global convergence of the solution for each Helmholtz and Poisson equation,
which is quite an optimistic assumption, the time required for advancing the
solution one time step is nearly 6 1/2 hours. Since a full simulation
requires thousands of time steps, the real time for performing these
computations in a dedicated environment is on the order of months. Although
the resolution demands for many laminar-turbulent transition problems require
far fewer grid points than the 5.4 billion utilized in this example, this

result indicates that in order to perform this simulation in a reasonable
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amount of time, iterative techniques with vastly greater convergence rates
than those for Red-Black SOR and ZEBRA 1 must be employed.

One means for enhancing the convergence rates for the Helmholtz and
Poisson equation solvers is to utilize multigrid methods [12, 13} in
conjunction with suitable single grid iterative schemes. Incorporation of the
multigrid methods into the iterative schemes involves the implementation of
additional computational procedures, which involve the projection of the
values onto coarser grids and then interpolation of the values back to finer
grids. The projection and interpolation procedures appear to be well suited
for implementation on the NSC.

In order to approximate the performance of a multigrid method for
performing this simulation, the following assumptions are made for incorpo-
rating a multigrid method into the ZEBRA 1 algorithm. The effective spectral
radius for a full multigrid V-cycle is projected to be around 0.5. Defining
convergence of the solution to be achieved when the residual has been reduced
by 10_5, 18 V-cycles are required to attain convergence. It is further
assumed that the computational work for performing one multigrid V-cycle is
equivalent to that for performing two ZEBRA 1 iterations on the finest grid,
and that there are no additional internode communication delays. Then for the
simulation on a 3360x1680x960 grid, the total time to advance the solution one
time step is projected to be around 14 minutes.

A second means for enhancing the convergence rates of the Helmholtz and
Poisson equation solvers is to utilize conjugate gradient methods [14, 15) in
conjunction with the single grid iterative methods. Incorporation of the
multigrid and conjugate gradient methods into the algorithm, and implemen-

tation of those algorithms on the NSC, are the subject of future work.
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Concluding Remarks

The NSC is a multi-purpose parallel-processing supercomputer which is
being developed to provide an efficient means for simulating large, numeri-
cally intensive, scientific problems. Rapid solution of these problems is
attained by structuring the computational procedures of the solution
algorithms to effectively utilize both the fine grain and coarse grain paral-
lelism inherent in the NSC architecture. The objective of this paper has been
to present a detailed description of the procedures involved in implementing
one such algorithm on the NSC.

Crucial to the effective utilization of the fine grain parallelism is the
choice of a memory plane allocation procedure for storing the array elements
of the various variables. The allocation procedure utilized in this analysis
is fairly complicated in that a lot of "bookkeeping" is required in order to
keep track of where, and in what order, the primitive variables and intermedi-
ate results are stored. Less complicated allocation procedures could have
been used, such as storing all the array elements of a particular variable
within a single memory plane. For most of the computational procedures out-
lined in this analysis, use of this simpler allocation procedure would not
affect significant changes in the RALU pipeline configurations, and only a
slight degradation in the operation rates would be realized. However, the
changes which would be required for implementing the ZEBRA 1 iterative
solution of the Helmholtz and Poisson equations would result in about a 30%

decrease in the operation rate. Conversely, allocation procedures for which
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more efficient RALU pipelines can be configured, could have been utilized.
However, the modest improvement in the operation rates were deemed insuffi-
cient to justify the significant increase in complexity for implementing the
procedures.

Utilization of the coarse grain parallelism involves the distribution of
the computations over multiple Nodes. For the finite difference algorithm
considered here, in which fairly simple iterative methods and a Cartesian grid
with grid stretching in only one coordinate direction are utilized, the compu-
tational grid is mapped into either a two or three-dimensioﬁal lattice of
Nodes, and the Nodes perform nearly indentical processes. Furthermore, for a
given computational procedure, less than 2% of the data need be communicated
between the Nodes. By explicitly defining this boundary-point data and pfe-
communicating the data before it is required in the destination Nodes, most of
the internode communication overhead for implementing this algorithm has been
eliminated.

The projected timing results for implementing this algorithm on the NSC
ihdicate that operation rates at around 75% of the machine peak speed are
attainable, For a 128 Node NSC, the projected operation rates would be in
excess of 42 GFLOPS. However, the timing results also indicate that for
computational grids of the size which can be accommodated on the NSC, the
convergence rates for the Red-Black SOR and 2ZEBRA 1 algorithms are inadeguate
for performing this simulation in a reasonable amount of time. 1In fact, the
convergence rates for any of the single grid iterative methods are likely to
be inadequate. Consequently, a more desirable approach appears to be the use
of conjugate gradient or multigrid methods in conjunction with the iterative

techniques.
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STEP ist GRID Memory Planes In Which Values Are Stored
# In POINT
Procedure OF OPERARDS RESULTS
VECTOR u Values v Values w Values nijk Cijk Fijk
1 (1,1,1) 1,3,4,0,6 8 2 9 1 12
3 (1,2,1) 2,0,5,1,7 9 3 10 12 13
5 (1,3,1) 3,1,6,2,4 10 0 11 13 14
7 (1,4,1) 0,2,7,3,5 11 1 12 14 15
9 (1,1,2) 5,7.,2,4,0 12 6 13 15 8
1" (1,2,2) 6,4,3,5,1 13 7 14 8 9
13 (1,3,2) 7,5,0,6,2 14 4 15 9 10
15 (1,4,2) 4,6,1,7,3 15 5 8 10 11
TABLE 1: Sequence of calculations for the first step in

the advection term calculation procedure.
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STEP 1st GRID Memory Planes In Which Values Are Stored

# In POINT

Procedure OF OPERANDS RESULTS

VECTOR uijk v Values w Values nijk Cijk Gijk Hijk

g (1,1,1) 0 12,8,14 3,2,1 9 11 4 13
4 (1,2,1) 1 13,9,15 0,3,2 10 12 5 14
6 (1,3,1) 2 14,10,12 1,0,3 11 13 6 15
8 (1,4,1) 3 15,11,13 2,1,0 12 14 7 8
19 (1,1,2) 4 10,12,8 7,6,5 13 15 0 9
12 (1,2,2) 5 11,13,9 4,7,6 14 8 1 10
14 (1,3,2) 6 12,14,10 5,4,7 15 9 2 11
16 (1,4,2) 7 13,15,11 6,5,4 8 10 3 12

TABLE 2: Sequence of calculations for the second step in
the advection term calculation procedure.
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STEP # 1st GRID Memory Planes In Which Values Are Stored

In The POINT

Procedure OF OPERANDS RESULTS

VECTOR Ui 5k u @ 6 neighboring points Fijk Lijk
1 (1,1,1) 0 0,1,3,4,6 12 8
2 (1,2,1) 1 1,2,0,5,7 13 9
3 (1,3,1) 2 2,3,1,6,4 14 10
4 (1,4,1) 3 3,0,2,7,5 15 11
5 (1,1,2) 4 4,5,7,2,0 8 12
6 (1,2,2) 5 5,6,4,3,1 9 13
7 (1,3,2) 6 6,7,5,0,2 10 14
8 (1,4,2) 7 7,4,6,1,3 11 15
TABLE 3: Sequence of claculations for the right-hand side of the

Helmholtz equation for the x velocity component.
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1st GRID Memory Planes In Which Values Are Stored
POINT

OF OPERANDS RESULTS OPERANDS RESULTS OPERANDS RESULTS
VECTOR P Values quk u?;;/z P Values v;jk VZ;;/Z P vValues w;jk w?;;/z
(1,1,1) 10 0 15 11,9 8 7 14,10,12 2 13
(1,2,1) 11 1 14 8,10 9 6 15,11,13 3 12
(1,3,1) 8 2 13 9,11 10 5 12,8,14 0 15
(1,4,1) 9 3 12 10,8 11 4 13,9,15 1 14
(1,1,2) 14 4 1 15,13 12 3 8,14,10 6 9
(1,2,2) 15 5 10 12,14 13 2 9,15,11 7 8
(1,3,2) 12 6 9 13,15 14 1 10,12,8 4 11
(1,4,2) 13 7 8 14,12 15 o] 11,13,9 5 10

TABLE 5: Sequence of calculations for the velocity correction procedure.
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of the Helmholtz equation for the x velocity component.
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1st GRID Memory Planes In Which Values Are Stored
POINT
OF OPERANDS RESULTS MP to MP transfer
VECTOR m . . . m+1
uijk u @ 6 neighboring points Lijk u:.ij From To
(1,1,1) 0 0,1,3,4,6 8 15 9 5
(2,2,1) 1 1,2,0,5,7 9 14 8 4
(1,3,1) 2 2,3,1,6,4 10 13 15 0
(2,4,1) 3 3,0,2,5,7 11 12 14 1
(1,4,2) 7 7,4,6,1,3 15 11 13 2
(2,3,2) 6 6,7,5,0,2 14 10 12 3
(1,2,2) 5 5,6,4,3,1 13 9 11 7
(2,1,2) 4 4,5,7,2,0 12 8 10 6
(2,1,1) 0 0,1,3,4,6 8 15 9 5
(1,2,1) 1 t,2,0,5,7 9 14 8 4
(2,3,1) 2 2,3,1,6,4 10 13 15 0
(1,4,1) 3 3,0,2,5,7 11 12 14 1
(2,4,2) 7 7,4,6,1,3 15 11 13 2
(1,3,2) 6 6,7,5,0,2 14 10 12 3
(2,2,2) 5 5,6,4,3,1 13 9 11 7
~(1’1,2) 4 4,5,7,2,0 12 8 10 6
TABLE 6: Sequence of calculations for the Red-Black SOR solution




1st GRID

Memory Planes In Which Values Are Stored

POINT

OF OPERANDS RESULTS MP to MP transfer
VECTOR = :

uijk u @ neighboring points Lijk Ex_q Fr-1 Ey Fr From To

(1,1,k) 0 0,1,3,4,6 8 15 12 9 | 10 0 5
(1,1,k+1) 4 4,5,7,2,0 12 9 10 13 | 14 4 3
(1,1,k+2) 2 2,3,1,6,4 10 13 14 1 8 2 7
(1,1,k+3) 6 6,7,5,0,2 14 11 8 15 | 12 6 1
(1,1,k+4) 0 0,1,3,4,6 8 15 12 9 | 10 0 5
(1,1,k+5) 4 4,5,7,2,0 12 9 10 13 | 14 4 3
(1,1,k+6) 2 2,3,1,6,4 10 13 14 1 8 2 7
(1,1,k+7) 6 6,7,5,0,2 14 11 8 15 | 12 6 1
(1,1,k+8) 0 0,1,3,4,6 8 15 12 9 | 10 0 5
(1,1,%k+9) 4 4,5,7,2,0 12 9 10 13 | 14 4 3
(1,1,kx+10)| 2 2,3,1,6,4 10 13 14 1 8 2 7
(1,1,k+11)} 6 6,7,5,0,2 14 11 8 15 | 12 6 1

TABLE 7:

Sequence of calculations for E and F in the ZEBRA 1
solution of the Helmholtz equation for the x velocity

component.
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x-y Memory Planes In Which Values Are Stored
Plane OPERANDS RESULTS
m+1 m+1 m+1
u,E,&F @ k+2 u,E,&F @ k+1 u,E,&F @ k uijk+2 uijk+1 uijk
k+9 1,15,12 7,11,8 3,13,14 6 2 4
k+6 5,9,10 1,15,12 7,11,8 0] 6 2
k+3 3,13,14 5,9,10 1,15,12 4 0 6
k 7,11,8 3,13,14 5,9,10 2 4 4]
TABLE 8: Sequence of calculations for updating u in the ZEBRA 1 solution
of the Helmholtz equation for the x velocity component.

Projected Timing Results for a True Spatially Developing Flow
Computational Iterative Method
Procedure Parameter Red~Black SOR ZEBRA 1

Subdomain Dimensions 420x420x420 210x210x960
Explicit Computation Time (sec.) 29.17 29.24
Terms Operation Rate (MFLOPS) 296.5 295.3

Nominal Operation Rate 296.7 296.7
Helmholtz and Computation Time (sec.) 1'06+4'23(pr+3hr) 5.70(pz+3hz)
Poisson Eguation Operation Rate 334.9 367.9
Solvers Nominal Operation Rate 335.0 371.2

Total Computation Time 30.23+4.23(p,+3h,) | 29.24+5.70(p,+3h,)

TABLE 9:

Projected Timing Results for a True Spatially Develop-
ing Flow on a 3360x1680x960 Computational Grid.
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Figure 2.- Layout of memory /MASNET/RALU interconnects.
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