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INTRODUCTION

The principal goal of this project was to develop and utilize successively
improved versions of a global 3-dimensional dynamical-chemical model of the
stratospheric ozone layer. The major accomplishments are described in the
following papers:

A three-dimensional dynamical-chemical model of atmospheric ozone. J.

Atmos. Sci., 32, 170-194, (1975) (D. Cunnold, F. Alyea, N. Phillips, R.
Prinn).

Stratospheric ozone destruction by aircraft-induced NOy. Science, 188,
117~-121, (1975) (F. Alyea, D. Cunnold, R. Prinn).

Stratospheric distributions of odd nitrogen and odd hydrogen in a two-
dimensional model. J. Geophys. Res., 80, 4997-5004, (1975) (R. Prion, F.
Alyea, D. Cunnold).

The impact of stratospheric variability on measurement programs for minor
constituents. Bull. Amer. Met. Soc., 57, 686-699, (1976) (R. Prinnm, F.
Alyea, D. Cunnold).

The dependence of ozone depletion on the latitude and altitude of injection
of nitrogen oxides by supersonic aircraft. Amer. Inst. Aero. and Astro.
Journal, 15, 337-345, (1977) (D. Cunnold, F. Alyea, R. Prinn).

On the radiative damping of atmospheric waves. J. Atmos. Sci., 34, 1386-
1401, (1977) (R. Prinn).

Photochemistry and dynamics of the ozone layer. Annual Rev. Earth Plan.
Sci., 6, 143-174, (1978) (R. Prinn, F. Alyea, D. Cunnold).

Preliminary calculations conceruning the maintenance of the zonal mean ozone
distribution in the Northern Hemisphere. Pure and Applied Geophys., 118,
329-354, (1980) (D. Cunnold, F. Alyea, R. Primnn).




The above papers described a "6-wave” version of our 3D model. Over the

past several years we have also been developing a very much improved "18-wave"
version. The major differences between the 18-wave and 6-wave models are a
follows:

(a)

(b)

()

(d)
(e)

(£)

(g)

Uses a horizontal diffusion coefficient, Apg, to close off the strato-
spheric jets.

Non—-zonal tropospheric forcing in the tropics (i.e., the annual or even
components) has been neglected. Zonal heating terms have been recevaluated
and modified slightly in the troposphere, primarily in the Pg(u) component.

The h profile has been modified in the troposphere to be in closer agree-—
ment with Trenberth. This has the effect of putting the non-zonal forcing

at slightly higher altitudes and of increasing the rate of dissipation of

available potential energy in the troposphere relative to some 6 wave compu-
tations (but not run 12).

The coefficient of surface friction has been increased from 1.6 to 2.

The static stability has been returned to its "original” value in the tropo-—
sphere. This profile was not used in any reported 6 wave run and is more
stable than that used in either run 12 or 17. The global mean temperature
has also been increased by a few degrees at levels 24, 25 and 26,

The vertical diffusion coefficient is set to 100 cmz/sec throughout the
stratosphere.

The non~linear Jacobian terms in the model are now evaluated using transform
methods rather than the original interaction coefficient technique.

This 18-wave model has now been completed and is described fully in the

following pages.
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1. Basic dynamical equations and coordinate system.

The horizontal coordinate system will be longitude (positive eastward) and
latitude, denoted by A and ¢. This dependence will be represented in spherical
surface harmonics, except that certain terms, such as part of the heating and
photochemistry w{ll be evaluated point-wise at selected values of X and ¢. In
the vertical direction pressure (p) will be used as a coordinate with finite-
differences being employed. These pressure levels will be distributed at equal

intervals of log P in order to give roughly equal intervals in height. We

define

o
il

p + (100 cbar)
7 (1.1)

™~
1]

-gnP, P = e
From the hydrostatic relation dp = -pgdz and p = p/RT, we have

4z = - = Godz (1.2)
The vertical levels will be separated by a uniform value of AZ. To the extent
that the temperature T is approximately uniform at near surface values, a change
of one in Z corresponds to a height change of the order of 7 km. The bottom of
the atmosphere will, for simplicity, be taken at Z = 0, i.e., at p = 100 cb in-
stead of at the conventional sea-level pressure of 101.325 cb. The top of the
"atmosphere” will be artificially set at Z = Ztop corresponding to a geometric
height of about 70 km.

The dynamical system not only assumes hydrostatic balance, but also a
"quasi-geostrophic balance" in the horizontal equations of motion. Because we
must consider global processes over the entire sphere, this balance must allow

for complete variability of the coriolis parameter f:
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1]

2Q sing

7.292 x 10'5 rad sec_]

D
"

The quasi-geostrophic balance in question is obtained as follows (Lorenz,
Tellus, 1960, P. 364). First, we divide the horizontal velocity v into a non-
divergent part k x V¢ given by a stream function y and a divergent part -7,

given by a velocity potential y:
VEkxwo- vy (1.4)

If the eastward and northward components of Vv are represented by u and v and a

is the radius of the earth, this is equivalent to

= dh _ 13w 13
U= 3COSeqt ™ "33 ~ 2 coss IA
(1.5)

T a cos¢ 9 a 39

The vertical component of relative vorticity, gz, and the horizontal divergence

of V are related to Y and x by

r =k« ocurl V= 0%y; div V= - vy (1.6)

where V2 is the horizontal Laplacian operator on the sphere.

The condition of the quasi-geostrophic balance is
v - foy = gV?z (1.7)

where g is gravity and z is the height of a constant pressure surface. [Unless

noted otherwise, all partial derivatives with respect to XA, ¢, and t (time) are
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carried out at constant pressure (or Z)]. The hydrostatic relation,

gé.;_-%.g (1.8a)
or
63% = RT (1.8b)
enables (1.7) to be rewritten as
V- fURY = V2RI (1.9)

Associated with this relation (which is a simplified form of the equation
obtained by taking the horizontal divergence of the equations of motion) is the

"vorticity equation":

PRk e T (FT) 4T T T (B

(1.10)
Pt 47,

-

in which F represents the total dissipation forces, ?r is the horizontal fric-

tional stress force per unit mass, and ?D is the horizontal diffusion.

The continuity equation (conservation of mass) is

d -
%—p—(-—g} - g—P{%i—} = -V - Vo= % (1.11)

The upper boundary condition at 7 = ztop will be that dp/dt vanishes there. Let

us define
p

- X

X--dep,xh% (1.12)
P
top

Equation (1.10) can then be rewritten as




N _ ~ 93X =
v2_8_l_£__ - k x vw . V(f'l'vzlp) -V . fV{é‘p‘] + V . (FXk) (]-]3)

If we use Z = -gnP as the vertical coordinate, the appropriate vertical
advection velocity is
Tdt T TP dt (1.14)
The continuity equation (1.11) in terms of.w is:
V-PV + 3(PW)/3Z = 0 (1.15)
From (1.11), (1.12) and (1.14) we get 3[PW - ¥2x] /3P = 0, or
PR = v2x (1.76)

Boundary conditions on W are that W vanishes atZtop and that it is given

by orographic upsiope motion at the bottom:

(1.17)

™~
I
o
=
1
g
L]
=
il
—
<¥
x
.
<J
o

where h is the orography and Vy is kxVy at the first interior level for y. Here

=7 km (1.18)

is a constant.

-~
T

Friction will be represented by a vertical Austausch, Fr = 37/%z =

OIl—

-ga?/ap. Thus V+Frxk = %ﬁ-[v . (§9¥xk)]. In the interior regions of the model
0
(but not at the ground), in terms of a vertical momentum diffusion coefficient,

Km’ we set T = me 3(kxVy)/3z, giving
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. - ~ 2.2 va
Ve —g"!.' k) = ¢- 0 K —
(p0 xk) [Sﬁf_ . op]
Replacing p by p/RT and replacing g/RT by 1/Ho we get
-9 o Kn VY
V’[po Xk] = - -H-i' P i

At the ground, we can set T equal to 0.003 00| V|V, with |V] a suitable mean

anemometer speed (5 m/sec_l) and the anemometer vector wind V equal to a rota-

ted (o = 22.5 degrees) fraction (0.5) of Ewi at the lowest interior level at
which ¢ is defined

¥grnd = [0.003613\(0.5)][cos a kx¥ - sin a leinterior

(1.19)

> 1 ->
v-[- Equk]gmd = -{gz[-003[V[(0.-5)cos al}V*ypierior

1

For Ho = 7 km, [7] = 5m sec ' and cos a = 0.925, the coefficient here has the

value 107% sec™!.
The conventional quasi-geostrophic Taylor-Ekman theory (Charney and Elias-

sen, Tellus, 1949, Vol. 1, No. 2, P.38) gives a corresponding term ("Ekman

pumping") of

1 Kmf

—{stin 2 CL}VZLLJ (.120)

For Ky = 6.2x]Oa’cm25ec—1 and f = 10_4sec"]

2.Ox10_65ec'].

, the coefficient in this derivation is

To summarize the horizontal friction stress term, we can write
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v-Frak = a—(PFr)

P
K 2
. _ m aVy
>0: Fr--gfp—a-z‘- (]2])

0

=0 - - . 2
2=0: F_= - Ky, .

where kD refers to the “surface drag coefficient" in (1.19) or (1.20). At

7= Ztop’ F will vanish (no stress).

We want to note here that the pressure dependence of Km as used in our
model is the same as for KD’ the coefficient of vertical diffusivity of ozone,
to be introduced Tater. We, thus, defer discussion of Km and KD values to the
subsection entitled "Diffusivity for Ozone" but the results can be seen in
Table 2.2.

Horizontal diffusion in the model is primarily introduced at the upper
(mesospheric) levels to account for possible affects of large scale horizontal
transportation resulting from energy supplied by gravity wave propagating from

below. Parameterzation is accomplished through introduction of a coefficient

of horizontal momentum diffusion, AH, such that

T - 2
FD = AHV Vv (1.21.1)

where then
- ~ ~ ~ 2‘
Voo (Fpxk) = Agk - vy = ALTTHY + ggzﬁq . (1.21.2)

Here "a" denotes the earth's radius and all differential operators are assumed
to be in the spherical surface. In our parameterization, AH will be a function
of pressure only and will serve as the diffusion coefficient for momentum, tem-
perature and ozone. Again, discussion of the values to be associated witn AH

will be deferred to the subsection on "Diffusivity of Ozone."
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The next physical statement is the thermodynamic law d (entropy) /dt =

rate of heating + temperature. For our perfect gas system this would be

¢, G5 (101 = § 5« =

2

OI;O

P

where q is the rate of heating per unit mass and T the temperature. In terms

of T, this becomes

LIRS -(Ewi-vx) e 0T - WL L T ¢ ALTRT + %— (1.23)
p

Q

YA H

in which the term AHVZT represents the horizontal subgrid seal diffusion of
temperature. We will, however, use a simplified form of this, obtained by
ignoring Vy+VT and by replacing T in WaT/dZ and «WT by T, where T is the

horizontal average:

T = T(p’t) + T,(A’¢3p’t)
_ 1 (/2 2r (1.24)
T = 73z | €Os odo J Tdx; T2 =0

-m/2 0

[This definition of (*) and ( )~ will be applicable to any variable.] This

greatly simplifies the computations, and is reasonably accurate because T >> Ty
and 3T77/3Z + «T~ is generally small compared to 8T/5Z + 1. The result is
dT

= - kxy - T - W(EE €T 4 ATRT a/C, (1.25)

T

Q

l

Q
purs
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However, this simplification has the result that we can no longer interpret
(1.25) as forecasting T, the horizontally averaged T; this is because the hori-

zontal average of (1.25) gives simply

Qi
ot —i|
]
L2l
~
(@)

whereas the horizontal average of the exact equation (1.23) gives

N 13 W il
- kW'T -ﬁ-a—z-(PWT), (].26)

214
il
nl.o|

P

showing the effect of vertical transports of entropy by the motion. We expect
little change in T from the observed annual average T(Z), however, either with
season or with changes in the ozone chemistry. [The effect of the latter will
be discussed separately.]

In passing, we note that

aT =R (3T, g
37T g {az“Lc}
p
= T-g—z— [en(Tp™) ] (1.27)
= N2 (RT)?
R 9

)

where N is the buoyancy frequency.

Finally, we describe the basic form of the equation for the (number density)

mixing ratio of a trace substance such as 03. Define

v = - 1.28
X; =Ny ofong ( )
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where n, is the number dehsity of the i-th trace substance, Mo is the total num-

ber density, assumed to be equivalent to the "normal" constituents N2, O2 and

CO2 since n; is very small.

n. % p/kT

(1.29)

26 1

k = Boltzman constant = 1.380x10™"" kilojoules deg”

The equation for dxi/dt (the rate of change following the motion) is

T T ap * (WTx) - Vgt W
dn, X5

=1 |1 1a_ ]+ 2y

" n [dt ]c Yoz [pKd az] AT %4

where (dnidt)c is the net rate of local photochemical generation of the sub-
stance (number per unit volume per unit time) and Kd and AH are the vertical
and horizontal eddy-diffusion coefficients [with dimensions (1ength)2 + time],
respectively. Kd and AH will vary only with P.

The vertical diffusion term can be rewritten by using the hydrostatic equa-

tion as

20¥; K 3
92) AR gk (1.30)

3
55{Kd{RT - Ay

¢

where we have again absorbed the variation of density with T into H; on the

recognition that Kd itself is not a precisely known quantity. K, (and the

d




momentum Austausch Km) will be prescribed functions of P. The equation for X;

is now

Xi 0 ' I Rkt PR T S 2
Tl - (kxVy-vx) - Vi - War ¥ “—{af_ + 55{‘ HE'P 57-] + AV (1.31)-

or

Bx]. )
(1.32)
dn. K X
1 i ) d X 2
+B“{E‘]C+'§§[‘pra_z—] AT

[having made use of (1.4) and (1.15) to obtain the .last form].
The rate of change of }% (the horizontal average) is obtained from the

horizontal average of (1.32):
dn. K 3
_ 93 7 1 i 2 d i
F S R R I el o R I L R Y2 (1.33)

The rate of change of X{ will, however, be .obtained from a simplified form

of (1.31), much as was done in the thermodynamic equation (1.25):

axi
EYA

axi
st

= - kx7)p - ng - W
(1.34)

dn, - K, 8x;
1 i ) d i 2, -
¥ fﬁﬂ;ﬁk*a—p[‘ﬁﬂﬁ]*%v X

In contrast to T, where we are for the most part content to take T as given, we
must predict }} as well as X{- Equation (1.33) will therefore be used as well

as (1.34).



Presumably (1.33) need not be applied every time step in the numerical

integration, ii being a slowly changing function of time. However, the term

-~

W X; must be put equal to zero at P = 1 to ensure no net creation of X3 by the

large scale motion.
The form of (dxi/dt)C is discussed later. However, a specjal treatment
must be used for the lower boundary condition on the vertical eddy flux. Ffor

the case of ozone, Galbally (Quart. J. Roy. Meteor. Soc., 1971, P. 18) shows

that in the very lowest layer the vertical flux (over land) is proportional to

the ground concentration

2~ Moy X (1.35)
d 3z Hy 3 Agrnd
(the surface destruction of ozone being proportiocnal to 03). The coefficient d
has a value of about 1 cm sec-]. We will apply this formulation to the lowest
layer in our mode] (0 £ Z s AZ). Values of x are defined at the top of the
layer (Z= AZ, j = J-1) and at the ground (Z = 0, j = J). Thus (dropping the

i-subscript on ),

2

R

0

K
d
- (x -x)=dx (1.36)
}J—1/2 [H°AZ]J-1/2 J-1 9 J

whence

i . d HobZ
Xg = Xgop F LU R, =15.1/2 (1.37)

and
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K d :
d - XJ-1
[H&AZ]J_]/Z(XJ-I'XJ) T T (d HoaZ/K, (1.38)

Galbally cites values of the vertical number flux of ozone molecules over

]1m01 em~2 sec_]. Aldaz (J. Geo. Res., 1969, P. 6943)

11

land in the range 1 to 6x10

estimates a global average of 1 to 1.7x10" " mol cm'2 sec'l, Picking a represent-

o1 em™ sec™! and equating this to n K 3x/3z, we find,

en™3 and K = 10° cn? sec-1, that a vertical gradient of ozone

ative value of 2x10
19

for n, = 4.55x10
number mixing ratio of

-8 .
X - -13 -1 _ 5x10
55 0.5x10 cm: T0 T (1.39)

is required. Galbally's data show a typical ground value for x of 5x10]]+4.5x

10]9 ~ ]0'8. The typical inferred downward flux of ozone observed near the

5 -1

ground is compatibie then with a tropospheric K of 10 cm2 sec

and a tropopause

(10 km) value for x of 6x10™° or a 10-km value for N0 of (6x107°) x (8x10'®) .

50x10'% cn™3.  This value is not greatly inconsistent with values of 10'2 e
which seem characteristic of the tropopause level in the meridional cross sec-
tion prepared by D. Wu from the data of Hering and Bordén (1967).

A special treatment of the minor species equation will be necessary at cer-

tain Tevels. As an example, Lindzen and Goody (J. Atmos. Sci., 1965, P. 341)

show that the photodissociation of ozone is extremely rapid at heights above ~ 45
km, with a time constant becoming less than 1 hour. (They presumably use typi-
cal values of incident solar radiation). The conventional methods of "time-
stepping) equations such as (1.34) require a computational time step no longer
than the characteristic physical times associated with terms on the right side

of (1.34). Since the advective time scale is of the order of an hour or so, we



must consider replacing (1.33) and (1.34) at these levels by the equilibrium

condition.

dni

Xy T (Xi)equil => g =0 (1.40)

For use in radiation computations, we need Ni’ the number of molecules of

X; in the vertical column of unit cross section above a given pressure surface:

=
il

Q0 0 R
: n.dz = j xsn dz = me. T pdz
i Jz i Soim S k

JP
| x;dp
gk o1
where R = 287 kj ton'l deg_] is the gas constant for air.
This gives numerically

P

2.12x102° J x; 4P in (meter) ™2
[0}

=
]

(1.41)
P -
2.12x102° J x;dP in (em)™
0

In the case of molecular oxygen, X is taken as uniform and equal to 0.2096,
giving

N, = 0.4444x10%° p cm™2 (1.42)

2




The lower boundary condition for ozone

The surface destruction process -for ozone must give rise to a boundary
layer effect in which the ozone changes rapidly from the free air value to a
lower value at the ground. Our use of (approximately) 3-km height increments
will not represent this adequately. Secondly, land and water surfaces differ
markedly in their effect on surface ozone. Fortunately, it is possible to cor-
rect for both of these complications by using the detailed analysis by P. Fabian
and C. Junge (Global rate of ozone destruction at the earth's surface: Arch.

Meteor., Geo., Bioklimat., (a)-Meteor. u. Geo. 19, 161-72, 1970). The important

point is to obtain the correct global ratio between the lower tropospheric value
of ozone and the surface destruction rate, since the former may affect the ozone
amount higher up and thereby the photochemical destruction rates.

Fabijan and Junge model the presumed boundary-layer ozone profile by stan-
dard methods and make allowance for different properties of land, vegetation and

water (and their global distribution) and for different wind speeds. They ar-

10

rive at a global surface destruction rate ranging from 3.1 to 5.6x10 mol/cm2

sec., the variation being due to uncertainty in choice of surface wind speed.

11

Using an average lower tropospheric value of 5x10 mo1/cm3 for 03, we have a

global ratio of

10
d; = 3.1 to 5'??10 .~ 0.08 cm sec-1

[Note that "measured" values of d at the ground range from .04 cm sec-] over
water to land values of 0.6 (Aldaz) and 1.0 (Galbally) cm sec-].]

Referring to our model equations (1.37) and (1.38)



K
7 l
(Xy1-%4) = = dy

we recognize the left side as the downward diffusive flux at the bottom of our
model, (which must equal the surface destruction rate) and Xj-1 @s the number
density (mixing ratia) in the model corresponding most closely to the 5x1011
number density for the free air referred to above. Our model will not include
different types of surface with their differing abilities to destroy ozone.

This is alright since, because of the strong horizontal advection in the atmo-
sphere, these differing surface properties affect primarily the local boundary
Tayer profile and surface value rather than the local free troposphere values.
We must use a correct global effect, however, and we get this by simply choosing
a single model value for d such that the ratio of the destruction rate to the

free air value in the model matches the global observed ratio, d.

= d] = 0.08 cm/sec

For HpAZ = 3 Km, and Ky = 10 m% sec”!, this gives d = 0.105 cm sec™ .
Fabian and Junge also discuss the ratio (their g) of the surface value of O3 to
the free air value, and obtain typical values of 0.35 over land and 0.85 over

water. Our model now implies a single value for this ratio of

Q.

XJ

1
=T — = 076
Xg-1 d

very comfortably located in the range inferred by Fabian and Junge.




Diffusivity for ozone

Vertical diffusivity

An upper estimate for Kd in the troposphere and lower stratosphere can be

obtained from measured ozone profiles by equating

(%]"Kd % = constant = 3.5x107'2 gm/cmz/sec

where x is the number density mixing ratio, and 3.5x10—]2 is the product of the

mass of an ozone molecule (7.9x]0_23

10 2

gm) with the average global surface destruc-

tion rate of 4.4x10'° mol cm~ sec'] found by Fabian and Junge (reference cited

earlier). Values of 3y/3z can be obtained from the middle latitude synthesis by
Krueger and Minzer (A proposed mid-latitude ozone model for the U.S. Standard
Atmosphere. X-651-73-72, Goddard Space Flight Center). (Similar values are
obtained from using the'3-year average ozone profiles for Bedford and Green Bay
that has been analyzed by D. Wu). The results of this calculation are shown in
Table 1.1.

At higher elevations ozone begins to no longer act as an inert tracer.
Here we refer to computations by S. Wofsy and M. McElroy (On vertical mixing in

the upper stratosphere and lower mesosphere. J. Geo. Res., 78, 2619-2624, 1973).

These authors.combine (a), the suggestion by Lindzen that K might vary as 0'1/2
because the velocities in gravity waves - a likely mixing process - tend to in-
crease in this manner with height, and (b), measurements by Ehhalt of methane

concentration. Using a chemical model, they find that Ehhalt's measurements at

50 km fit but with a Kd distribution having small values of 2x103 cm2 sec'] at

16-20 km increasing to 2x10°

at 80 km as (nm)']/z. We can model this simply by
noting that no is proportional to p for constant T, and that p in turn is pro-

portional to exp(-Z).



Table 1.1: Upper estimate for Kd in the troposphere and lower stratosphere

z(km) (%—g—x] %%(cm’u 0 %%3— Ky %:;E
2 5x1070
3 0.5x107 "3 0.90x107° .gox10*
4 6
5 0.5 0.74 .40x10%
6 7
7 1.5 0.59 .00x10*
8 10
9 6 0.47 20x10%
10 22
1 15 0.36 .65x10"
12 52
13 15 0.26 .90x10”
14 82
15 30 0.19 61x10*
16 142
17 63 0.15 37x10%
18 267
19 82 0.11x107° .39x10°
20 431x1078




However, we believe that the three-dimensional model waves can sufficiently

handle the ‘vertical "diffusion” in the upper stratosphere and thus we have chosen

the following distribution of K which essentially ignores vertical diffusion pro-

cesses in the stratosphere.

(a) Z<1Zy=0.6 : K
(b) zy < L S Zig = 2.4:
v . (Ki-Ke)
K= Ko * {70207
(c) 7> I : K

The Kd values used in the model as
Table 1.2 along with Kd v§1ues inferred

and ozone profiles.

= Ko = 1x105 cmz/sec

K, = 1x102 cmz/sec

[(Z—Zo)-(Z-Zlo-Z-ZO)]]/z

=K1

obtained from the formulas are shown in

from observed CH, (Wofsy and McElroy)



Table 1.2: Values of Kd from the model "formula" énd inferred from

0

and CH4 profiles.

Kd units are cmz/sec.

3
z(km) VA Formula Inferred (03) : Inferred (CH4)
3 357 100.0x10° 78.0x10° 300.0x10°
5 616 90.0 94.0
7 .892 16.2 40.0
9 1.171 26.5 12.0
1 1.492 13.8 6.5
13 1.802 5.3 9.0
15 2.120 1.5 6.1
17 2.433 0.1 3.7 2.0x10°
19 2.719 0.1 3.9x10°
20 2.86] 0.1 6.8
30 4,289 0.1 15.0
40 5.717 0.1 110.0
50 7.145 0.1 260.0
60 8.573 0.1 490.0
70 10.000 0.1x10° 940.0x10°




Horizontal diffusivity

The purpose of the horizontal diffusion term in our model is principally
to account for the energy conversion of vertically propagating gravity waves
into horizontal transportation in the upper mesospheric levels of the model
atmosphere and to act as a "sponge" to prohibit wave refelctions from the fixed

(i.e., vertical motion = 0) upper boundary. Thus, we have chosen to specify AH

as a function of Z/Ztop in the form

Ay = Aoy (1T 16 ms™17 (1.21.3)

H cons top

. , . .o _ 7 2 -1
in which AConst is a specified constant. A value of AConst = 6x10° [m®s ']
seems to work very well with the truncation specification of the current model
version (18 wave) and has thus been adopted for all of its horizontal diffusion
terms (i.e., for momentum, temperature and ozone diffusion).

Profiles for both the vertical diffusion coefficients K, and for the hori-

zontal diffusion coefficients AH as represented at the model levels are shown

in Table 2.2.
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2. Choice of vertical levels.

We want the vertical domain to extend well above the actual ozone layer.
We also want it high enough that there is some opportunity for the damping ef-
fects of ozone and radiation to absorb mechanical energy generated in the baro-
clinic processes of the lower atmosphere. On the other hand, we cannot for prac-
tical reasons get involved in the more complicated processes of the lower thermo-
sphere. An upper limit of about 85 km seems reasonable.

We obtain equal intervals in Z = -ZnP (P = pressure < 100'cb) by defining

™~
]

AZ(J-3)
=12, 0,0, | (2.1)
P. = e'AZ(J'J)

j =1 1s at the "top" of our model atmosphere, and j = J at the bottom, whence

Z:.Z_I_:Et_og.
J-1 J-1

A convenient choice is obtained by choosing

eAZ

r, r=3/2

AZ

Znr = 0.40547 (2.2)

so that

Ly

[l
~
]
—
()
]
—
g
o)
=
5

(2.3)
P1=Y'
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Successive pressure levels are separated by (roughly) 85/31 ~ 2.7 km. The

relations

- o—(3-3), -
Pj =r ; Pj+] = er (2.4)

are useful. At these Tevels, the following basic variables will be represented

Jj=1,2, ...., d: Tj, W, (Xi)j together with the heating rate, the photochemi-

J
cal term, and the vertical turbulent fluxes of momentum. At the intermediate

levels the streamfunction wj will be represented

For convenience in notation, however, ¢ will be labeled with an interger sub-

script according to the convention
p(P = Pj+1/2) = IPJ

This results in the scheme as seen in Figure 2.1.

Table 2.1 lists the values of the more basic variables for the choice
r =3/2, J =32. Values of T above 30 km were taken from the 1965 CIRA annual
mean, values at lower elevation coming from data based on statistics gathered by
the Planetary Circulation Project at M.I.T. (To be precise, they were obtained
from the latter as shown in a figure based on them in the thesis by A. Hollings-
worth). The static stability parameter S is defined later in equation (3.20).
Table 2.2 contains the values for the vertical (Km, Kd) and horizontal (AH) dif-
fusion coefficients (in units of m2/s) at the same model levels as shown in

Table 2.1. The basis for these values is discussed in the previous section.
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Figure 2.1:
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TABLE 2.1: Vertical layer designations and mean vertical profiies

. - -3
i Pj ZJ (;péigl) 'S no (cm) Sj
1 .00000348  12.569 85.4 181.0 1391012 173
2 .00000522  12.164 83.2 181.0 209 173
3 .00000782  11.758 81.0 181.0 313 162
4 .0000117  11.353 78.8 183.5 463 130
5 .0000176  10.948 76.5 192.0 664 1]
6 .0000264  10.542 74.1 201.0  952x10'2 114
7 .0000396  10.137 71.6 211.0  136x10'3 137x107%
8  .0000594 9.731 69.0 219.0 19 144
9 .000089] 9.326 66.3 226.5 285 154

10 .000134 8.920 63.5 234.0 415 161

1 .000200 8.515 60.6 241.5 600 166

12 .00030] 8.109 57.6 209.6  877x10'° 167

13 .00045] 7.704 54.5 258.5  126x10'% 174

14 .000677 7.298 51.4 267.0 184 217

15 .0010] 6.893 48.2 267.5 274 277

16 .00152 6.488 45.0 261.5 421 302

17 .00228 6.082 41.9 254.5  649x10'" 295

18 .00343 5.677 38.8 248.5  100x10'° 285

19 .00514 5.27] 35.9 2425 154 277

20 .00771 4.866 33.0 237.0 236 272

21 0116 4.460 30.2 231.0 364 269

22 L0173 4.055 27.5 225.0 557 261

23 0260 3.649 248 219.5  855x10'° 251

260390 3.244 2.2 214.5  132x10'° 237

25 0585 2.838 19.6 211.5 201 217

26 .0878 2.433 17.1 210.5 302 194

27 132 2.027 14.6 213.0 499 155

28 .198 1.622 12.0 222.0 546 125

29 .29 1.216 9.3 234.0  913x10'° 116

30 444 0.811 6.4 253.0  130x10'/ 104

31 667 0.405 3.4 272.0 182 105

32 1.000 0.0 0.1 287.0  265x10'/ 122

~o
]
S



TABLE 2.2:

Profiles for the vertical and horizontal diffusion coefficients

; Z, KoK Ay
(m?/s) (m?/s)
1 12.569 9.997x10° 6.000x10’
2 12.164 8.044 4.928
3 11.758 6.449 4.021
i 11.353 5.147 3.258
5 10. 948 4.083 2.619
6 10.542 3.20] 2.088
7 10.137 2.506 1.650
8 9.731 1.928 1.292
9 9.326 1.455 1.001
10 8.920 1.069 7.665x10°
1 8.515 7.544x107] 5.795
12 8.109 4.972 4.327
13 7.704 2.872 3.108
14 7.29% 1.157 2.299
15 6.893 1.000x1072 1.632
16 6.488 1.000 1.134
17 6.082 1.000 7.701x10°
18 5.677 1.000 5.090
19 5.271 1.000 3.263
20 4.866 1.000 2.019
21 4.460 1.000 1.198
22 4.055 1.000 6.760x10"
23 3.649 1.000 3.593
24 3.244 1.000 1.772
25 2.838 1.000 7.954x10°
26 2.433 1.000x107° 3.154
27 2.027 2.265x10" 1.056
28 1.622 9.917x10" 2.769%10°
29 1.216 2.473 4.928x10"
30 0.811 5.308 4.327
31 0.405 0.000 6.760x1072
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3. Non-dimensional finite-difference equations

In this section we write the basic equations in a non-dimensional form (pri-
marily to simplify the dynamical computations) and simultaneously introduce the

vertical finite-difference representation defined in Section 2. We define
o= sing - -

v(dim)

v{non-dim)

v2(dim) %;—Vz(non—dim)

p(dim) = 20a? Y(non-dim)

(3.1)
X(dim) = 2Qa® X(non-dim)
t{dim) = 5q t(non-dim)
W(dim) = 2Q W(non-dim)
AH(dim) = 2Qa? AH(non-dim)
T(dim) = (4Q%a?/R) T(non-dim) + (4Q%a2%/R) T(non-dim)

In the last expression T (dim) is the "total" temperature in absolute degrees,

T = T(Z) is the "standard atmosphere" temperature (also in degrees) given in the
table at the end of Section 2, while the quantity (4Q%a2/R) T (non-dim) is the
(deviation from the horizontal mean) variable T appearing in (1.25), having a

zero horizontal average. [The total T (dim) is, of course, used in all chemical

computations].
_ 4 -1
Q= 2r/8.64x10" rad sec
a = 6.371x106 meters
-1 -1 (3.2)
R = 287 kd ton = deg
Cp = (7/2)R
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One day, (2w/Q) secs, corresponds to
At(non-dim) = 29(230 = 47
The non-dimensional V? operator is

R 3 )
vi( ) = COS%p 3A° * COSd 3¢ [cose 30 ]

The relation

(3.4)

(1.16)

between W and X can be used to eliminate X in favor of W {in equation (1.13)]

by defining the inverse Laplacian operator

L =v2
X = PLW
We also have
z =V, vy =Lz

(3.6)

A further convenient arrangement is useful for evaluating terms of the form

3(PF)/3P, which appears in the vertical diffusion terms for vorticity and trace

substances and in the term

9K = 2 rp(1w)]

Q
Q
0

in the vorticity equation (1.13). We have

Pt sn Fistyp = Pi v o Fi
[%(PF)]J - _Jr1/2 " 3+1/2 j-Vv/2 j-1/2 _ ("

where we have made use of (2.4).
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The horizontal advection of a quantity F can be written as the Jacobian

Q2

- kxTy - yF = OF 3W _ 3w oF
kx7y - VF 1 3 3% 50

1
<<
.
<]
-n
1}
Q

|

Qo

(3.8)

J(F,v)

The non-dimensional form of the vorticity equation (1.13), with regard to
the subscript labelling defined in Section 2, together with equation (1.21) and
(3.5) - (3.8) is as follows:

For 3 =1, 2, ..., Jd-1:

9% s
3 - 7. T -
3 J(U+CJ‘ st) v {UVL[(P_] )WJ+'| (Y‘-])wj] +
r 1 4 2
+ (?‘———T)FJ'H - (F-_T)FJ + AH)J[V KUJ'*'ZV wJ] (39)
, = . 3.10
s = Lg; ( )
Fyo= -0y, (3.12)
.= E.(c.-z. j = vy J- 3.13
By = (K )y + [H3208Z] (3.14)
D= kD + 20 (3.15)
Wy =0 (3.16)
W. = _J(h_ Uy 1) (3.17)
J Ho’ “J-1

The non-dimensional form of the "thermal wind equation"” (1.9) becomes for
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j=2,3, ..., d-1:

v‘pv(wj-wj_]) = —VZTJAZ (3.18)

The non-dimensional form of the thermal equation (1.25) becomes for

J=2,3, ..., Jd-1:

aT.
J - 1 Y 2 R
% > J(Tj, wj+¢j_]) sjwj + AH)JV Tj + [EEQEFE7J (3.19)
where
_ R dT | R
5 7 ) Lz * o) T (3.20)

is tabulated at the end of Section 2. Note that qj, the rate of heating per

unit mass, is still in dimensional form in (3.19). It is considered later in

Section F.

The trace substance is, for

jzjos J +], ce e o \J—.I:

0
Efi =1 J( + ) - W (d—) + (L6, - (_l_)g + Ay) .Yy, 4+
3 7 YW b j\az P10 7 AT 8o TR K
1 vrl ,dn

+ (§§)[ﬁ;(a{)cjj (3.21)

GJ = Dj(Aj+]-xJ) ;  for =g e J-2
(3.22)
- . 2

Dj = (Kd)j+1/2 + (2QHZAZ)

[The vertical diffusion coefficient Kd is defined at the Zj-leveTS corresponding
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to j = integer plus 1/2, whereas the vertical exchange coefficient Km for vor-
ticity, appearing in (3.14), is defined at interger values of j.] At the bottom,

the relation (1.38) gives

G = s 001 (3.23)
3-1 20, 20EAL :
d (K,)
d J-1/2]

The integer jo sets the level above which (3.21) may be replaced by a photochem-

ical equilibrium statement, as discussed near the end of Section 1.
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4. Model chemistry

The distribution of ozone in the model is determined by the following chem-

ical reactions (with rate constants given by Baulch et al., 1982)

1560
i 2 =TT
1. N0+ 0y > NO, + 0, ky = 3.6x 1077 e
2. NO, + 0 ~NO +0 K = 9.3 x 1012
- MO 2 g7 9
3. NO, + hv > NO + 0 o,
1000
_ 2 -1
4. OH + O3 > HO2 + O2 k12 = 1.9 x 10 e
110
5. OH+0-+H+0 ke =2.3x10 e T
- 2 14 = 2
) 32 (7
6. H o+ 0, + Mo HO, + M kig = 5.9 x 10 [éﬁtﬂ
480
7. H+ 05> OH+0, Ky = 1.4 % 10710 T
8. HO, +0 +OH+0 ko = 3.7 x 107
. HO, 2 18 = 3
600
9. HO, + 0, - OH + 20 o=l x10 % T
- HOy + 04 2 207 14
2300
10. 0, + 0+ 20 o =1.8x10 e T
- 0y 2 22 = 1
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11. 03 + hv »~ 0 + 02 J

03
2.0
i 234 (7
12. 0+ 0, + 1 >0+ M Lys = 6.2 x 10 {3—6}
13. O2 + hv - 20 J02
120
14. C10+ 0+ Cl +0, Ky = 7.5 X 1071 g T
294
15. C10 + NO ~ C1 + NO koo = 6.2 x 10712 & 1
: 2 32 = 6.
300
18. 0+ 0+M>0,+ M tyy = 4.8 1008 ¢ T
240
19. NO + HO, > NO, + OH kyg = 3.7 X 102 e T

We assume chemical equilibrium determines the NO/NO2 balance, the C1/C10

balance, and the OH/OHZ/H balance. Thus, we assume
k3[NO][O3] + k32[C10][N0] + k38[N0][H02] = k4[N02][0] + [NOZJJNO2 (4.1)
k14[OHI0] = ky[HI[0,1IM] + Ky, [H[0,] (4.2)
k]7[H][O3] + k18[H02][O] + k38[NO][H02] + kZO[HOZ][O3] = k]2[0H1[03] +
k]4[OH][O]. (4.3)
We also assume that the O/O3 balance is determined by the principal terms only:

(0313 = £55[0100,101] (3.4)
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With these assumptions the chemical loss of odd oxygen is given by

BXO

- 2k]4[OH][O] - 2k22[03][0] - 2k3][C10][O] (4.5)

- 2£37[O]2[M] + 2k, [NOI[HO,].

Two-dimensional daily-averaged solsticial distributions of the mixing ratios
of NOX, C10, and OH have been provided by Dak Sze (see Figures 1-3). We have as-
sumed that these distributions are appropriate for January 1 and that the distri-
butions evolve sinusoidally in an annual wave throughout the year. Most of the
chemistry in the model is active only during the hours of sunlight. Therefore,
we solve the above chemical equilibrium equations for the average species concen-
trations during daylight hours. The equations result in a quadratic equation for
[NO]. The solution to this equation then readily provides daytime values of
[N02] and [HOZJ. These daytime values are then inserted into equation (4.5) and
the entire right hand side of the equation is multiplied by hs/ﬂ (see Section 5).

There exist conditions for which the above determination of the chemical
loss of odd oxygen may be inappropriate. Note, in particular, that we are assum-
ing the complete absence of chemistry in the polar night. We have ignored the
photodissociation of WO which occurs above 50 km; this means that the calculated
NO/NO2 ratio will be incorrect at high altitudes, but this should not affect the
other ratios we calculate.

The numerical model uses half-hour time steps (At). Stability of the model
then requires a way to predict OX when jts chemical time constant is less than

or equal to approximately 0.5 hours. The following procedure is used:
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At the start of each N-cycle we calculate 0.42[36 ] where [Jb ] is the
2 2
zonal-mean daily-average photodissociation rate of molecular oxygen at each of

the Gaussian latitudes. We also calculate

TC = [XO ] - 0.42[362] - (0.7 x ™ x At). (4.6)
X

At those latitudes and levels where TC > 0, a chemical equilibrium value of OX
is calculated by setting the RHS of equation (4.5) equal to zero and with the
0/05 ratio being determined by equation (4.4). At these locations (BXO /at)C

is simultaneously set equal to zero. A prediction is then made on Xox ?n the
spectral domain. Next, Xox is transformed back to the grid domain and at the
locations where chemical equilibrium applies, the predicted value of Xox is then
partitioned into ozone and atomic oxygen according to equation (4.4). Finally,
Xox and X03 are transformed back into the spectral domain.

The effect of the above procedure on the odd oxygen budget has been analyzed
in Cunnold (1983) for the 6 wave model. In that Eeport it was noted that the
boundary between the regions where photochemical equilibrium is assumed and
where it is not, constitutes a discontinuity which, because of the spectral
representation of model variables, produces minor numerical effects on the ozone
budget at all latitudes. We found, furthermore, that these effects are mini-
mized if the chemical computation starts from the Xg grid field and not from
XO3 field. This is because, at high altitudes, stroﬁg gradients of XO3 (but not
of X ) exist across the polar night boundary which are poorly represented by
the s;ectral model.

In treating the chemistry we use p/kT for the concentration of air molecules

in the atmosphere and 0.21 times this value for the concentration of oxygen mole-



cules. To increase the efficiency of the computation of reaction rates which
are calculated at every time step, we approximate each rate constant as a pro-

duct of the variables exp(-125/T) and exp(-300/T).
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5. The calculation of photodissociation rates and the associated heating

Photodissociation rates and heating rates due to the absorption of solar
radiation by molecular oxygen, ozone, and nitrogen dioxide are evaluated in the
model. |

The vertically overhead column of ozone is first evaluated through the

integration

p.
] _
Ng. (Ps) = 2.1156 x 10%° J x dP e ? . (5.1)
;
3 0 "o,

We assume that Xg varies linearly with Z in the interval j to j+1. Then
3

J J-1
= 25 _r-l r-1 .
Ng. (P}) = 2.1156 x 10°° { 2 (1 ] Pix; * I [ 1] Pt (5.2)

3 J
To increase computational efficiency the longitudinal variation of the
photodissociation rates is approximated using the following procedure. At each
time step the mean and standard deviation of the column ozone is obtained at
each latitude and level. The photodissociation and heating rates are then eval-
uated for the two ozone columns equal to the mean *1 standard deviation. For
example, the photodissociation rate of ozone is
140,14 )%g, * g (A4)%g

-1 73 3 2 2

Je © ]

J

= L ag (ki)F(x. sec

(5.3)
3 3 !

0

where the absorption coefficients of molecular oxygen (aoz) and ozone (ao3) and

the integrated photon flux in each wavelength interval (F(Ai)) are given in
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Table 5.1. The tabulated values of F have been taken from page B-10 of "The
Stratosphere, 1981." The ozone absorption coefficients are from Inn and Tanaka
but adjusted by the Vigroux temperature correction factors for -44°C as recom-
mended by Klenk (1981). At visible wavelengths, the values are from Ackermann
(1971). The absorption coefficients of NO2 are from Table A-5 of "The Strato-
sphere, 1981." The absorption cross sections of O2 in the Hartley continuum is
from Table 1-33 of "The Stratosphere: Present and Future, 1979." In the Schumann-
Runge bands we use the mean of the high and Tow values given by Kockarts (1971),
a choice which is consistent with the recent work of Frederick and Hudson (1980).
To account for the backscattering of energy from the lower atmosphere, we in-
crease all of the solar fluxes at wavelengths greater than 31253 by a factor of
1.5.

Heating rates are computed in a similar manner. The heating rate, due to
the absorption of ultraviolet and visible radiation by ozone is given by

+ag (40X,

7 3 2 2

1
9.453 x 10" xn I an (A )F(X:) — e
p 053 037717 17 Ay

[ao3(K1>Xo

& (5.4)

This is in dimensionless units and is a term in equation (1.25). ‘Here xQ is the

3
ozone volume mixing ratio.

In equations (5.3) and (5.4), XO and XO are the column densities of ozone
3 2

and molecular oxygen. (For typical globally-averaged values, see Table 5.2).

- -2
Xn = N03(PJ) sec ¢ cm

25

2.1156 x 10°% sec y en~2

><
"
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TABLE 5.1:

Flux of solar photons, g, at one AU, absorption cross
section of 0, and of 03, o(0,) and o(03), for wavelength intervals
AX and wavenumber intervals Av.

No. AM(A) Av(cm™l) qlem 2s71)  o(0,)(em?)  o(05)(cm?) o(NO;)(cm?)
45 1.754-1.739 57.000-57.500 1.33x10%! 2.74x10° 12

46 1.770-1.754  56.500-57.000 1.61 1.40x1072°

47 1.786-1.770 56.000-56.500 2.00 9.00x10" 2!

48 1.802-1.736 55.500-56.000 2.20 5.00

49 1.818-1.802 55.000-55.500 3.18 3.20

50 1.835-1.818 54.500-55.000 3.30 2.00

51 1.852-1.835 54.000-54.500 3.14 1.20

52 1.869-1.852 53.500-54.000 3.71 5.00x10 22 _

53 1.887-1.869 53.000-53.500 4.96 3.00 5.70x10°1?

54 1.905-1.887 52.500-53.000 5.57 1.30 5.15

55 1.923-1.905 52.000-52.500 6.34 7.00x10 23 4.66

56 1.942-1.923 51.500-52.000 6.53 4.50 4.25

57 1.961-1.942 51.000-51.500 9.01 2.90 3.99

58 1.980-1.961 50.500-51.000 1.02x10%2 2.10 3.58

59 2.000-1.980 50.000-50.500 1.15 1.70 3.20

60 2.020-2.000 49.500-50.000 1.40 1.50 3.09 _
61 2.041-2.020 49.000-49.500 1.69 1.25 3.09 3.25x10°1%°
62 2.062-2.041 48.500-49.000 2.07 1.00 3.35 3.75

63 2.083-2.062 43.000-48.500 2.52 9.80x10 2" 4.04 3.79

64 2.105-2.083 47.500-48.000 4.21 9.20 4.91 3.85

65 2.128-2.105 47.000-47.500 7.23 8.50 6.37 3.92

66 2.150-2.128 46.500-47.000 7.79 7.85 8.32 _ 3.98

67 2.174-2.150 46.000-46.500 8.45 7.05 1.09x107 %8 4.01

68 2.198-2.174 45.500-46.000 1.05x10t3 6.15 1.46 3.98

69 2.222-2.193 45.000-45.500 1.19 5.50 1.88 3.81

70 2.247-2.222 44.500-45.000 1.51 4.75 2.41 3.46

71 2.273-2.247  44.000-44.500 1.33 4,05 3.08 3.08

72 2.299-2.273 43.500-44.000 1.31 3.35 3.86 2.67

73 2.326-2.299 43.000-43.500 1.51 2.70 4.71 2.33

74 2.353-2.326 42.500-43.000 1.32 2.20 5.62 1.68

75 2.381-2.353 42.000-42.500 1.50 1.65 6.72 1.21 .
76 2.410-2.381 41.500-42.000 1.34 1.20 7.62 7.50x10 2°
77 2.439-2.4710 41.000-41.500 2.02 7.50x10 23 8.66 5.22

78 2.469-2.439 40.500-41.000 1.82 9.74 _ 4.20

79 2.500-2.469  40.000-40.500 1.88 1.04x10717 3.30

80 2.532-2.500 39.500-40.000 1.83 1.09 2.36

81 2.564-2.532 39.000-39.500 2.25 1.10 1.45

82 2.597-2.564 38.500-39.000 4.65 1.07 1.72

83 2.632-2.597 38.000-33.500 4.44 1.02 . 1.95

84 2.667-2.632 37.500-38.000 1.07x10%* 9.40x10 *? 2.05

85 2.703-2.667 37.000-37.500 1.18 8.24 2.80
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Table 5.1 Continued

No. AX(A

) av(cm™ 1) qlem 2s71)  o(0z)(cm®)  o(03)(cm®) o(NO;)(cm?)
386 2.740-2.703  36.500-37.000 1.08x10%" 6.69x10718  3.50x1072°
87 2.778-2.740 36.000-36.500 1.04 5.13 4.32
88 2.817-2.778  35.500-36.000 7.54x10%? 3.75 5.60
89 2.857-2.817 35.000-35.500  1.48x10%* 3.09 6.30
90 2.899-2.857  34.500-35.000 2.17 1.62 6.77
91  2.941-2.899  34.000-34.500 3.46 1.00 7.50
92  2.985-2.941  33.500-34.000  3.39 5.81x107'°  9.10
93  3.030-2.985 33.000-33.500 3.24 3.85 1.17x1071°
94  3.077-3.030 32.500-33.000 4.40 1.66 1.70
95  3.100(£25)  32.520-32.000 4.95 9.37x1072°  1.83
96  3.150 32.000-31.496 5.83 4.52 2.19
97  3.200 31.496-31.008 6.22 2.53 2.35
98  3.250 31.008-30.534 6.96 1.19 2.54
99  3.300 30.534-30.075  8.61 5.54x10721  2.9]
100 3.350 30.075-29.630 8.15 2.73 3.14
101 3.400 29.630-29.197 8.94 1.38 3.23
102 3.450 29.197-28.777 8.44 8.39x10722  3.43
103 3.725%250 28.777-25.127  9.85 4.30x107%2%  4.95
104 4.225 25.127-22.346  1.88x10%° 5.95 *5. 30
105  4.725 22.346-20.100  2.40 5.29x10722  *3.30
106 5.225 20.100-18.265 2.46 2.11x1072%  *2.00
107 5.725 18.265-16.736  2.61 4.21 *7.00x1072°
108 6.225 16.736-15.444  2.63 3.80
109 6.900%425 15.444-13.605 4.32 1.28

* Photodissociation of

N02 is

assumed

to occur for A < 3975A.
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TABLE 5.2: Typical concentrations of ozone, molecular oxygen, and
nitrogen dioxide.

Level  Height n(0,) Column Conc. n(03) Column Conc. n(NO, )
km (cm™ 3) Noz(cm'z) cm 3 Ngs(cm'z) cm 3

1 71.6 2.86x10%" 1.76x102° 2.8x10° 8.12x1013

2 69.0 4.11 2.64 6.4 1.97x10t*®

3 66.3 5.99 3.96 1.5x10° 4.70

4 63.5 8.72 5.94 3.5 1.13x10%°

5 60.6 1.26x10%° 8.91 6.5 2.52

6 57.6 1.84 1.34x10%! 1.2x101° 5.16

7 54.5 2.65 2.01 2.3 1.03x10%8

8 51.4 3.86 3.01 4.6 2.08

9 43.2 5.75 4.51 9.9 4.30

10 45.0 3.84 6.77 2.15x10%? 9.01 8.84x10°8
11 41.9 1.36x1018 1.02x10%2 4.1 1.84x10%7 7.79x107
12 38.8 2.10 1.52 7.6 3.55 4.00x108
13 35.9 3.23 2.28 1.3x1012 6.50 1.39x10°
14 33.0 4.96 3.43 1.8 1.09x10%8 2.60

15 30.2 7.64 5.14 2.45 1.68 3.27

16 27.5 1.17x10%7 7.71 3.4 2.46 3.40

17 24.8 1.80 1.16x10%3 4.3 3.48 3.68

18 22.2 2.84 1.73 4.8 4.66 3.96

19 19.6 4.22 2.60 4.65 5.87 4.40

20 17.1 6.34 3.90 3.6 6.92 6.04

21 14.6 9.43 5.85 2.5 7.68 8.08

22 12.0 1.34x1018 8.78 2.0 8.25 1.15x101°
23 9.3 1.92 1.32x10%* 1.0 8.66 1.72

24 6.4 2.73 1.98 6.0x10"! 8.88 2.58

25 3.4 3.82 2.96 6.0 9.05 3.87

26 0.1 5.56 4.44 6.0 9.25% 5.30

5-5



Y is the solar zenith angle which is determined from
‘ cos ¥ = sin¢g sind + cosé cosd cos h (5.5)

where ¢ is Tatitude, & is the solar declination and h is the hour angle (mea-
sured from local noon).

An additional approximation is used in deriving photodissociation and
heating rates. The equations require average photodissociation rates during
daylight hours and heating rates averaged over a 24-hour period. This averaging
is accomplished by evaluating the rates at two preselected hour angles. If hS

is the hour angle of sunset, it is given by

cos hs = - tang tans.

Considering only the Northern Hemisphere (tan ¢ > 0), we have

tang tans < - 1 : h_ =0 (polar night)

s
-1 < tang tand < 0 0 < hg < %
0 < tang tand < 1 %—5 hS <
1 < tang tans : hS = 1 (polar day)

The daylight-average photodissociation and heating rates are determined as the
average of the values at h = hs/4 and 3hs/4‘ Empirically, we have found that by
dividing the result by 1.025 we remove a slight bias in the results. Our studies
indicate, moreover, that the approximation is accurate to better than 5% (see

also, Cogley and Borucki, 1976). Twenty-four hour averages are determined by

multiplying by hs/n.
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Using the above procedure, the photodissociation and heating rates are de-
termined at each latitude and level for ozone columns equal to the zonal mean
([X]) £ 1 longitudinal standard deviation (o). Suppose the results are J, and
J_. The photodissociation and heating rates produced by ozone and molecular

oxygen are calculated at each longitude from

X-[X]

J 20 -
3= (3 a)"? [3-*—} : (5.6)

NO2 heating and dissociation rates are considered to depend little on the O3

column. For these terms (J+J_)]/2 is used at all longitudes.
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6. Tropospheric and infra-red stratospheric heating rates

In the troposphere and lower stratosphere, we follow Trenberth (Ph.D.

thesis, M.I1.T., 1972) in setting, at each level j,

T *
5 +h (T, - T) (6.1)

where hj is a "Newtonian" cooling coefficient, Tj* is a hypothetical equilibrium
temperature field, and T is the temperature predicted by the model. (A1l T's in
the above equation have a zero horizontal average.) For the zonally symmetric
part, Trenberth divided T* into an annual average term (symmetric in latitude)

and a seasonal term (an odd function of latitude):

T () = T PO + [T, PR + T3 PYIsintEEs (t-0,)]. (6.2)

Here u is the sine of the latitude and Pg are the Legendre functions normalized

so that

1

J pP2dy = 2

-1
P?(u) =3y

(6.3)

Pg(u) = ’ﬂ—g-( p? - 1)
) = T (5 - 3)

t is in days and is zero at the vernal equinox. ¢j is a mild time-lag introduced
in the troposphere to account for delayed ocean warmth. Trenberth used the fol-

Towing values for his eight Tevels:
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TABLE 6.1

7 p (km)  h.(day™') d. T..(deg) T ..(d .
] i Evm hyleay i j2lees j1(deg)  T.5(deg)

511 .60 4 0.080 21 -15.4 6.54 0
1.204 .30 9 0.059 21 -10.3 5.97 0
2.120 .12 15 0.019 0 -2.24 8.96 1.70
3.219 .04 22 0.026 0 _ 464 11.80 3.32
4.605 .01 30.5 0.050 0 - 5.39 14.00 4.57
6.214 .002 43 0.190 0 - 5.37 11.70 5.45
7.601 .0005 54 0.240 0 -1.78 11.20 1.89
9.210  .0001 63 0.200 0 0 2.77 1.21

The values of hj used in our model (which are given in the next few pages)
are similar to those of Trenberth, in the troposphere particularly. The values
of T*, however, have been rederived using Newell et al. [1972: The energy balance
of the global atmosphere, in The global circulation of the atmosphere, pp. 42-90,
Royal Meteorological Society, London 257 pp.; and 1974: The general circulation
of the tropical atmosphere, Vol. 2, The MIT Press, Cambridge, MA 371 pp.] values

of atmospheric heating rates. Thus

*
pa—

T =5 ()T, (6.4)

where q/cp is obtained from Newell et al. and TO represents the observed temper-

ature distribution.

We use
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(6.
* _* 0 * 0 * (0 * Q0 . 2= N
Tj(l-lat) = TJZPZ(U) + Tj4p4(1-1) + [T\ﬂp] (U) + Tj3p3(x~l)] . S1HW (t - (pj_)_]
* 6 ,1 .0
where Tji = 1.1 (aji R bji)’
¢j = 30 days,

and there are twelve 30 day months in the model.

The values of agi and bgi are given in Table 6.2. The resulting values of

*
T are similar to those used by Trenberth except for the inclusion of the Pg(u)

component.

TABLE 6.2: Zonal heating parameters

(degrees) (degrees/day)

J VA a? ag ag ag b? bg bg bg

32 0 (5.5 -11.5 0.5 -1.5 .20 .06 .08 -.24)
31 .405 4.5 —i0.0 0.1 -0.8 .34 -.20 .15 -.25
30 .81 4.0 - 8.9 0.1 -0.3 .24 -.53 -.13 .28
29 1.216 3.7 - 7.5 0.2 0.1 1 -.15 -.10 .29
28 1.622 2.9 0.0 1.3 -0.1 .07 -1 -.05 .13
27 2.027 2.6 7.4 3.0 -2.3 .10 -.10 .00 .02
26 2.433 3.2 8.4 3.2 -3.0 .14 -.20 .02 -.02
25 2.838 4.4 4.6 3.3 -2.1 A7 -.20 .03 -.02
24 3.244 5.2 1.5 3.2 -1.4 .19 -.21 .04 .02
23 3.649 5.6 - 0.1 2.7 -0.8 .21 -.29 .02 .06
22 4.055 5.9 - 0.6 2.0 -0.6 .29 -.35 .00 .06
21 4.460 6.0 - 1.4 2.0 -0.5 .46 -.35 -.03 .02
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In addition to latitudinal forcing, the lower troposphere in the model is
forced non-zonally. This forcing is applied at the three lowest levels only
(Tevels 29, 30 and 31) and is based on Katayama's calculations of tropospheric
heating rates. The heating is applied at each of the levels in the ratio Pjhj'
Thus, most of this forcing occurs at 667 mb. Fitting Katayama's computations
by Pl (1) and Pi(u) terms where n = 1, 2, 3, 4 and m = 2, 3, 4, 5, the heating
may be divided into those terms which are even about the equator (the annual
terms) and those which are odd (the seasonal terms). The even terms are found
to be produced primarily by equatorial forcing whereas those which are odd are
due to mid-latitude forcing. Since our model is quasi-geostrophic, it may not
respond realistically to equatorial forcing. Although the even terms were in-
cluded in the 6 wave version of the model (but excluded from Trenberth's model),
they have been excluded from the 18 wave model. Early tests of this model pro-
duced excessive tropospheric kinetic energy; the parameter changes made to pro-
duce a more realistic simulation included the elimination of these "annual" terms.

The seasonal terms are given by

(6.6)
. P.h, 2
T = JJ_ sin en (t - ¢.) Y (rczcosﬂx + TS£Sin£A) Pz(u)
i~ 3 360 R - L n f
j229Pjhj &

where A is longitude. Values of TCf and rsﬁ are given in Table 6.3




TABLE 6.3: Non-zonal tropospheric forcing

L n TC TS

1 2 1.12 8.05
1 4 -2.09 -1.48
2 3 -8.57 2.15
2 5 -1.23 2.14

In the stratosphere, Trenberth's formula empirically represents all of the
main types of radiation effects:

a. Short wave absorption by ozone and oxygen (20 km and higher)

b. 9.6 micron absorption and emission by ozone (20-30 km)

c. Infra-red absorption and emission by CO2 (a1l heights)
In our model we will explicitly compute radiation of type a, as described in
Chapter 5. This means that Trenberth's formulation must be changed for Z higher

than 20 km (Z > 2.9). Type c can be represented by a simple Newtonian law

S = h(p)T . (6.7)
The first reported runs of the model (Cunnold et al., JAS, 32, 170-194, 1975)
used values obtained by Dickinson (A method or parameterization for infra-red
cooling between altitudes of 30 and 70 km, JGR, 78, 4451-4457, 1973). He ob-
tained values of h(p) by careful Tline integration of the CO and O3 bands for a
standard atmosphere, followed by a similar computation in which T was varied

slightly. (Physically, this is satisfactory for the circumstance of cooling to
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space - it does not include, however, the major effect of b above, which comes
from absorption of radiation emitted by the ground in the water-vapor window

region). Dickinson found values as follows:

VA h(day_])
1.4 .016
10.0 .062
9.1 .125
8.7 172
7.9 .200
7.4 .220
6.9 .212
6.1 .135
4.8 .080
3.9 .060

The values of h currently being used are given as h] in Table 6.4. Between
Z = 4.8 and 8.7, they match Dickinson's values. They, however, exceed Dickin-
son's values above Z > 8.7 and are smaller at Z = 3.9. The higher values at

high altitudes are supported by the work of Kuhn and London (J. Atmos. Sci.,

1969) while the values at low altitude are consistent with the values of h given
in Table 6.1. Arguments in support of the latter values are given in Pnillips
(Tropospheric and lower stratospheric heating, internal memo, June 28, 1973).

The support is provided by the radiation calculations of Manabe and Strickler

(J. Atmos. Sci., 21, 364, 1964) and by experience with numerical models of the

troposphere (e.g., Bushby and Whitelam, QJRMS, 87, 374-392, 1961).
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TABLE 6.4: Two profiles of Newtonian cooling efficient used in the
model calculations.

Mode1 7 hi_ ha _
level (day™ ') (day ')
1 12.6 .06 .06
2 12.2 .08 .08
3 11.8 .09 .09
4 1.4 .10 .10
5 10.9 11 171
6 10.5 13 13
7 10.1 14 .14
8 9.7 .15 .15
9 9.3 .16 .16
10 8.9 17 17
1 3.5 .19 .19
12 8.1 .20 .20
13 7.7 .21 .21
14 7.3 .21 .21
15 6.9 .19 .19
16 6.5 7 .16
17 6.1 .14 .14
18 5.7 12 12
19 5.3 1 .10
20 4.9 .09 .09
21 4.5 .07 .08
22 4.1 .06 .07
23 3.6 .04 .06
24 3.2 .03 .05
25 2.8 .02 .05
26 2.4 .02 .05
27 2.0 .02 .05
28 1.6 .03 .05
29 1.2 .05 .06
30 0.8 .07 .07
31 0.4 .10 .09
32 0.0 14 4
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The formula used in the computations to generate the values of h] given in

Table 6.4 is
h =022 -0.03(Z-7.4) Z3:7.4
= 0.02 + 0.20 {Z—i7%4§&3/2 74373 2.5
- 0.02 +0.12 {g;%jg—ziz 2537320

Heating due to the 9.6 micron 0, band has been computed by Dopplick (Ph.D.
thesis, M.I.T., 1970) using typical observed values of 03. It gives a heating
rate more or less independent of season with a peak value of 1.1 deg day'] at

the poles, centered at an altitude of about 25 km (Z = 3.5). This may be repre-

sented most simply by

= - 8850 () [1 - (2 - 3.5)%] deg/day (6.8)

[e 3] Lo 34
i

for 2.5 < Z < 4.5 and zero for Z values outside this range. As such, this heat-
ing does not depend on O3 or T. This is not too critical, however, since the
physical dependence on T is primarily due to ocean surface and cloud top temper-
atures, and any moderate variations in O3 from that used by Dopplick will mostly
shift somewhat the height Z = 3.5 vertically (i.e., the existing O3 is ample to

absorb all this upwelling radiation).

We therefore use the following strategy for heating computations. Define

Method I.

a. Explicit computation of short wave heating
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b. Infra-red cooling with the Newtonian cooling formula (6.7)

¢. Formula (6.8) for O3 window radiation for 2.5 < 7 < 4.5

Method II.

Trenberth's formulas

These methods are combined as follows for different height ranges. (Z = 2.5 and

4.5 corresponds roughly to heights of 17.5 and 30.3 km).

A. Z>4.5: Only Method I.

B. 2.5 <Z < 4.5: Weighted average of I and II as follows:
[2—22—-—5J x Method I + {5%] x Method 1I.

C. z<2.5: Only Method II.
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7. Spectral form of the equations

We define spectral solutions at arbitrary level j in the form

wj = Zwaana(A,U)
a
CJ = ZCaanQ(KsU)
a
WJ. = gwa,jYG(K,u) , (7.1)
TJ = ZTOL’J'YOL(A’U)
[0
q =

.j gqanYa(kaU)

and for the trace substance equation

1]

X5 gxa,jYa(k,u)

GJ- gGa’onc(}\’u)

In terms of longitude (A) and latitude (u), we have defined members of the

complete set of orthogonal spherical harmonics in (7.1) and (7.2) using

with
a=n_+ i (7.4)

denoting a vector index of planetary wave number Ka and degree Ny The Ru(“)

are Legendre polynomials of rank and degree given by w. Normalization of the
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spherical harmonics is such that integration over the unit spherical surface

(s) yields the orthogonal property

*

[SYQYB ds = ans - (7.5)

Complex conjugate values are denoted by an asterisk. Another useful property

of the set of spherical harmonics is that they satisfy the differential equation

2 = _ . =
V.Ya = caYa, Cq na(na+1) (7.6)

The complete set of orthonormal Legendre polynomials as used in (7.3) are de-

fined such that

* =
P* =P, (7.7)

and all Pa have been normalized such that

+1
= 7.8
J_1Pape =28, (7.8)

We now want to substitute solutions (7.1) and (7.2) into the non-dimensional
forms of our model equations, multiply through with a member of the orthogonal

*

set (say, YY)’ and integrate the resulting relationships over the unit sphere.
Application of this procedure to the vorticity equation (3.9), for example,

yields the desired spectral form of this equation,
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dg,
Ei"c_bJ ) *M'YI’DY iYL +%L_ (r—]:T) —c,j+1 -
7\] ’ Y_E o Y v?J
1 E r
e ] - [(FEPe o (7.9)
v+e

in which, over the unit spherical surface s,

ST T 2 h
dt 4n Jg ot v
L Ly veds = 1o [ Hiyug
i = | ety g |ty
A .= 1 J(v. z.)Y*ds (See Appendix A)
Y.d o dmg T TdTITY
(7.10)
i Y 1 [vewvL (W) I¥ds
W .- W .= - ——j TeuVL(W.) JY*ds (See
Cy-e Y780 Cye Y¥eSJ 41} s J Appendix B)
Fo.o= J F.Y*ds
Yod Ay JY

—

_ R B A e L
(e )hyysby,s ™ T fs H)3L7 vy Ty Ygds

Similarly, the thermodynamic energy equation (3.19), the trace substance egua-

tion (3.21), and the thermal wind relationship (3.18) reduce to the spectral

forms
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al o
e
Ca.

il

]
lwe)

!
w
=

]

[n R

Joo elx) L X r o i
dt 5 7 @ G5 - TSy
1 1 1 dn
ALy Coxo st ——-J 5= |= (%) .| Y*ds
H)J "y ,d 4 s 2Q [Em dt’c j Y
.= - .- L)+ .- .
vz CYTY’J DY(LPY-EsJ'] ‘bY'EaJ) E(wY+€3\]"] wY+€9J)
where, for example,
dT. . oT.
_‘\ﬁ."] = J_ __.\J_Y*ds
dt m Sat Y
d . [ dy.
_XAL’J = ]— _E‘]_Y*ds
dt 4nJSdt Y
e T .= L (-v2T.)vxds
YY,d o dmf i’y
1-{ .
. = AP )Yy
BY,J 8ﬂ,sJ(wJ wJ_1,TJ)YYds (See Appendix A)
(X) = -1_[ N <, * 1
BY,J o SJ(¢j ¢j-]’ﬂj)YYdS (See Appendix A)
- = 1_. . * 1
Dva—s,j EYWY+€,J 4”J5[v pij]YYds (See Appendix B)

(7.11)

(7.12)

In addition, we want to determine the spectral form of (1.6) relating the verti-

7-4



cal component of relative vorticity (z) and the streamfunction (w). It can be

shown that
.3 T Ty (7.13)
or
C .
_ YL
L c (7.14)

provided that in (6.14) we stipulate y#0+i0 (i.e., chO).

The spectral relationships (7.9), (7.11), and (7.13) [or (7.14)] along with
definitions (7.10) and (7.12) form a complete set of equations for solution.
However, it is not convenient to attempt to integrate the model in this form as
there is no explicit relationship determining the vertical velocity field repre-
sented by W. In order to define W, we want to alter the thermal wind relation-
ship in (7.11). This development is contained in the next section. Furthermore,
specification of the truncation 1imits to be used for series solutions (7.1) and

(7.2) have not yet been established and will be discussed in a later section.
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8. Determination of W in the dynamic equations

In order to obtain an explicit description of the vertical motion fields in

our model atmosphere, we insert (7.14) into the thermal wind equation of (7.11)

and differentiate w.r.t. time to get

AL C dTY)J = X [dCY'E:,J"] ~ dcd1£€,J] -
€

y dt c__ dt
Y (8.1)
- “y [d§x+e,j—1 . dCY+€,J}
c dt
yte

for all levels j = 2,3, ...., J-1. We note that (8.1) does not apply for the
cases y = 0+i0. Furthermore, for notational purposes, we will stipulate that in
(8.1) and all future relationships, terms which require y-e = 0+i0 or n___<¢

Y-£ Y-€
do not exist. This applies equally to cases in which y+e is not contained within

the specified model truncation limits.

Let us now define

. = - i . - ) - A . + A . -
8y, 12, Goy o1 0y 5) - A TAY
1 r+l r
- Gy g DRy - IR e
(8.2)
Agys (2mey) oy 501 -2y 5)
b .=-8B .-A,.c T .+ [———B~—71q .
Y,J Y5 J HJJ 7y vsd Cp8Q’a Y5 J >

such that using (7.9) we can write
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y,i-1 Py L
A I D AR
E - (8.3)
1y ; '
* YWY-E,j+1] * (??T7hcy+s [wY+e,j—1
Com (e, ]
Yte,J + Y‘WY+€,j+]

and, the thermodynamic energy equation of (7.11) reduces to

dT_ .
YsJ _

LV BT LV B ' (8.4)

Inserting solutions (8.3) and (8.4) into (8.1) has the effect of eliminating

the time dependence of (8.1) and at any given time we have -

D E
AZ cb .- AZ CSMW .=s—Y-a .- -—T-a .
Y Ysd Y JYsd C'Y‘€ {—€,] CY+€ Y+€’J -
T € ey Mheae,get T M ge 5t T pe g
|y e« vy (r41) ]
+ + W 2 9 = (r+1)W .+ rW_ . -
(r-1) Co-eCy  CyCyie Y,3-1 Y,J Y,3+1
— Syre (W - (r+1)M + ri ]
(r=T) ¢ yeCyape Y+2€,3-1 Y+2e,] Y+2e,j+1

or, if we define
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the W-equation

Y

- (1) 18y

+r[f§1)w

. . +
WY-Ze,J-l Y Y,d-] fY

I

D E
Y I 2 2 .
(r )L:Y-SCY Y=€:J CCiue yte,d AL bY,J}

D. D
Y-ey
Cy-2e%y-€“y

n

c c c

1 (Epeedy | EDLue
R =0 A 2
vy | “y-e Cyte

]

can be compacted to

s 52y (3)y

y+2e,j-13

sy 3y

. . F
v Myeze,s TR s T Weae 5]

£(2)

. 3)
.ot +1 + f(
y-2e,341 T Ty Wy y M

yi2e, 3417 -
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To prepare (8.6) for inversion we want to take note of certain properties
of the equations in order to reduce the calculation to a finite set of simple
matrix solutions. Inspection of (8.6) shows that the equations uncouple accord-
ing to planetary wave numbers, KY. In addition, within each planetary wave the
equations contain two independent sets; one of even vector e]ements (n_ + KY all
even) and the others of odd vector elements (nY + EY all odd). Thus, to facili-
tate ease of notation, let us define some new sets of indices to be applied to

(8.6) by first denoting a maximum planetary wave -number, L, for a given spectral

truncation as

L = zy)max (8.8)

so that we can designate K independent sets of matrix equations using index k

where
k=1,2,3, ..., Ky K=2(L+1). (8.9)
For a given matrix set we will determine k by designating

22 + 1 for even vector sets

k = ¥ : . (8.10)
2(!,Y + 1) for odd vector sets

Furthermore, within each of the K matrix equation sets it is useful to designate

an element index, bk’ where

o (8.11)

Thus, for a given matrix set designated by the subscript k we devise the bk

indices as follows:

8-4




(1) For k odd (even vectors) let

Nk N nk)max (8.12)

for which we consider only nk from the set Ny + Zk even. Then the value for an

individual bk is determined from

k 2 °zk,o
(8.13)
B - Nk T Kk + 2 ) 6

where we ignore values of bk outside the range indicated in (8.11); i.e., when
k=1, ny = 0, "and z] = 0 we do not include the value bi = 0 which designates
the nona]]ow;b]e equation of (8.1) in which vy = 0+i0 [see comments following
(8.1)].

Similarily,

(2) For k even (odd vectors) let

Nk = nk)max (8.14)
in which here we consider only Ny from the set ne * Zk odd. Then, we have
- Ny - Kk + 1
k 2
(8.15)
B_Nk—zk-'-]
k 2

At this point we want to note an additional property inherent in the spec-

tral W-equations represented by (8.6). That is, from definitions contained in
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(8.5) and Appendix B we can show that for any given k,

EYk Eere

C
Y CYte CytZs

Dyts DytZe

)
1

]
O
(9]
2
O

-
= f
b

We are now prepared to convert (8.6) to matrix form.

define tridiagona1’matrices D, as

(8.16)

To do this we first

[ (2 (3 )

f% ) f] ) Deeererennan 0

3 2 (3)
" (3) o) o)
_ 0 f f f 8.1
(3) (2)

O T, f f

L B, -1 B, Jk

where we have made use of (8.8) - (8.16).

each Dk tridiagonal but it is also symmetric.

We note from (8.17) that not only is

In addition, it can be shown that

every principle minor determinate of Dk is positive and thus Dk can be said to

be positive definite.

These properties will be discussed in more detail below.

To complete the conversion of (8.6) to matrix form we define vectors
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Wy 3 SN
WZ,J ’12,3
wk’j = ; e Rk,j = E (8.18)
. W . r .
bk’\] | bk’\]
w' : n. ;
\ Bk’JJ K \_Bk’JJ K

such that (8.6) can be written in the matrix form

Dkwk,j-l - (rf])Dkwk,j + erwk’j+1 - ojwk,j = Rk,j ;

(8.19)
j=2,3,4, ....,9-1foreachk=1,2,3, ...., K

We wish to modify (8.19) through diagonalization of each D,. However,

since each tridiagonal Dk is real, symmetric and positive definite, we know that

all eigenvalues of D, are real and positive. Also, the sets of eigenvectors

associated with these eigenvalues are orthonormal. Thus, if Dk is an MxM matrix,

there exists a set of real positive eigenvalues (;\k)p withp=1,2,3, ..., M

associated with Dk and M sets of orthonormal eigenvectors qp’S with s =1, 2, 3,
., Mo If we et QkArepresent the matrix of eigenvectors associated with the

the set (Ak)p and matrix Dk, we have

q]] q-lz e q1s ... C]-lm
Q1 2 - e - Yo

O
>~
|

(8.20)
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such that

where I is the unit matrix and ( ) denotes transposition. Define

( 3
(xk)] o JR 0
0 '(kk)2 :
A= . . (8.22)
k (Kk)g R
R 01
\ ( k)m J
were then we know
0 Qe = Qi
and . (8.23)
QP = QQhy = Ay
We now want to expand the vector W, ; in (8.19) in the form
Wi T AVes 0 Vi T G (8.24)

where we note that Vk i is also a vector.

k]

Inserting solutions (8.24) into (8.19) and multiplying through with Qk gives
U2V 5-1 - IOV 5 T PO QY s -
=905 T QR 5

or, from (8.23), we can write
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Aka’j_] - [(r+1) Ayt cj] Vk,j + rAka,j+] = QkRk,j (8.25)

Now, we know that there exists an inverse

(1700 )y O 0 1
, 0 /(0 )5 :
A = . : (8.26)
: 17 (), :
Ottt e e e 1/(A
| /( k)mj
such that
Al = (8.27)
e M . .
Thus, if we multiply (8.25) through with A;], (8.25) reduces to the form
_ -1 P
Ve ie1 [(r+1)1 + o] Vs T Vst T M QR (8.28)
where for each k =1, 2, 3, ..., Kwe have j =2, 3, 4, ..., jJ-1. We now let
_ -1
Sk,J = - [(Y"H)I + O'JAk ]
and
_]~ .
LR o = Vy,q (for g =2)
R s = A;]QkRk’j (for 3<j<J-2) (8.29)

-]~ 1 = -
Ak QkRk,J-1 - rvk,j (for j = J-1)

Using (8.29), (8.28) transforms to the set
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Skl T r Vs T R (for § = 2)
Vk,j-l + Sk,jvk,j + r Vk,j+1 = Rk,j (3<j<J-2) (8.30)
Vi,a-2 F Sk,a-1k 01 =R gy (for §=9-1)

in which from (8.24) and the boundary conditions of (8.7) we see that in (8.29)

Vk,] = 0

(8.31)
Ve,o = Qg = Qi
We see that for each k the system (8.30) is tridiagonal in j and thus submits

readily to solution provided certain provisions are met (see Appendix C for

details). Briefly, to invert (8.30) we first define

e o
Y,z = 5k,2 (for j = 2)
—_ _] )
Uy = g 7T g (for 3<j<d-1) (8.32)
i 2T g (2<5<d-1)
and then let
Yk,2 T Y2 Rx,2 (for § = 2)
(8.33)
Vs = U Ry 5 =¥y 5oq)  (for 3i<d-1)

Solutions to (8.30) thus appear as




Vi, a-1 = Yk, (for j =d-1)
(8.34)
vk,j = Vk,jvk,j+1 ¥ Yk,j (for j =d-2, 3-3, ..., 2)
provided all Uy j in (8.23) exist and are finite. Vectors wk j are then ob-

tained from (8.24).
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Appendix A. Evaluation of the nonlinear Jacobian terms using transformed

fields.

On the unit sphere, the Jacobian of arbitrary horizontal global scalers

A and B is given by

_3A 3B 9A 2B
J(A,B) = 3% Bu 303X (A1)

where A is longitude and u is the sine of latitude. Expanding A and B in terms

of spherical harmonics, we have

p
1]

ra Y, (Asu)
a

(oo
"
o~
o
-
—~
>
~
T~
Sr”

(A.2)

Q

H
3
+
ey

in which the special properties of the orthonomal spherical function Ya(k,u) are
outlined in (7.3) - (7.8).

Rather than evaluate the Jacobian terms using the interaction coefficient
methodology applied in the past for our lower order models, we will transform
the terms in (A.1) to a special grid system devised to permit exact Gaussian
guadrature integration of the nonlinear Jacobian terms. Details of this numer-
ical procedures to be used in this process are contained in Eliasen et al.,
(1970). Briefly, however, we can assert that the selected grid system must be
located on latitudes which form the "zeros" of the "highest order plus 1" Legen-
dre polynomial contained in the Jacobian term for the particular truncation
chosen. In the case of triangular spectral truncations (which we are currently

using), we know that the number of the "Gaussian" latitudes needed, Kax® is

given by
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Kmax= 1.5 Kmax+1" (A.3)

where zmax is the maximum longitudinal wave number allowed. Thus, for a trunca-
tion triangle which contains planetary waves, 0 - 18, the formula requires that
28 latitudes be used to represent the minimum horizontal grid and that the lati-
tudes are to be located on the zeros of the Legendre polynomial P%8. A similar
procedure is used to specify the longitudinal grid points.

To evaluate (A.1) using the transform technique, we first define

_ Ay
M= = gw‘aaaya(k’m
i2 AdP_(u)
N = .B_B. = Zb e a a
ou a dyu
[0
(A.4)
i AxdP_(u)
P = %A-= Ja e &2
g du
_ 9B _ r.
Q= A §1£abaYa(x’“)
where then (A.1) becomes
J(A,B) = MxN - PxQ . (A.5)

The quantities M, N, P, Q are evaluated on the Gaussian grid by performing the
sums indicated in (A.4) for each grid point. Details of the numerical methodol-
ogy used for these transforms are given in Appendix E. The indicated products
and differences indicated in (A.5) are performed at each grid point and the
resulting Jacobian field is transformed back to the spectral domain and trun-

cated to conform with the resolutions of the A and 8 spectrums.
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Reference

Eliasen, E., B. Mackenhauer and E. Rasmussen, 1970: On a numerical method for
integration of the hydrodynamical equations with a spectral representation
of the horizontal fields. Report No. 2, Institut for Teoretisk Meteorologi,
Kobenhavns Universitet, 37 pp.
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Appendix B. Spectral representation of divergence terms of the general form

vV - uvA.
In terms of spherical operators on the unit sphere in which A is longitude

and u is the sine of latitude we have

V « uvVA = ¥y o VA + uv3A

(1-u?) %ﬁ- + uv2A

in which A is an arbitrary horizontal global scalar expandable in the form

A= Ta Y, (Am) : (8.2)
o}

Properties of the orthonormal spherical functions Ya(k,u) are outlined in (7.3) -

(7.8). 1Insertion of solutions (B.2) into (B.1) yields

7« wA = (1-u?))a o Lol dpa(“) - uc a e A p (u)
a — STarw o
o du o
. dp . (B.3)
_ .lﬁa)\ 2 aQ - .
= gaae {(1—11 )_du p.caPOJ ,
Cy = na(na+1)

But, if we define

=
1

(na+£a)!

] {(zn;n(na—za) T/ :

(8.4)
1 + 10

m
n

B-1



then we know from the Legendre differential and recurrence relations {(for exam-

ple, see Jahnke and Emde, 1945) that

\ dPa Na
(T-u )aﬂ—'z Py Y (na+£a)N Pu-e
a-€
and . (B.5)
o - (na-Ka+1) Na - (na+£a) Na .
o (Znaﬂ) ch+€ ote (2na+1) Noz-a >
Then, using (B.5), we can show that
dP (1-n2)(n_+£ ) N n (n+2)(n -2 +1) N
R Hey (2n +1) N a-€ (2n_+1) N ate’ :
o a-£ o ate

We now insert (B.6) into (B.3), multiply through using Y; /4w, and integrate

over the unit sphere to get

2 1 s B 1
, T-n2)(n +£ ) N
1 _ ( a’Va Ta a |1
'ﬁ JO [—](V UVA)Y‘;dUdK = g aa[ (Zna'{"]) N j 2 [_]PG,—E:PYdU -

a-€
L =2
S

n

i
R OL(nCL+2)(na—£’_OL+1) NCL 1
a (2n +1) N 2

o a o -
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1/2
(n_. 2. )(n_-2.)

= (1-n2)V Yt Y Yy ¥

. nY(nY+2) (nY+£Y+1)(nY-£ +1) .
+ .
(2nY 13(2nY+3) (+e
=0 -Ea. (8.7)
where we have defined
. P 1/2
n +
by = (1-n0) |7z }(;EZY +\1(;
n_- n
Y Y Y (8.8)

E, = n_(n_+2) (nY*€X+])(nY‘£Y+1) 12

Ty (2n. +1)(2n_+3)

Y Y
A special case of (B.7) occurs when we consider scalar B in which
B = 72A (8.9)
where similar to (B.2) we can expand B in the form
B = ZbaYa(x,u). (B.10)
o
Then, from (7.6), we know that
b = -c a (B.]])
a aa

and, in terms of coefficients ba’ (B.7) becomes
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2me | 0 £
'14?[ [ (v-uVA)qdudx:-'—-‘Lb + L p

0 -1 Cyoe Y78 Cyue YTE
(B.12)
=D b
Yy-e  EyPyre
in which we have defined
0 EY
D= - ——1;3 E = - (B.13)
Yo S Y vie
provided that in (B.12) we ignore terms in which Cye = 0 (i.e., e = 0).

Further, for both (B.7) and (B.13) we must stipulate that all terms calling for

any a , a b or bY+ outside the range of the particular spectral trun-

y-g’ “yte’ Ty-g £
cation chosen must also be ignored.

Reference

Jahnke, E. and F. Emde, 1945: Tables of Functions. Dovér, New York, 306 pp.
plus tables.
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Appendix C. Solution of a tridiagonal set of eqUations.

Suppose we have an equation set of the form

+ b X + =
-1 TR e K T Ry
(c.1)
y=1, 2,3, , T
where we must have
ap = 0
(C.2)
c. =0
Y
That is, in matrix form we can write (C.1) as
AX = R (C.3)
with A being tridiagonal of the form
r 3
b] Cl vrvemerens 0
2 b o
A = ' . (C.4)
: b
5 Oy Sy
O ‘aT bF
L )
For solutions we define
C] = T/b]
= b - C 3 2<y<l C.5
CY 1/( + aYCY'] Y‘]) SYS ( )
D = -c¢C
Y Yy

C-1



and let

B, = C4R
1 11 (C.6)
= -a_B 3 2<y<T
By = G RyayByq)s 2evs
Then, the solutions appear as
X, =8B
bt (c.7)
=D X ,,+B ; =r-1, r-2, ...,
XY DY v+178y vy =T r 1
provided all CY in (C.5) are finite. That is, if
b1 #0
(C.8)
bY ? aYCY-1CY-1
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Appendix D. Computation of the weight functions for Gaussian quadrature.

We consider the set of complete orthogonal Legendre polynomials, Pﬁ(u), in

which £ = 0, 1, #2, ... and n =20, 1,2, ... . We define this set, according

to (7.8), to be normalized such that

Pz(u)"f,(u)du =28 . o (D.1)

where p is the sine of latitude or equivalently, the cosine of colatitude, é.
Now in order to expand an arbitrary function of latitude, -say f(u), in terms of

the set of Legendre polynomials we let

) = IRPRL) (0.2)

from which the coefficients, fﬁ, are obtained through application of (D.1) such

that
fr = 2 10| PaPcn = 7 | FIPGG (0:3)

However, to be able to transform at will between spectral and grid point space,
it is necessary to represent f(u) at a number of discrete points, My in which
k=1,2, 3, ..., Nwith N being the total number of points lying within -T<u<l.

Thus at each latitude point, (D.2) becomes
_ L
i) = IfPaliy) (0.4)

This means that in order to determine coefficients fﬁ we must evaluate the inte-
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grals in (D.3) numerically and at the same time maintain the orthogonality prop-
erties of the discrete polynomials representation in (D.4). For this purpose,

integrating by quadratures, we introduce a set of Gaussian weight functions, Wy

such that
" 1
'a -
PREAURL-SCRIER B IOl (0.5)
-1
and the numerical analog for (D.3) becomes
alyret E w e )P ()
n 2 X n" g kn™*"k/"'n*7k
1 N
- E-kz]wkf(uk)Pﬁ(uk) : (0.6)

The remainder of this Appendix is devoted to the method of evaluation of the

Gaussian weights, Wy, -

Because we know that any given Legendre polynomial, pﬁ(u), can be repre-

sented by a finite series in py of at most degree n, we can expand

Pﬁ(u)Pﬁ»(u) = ?EZ biui
or ) (D.7)
PE(u IPT () = jggbituk]i
and thus,
1 1
Pﬁ(u)Pﬁ,(u)du = ﬁgnbi wldn (D.8)
R 1=0 R
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Integrating (D.8) by quadratures using (D.5),

1
N
J PEGOPE. (wdu = 3 wiPE(u)PE- (i)

= ) w P(u )P
: k=1 KRk
N nin” g
= kzlwkiéo b, [, ] (D.9)
Equating (D.8) and (D.9) we have

n+n” 1 ; N n+n” ;
.Z bi u du = z Wk.z bf[“k] (D.10)
i=0 -1 k=1 "i=0

and thus for any i such that 0 < i < n + n” it must hold that

1
‘ U1du = 2 Wk[uk]1 . (D.11)
-1 k=1

We see from (D.11) that if we choose the number of latitude points, N, such

that N-1 = n+n” then utilizing all i = 0, 1, 2, ..., ntn we can form a set of

N equations containing N unknown gquantities, Wy s for inversion. However, in

terms of colatitude, ¢, we can show that any cosj¢ (j is an integer) can be

expanded in the form

/2 (3/2)-1
. 2m J 2m
cosjé = J a, u° = a.u ) a,u
m=0 2" J =0 "
and (D.12)
cosjo, = alu I’ + ZO an (w17
m:

L
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Then, inserting (D.12) into (D.11),

1 .
(1/2)'1 m

: cosigpdu - I z a5 uoduy =
LI i m=0 -1

QJI——‘

(D.13)

Dugeosto, - 1 8 ey Tl 7
W, Ccosip, - — a w, [u
K21 k k a; n=0 2m = k-Fk

I

o1}

i

or

1
N
kZ]wkcosiq)k = { cosigpdy

™
J cosio singdo
0

0 for i odd

;%g;—-for i even , (D.14)

i= Oa 1) 2, ce ey n+n”
where we have made use of (D.11) to eliminate the second term on each side of
(D.13). Again, as for (D.11), we see that if we take N-1 = n+n”, we can invert
(D.14) to obtain the Gaussian weights.
As an example, consider N=3 where we select ¢]=30°, ¢2=9O°, and ¢3=150°.

Then, from (D.14) we can construct the set (using i = 0, 1, 2)

Wy + Wo + Wy = 2
/3 Y3
S P
7 2 Ny = 2/




with solutions

Wy = Wy o= 4/9
(D.16)
We note that the solutions (D.16) are symmetric in Wy about the equator. If we
assume such symmetry a priori then ail equations in (D.14) involving odd values
of i become redundant and we can write (D.14) over the integration interval from

o =0 to ¢ =7/2 as

} W cos2ig, = J cos2i¢ sin¢ds
k=1 0
R D _ - (D.17)
37T 3 :
20, 1,2, ..., MO0 N-T =

Again, using the example used above in which N=3, ¢] = 30°, and ¢2 = 90°, we

have H%l = 2 and H%l = 1 giving the set

Wyt W, =1

w| -

with solutions

(D.18)

o Wl

=
(]
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Furthermore, if we want to obtain wk's for the entire pole to pole integration,

we need only make use of the symmetry property

ek T T Sy /2 M (0.19)

which gives for our example

J

(D.20)
10

T g

Solutions (D.20) are identical with those of (D.16).
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Appendix E. Transform methodology.

The transform routines take advantage of a number of factors related to the
particular configuration of our model whith allows for a considerable improve-
ment in speed and efficiency. For example, since the physical fields that are
being represented in our model are all real quantities (as opposed to compliex
values), we can make use of the inherent complex nature of Fourier transform
theory to transform two of our fields simultaneously. Further savings in compu-
tational resources are possible by taking advantage of the odd/even nature of
the Legendre polynomial expansions with latitude about the equator.

Consider the series representation

PO = §uet e () (E.1)
a

(o

in which we want to be able to transform freely between spatial data as repre-
sented by y(A,u) in (E.1) and coefficient data as determined by the {wa} for a

given truncation.

Now, in terms of even and odd series (with respect to the equator), we can

write

vOuu) = a=gven waeizaxpa(“) * a:édd waeizakpa(“)' (E-2)

) Koc KOL
Ep(u) = ¥~ Py (u) 5 a = even
a o] o
(E.3)
¥ o Lo -
Op(w) = &9 P (u) 5 @ = odd
a o oA

where then Ez(u) is even and OZ(“) is odd (with respect to the equator). Thus,
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for u > 0,

) = T [E,(w) + 0,()] ™
t | (E.4)
pom) = T LEy() - 0] o'
We now let (for u > 0)
Ay(w) = (1#1) Ep() + (1-1) 0p(w)
(E.5)
B[—(U) = (]'H) Ez(“) + (1'1) OZ(U)
in which "*" denotes complex conjugation. We then can write
A(>\9U) = w(KaU) + NJ(}\,-U)
= JLOHE () + (1-)0,()] o't
¢ (E.6)

B(A,u) = w(A,m) - iw(x,-u)

- JLO-DE ) + (1+1)0,)] et

* LA
= )B,(u) e
50

Using the definitions and relationships developed above, we now turn to a

description of the computational routines developed for the spectral to grid

and grid to spectral transformations required in the model.
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I.

Spectral to grid transformations

a.

Subroutine SPCGD2 (DSPEC, DATA)

This routine transforms spectral coefficients (stored in "DSPEC") to
grid values ("DATA") at the Gaussian Tatitudes.

The routine calls subroutines "SPFOR2" and "FFTFR2".

Storage locations for the input coefficient matrix "DSPEC" and the

output grid point matrix "DATA" are illustrated below.

1. Storage arrangement for "DSPEC".
spectral coefficients, y , in which the vector index "a" is as

defined, for example, as in Appendix A (A-2). The index "NLEV"

Assume a matrix of complex

represents the total number of model levels. Then,

J 1 ) NLEV L 33 .. . . . 32+ NLEV L
I (LEVEL 1) (LEVEL NLEV)? (LEVEL 1) (LEVEL NLEV) 7]
1. Refyy} . Refyr} T Imyy} . Im{y;} 7
%7

2. Re{tn} . . . . Re{p} T Im{yy} . Im{y:,}
- <6
ovay | Rely, Rely, YT Imly ) Im{y, 1}
MAX MAX MAX TMAX

2. Storage arrangement for “DATA".
in a matrix of real gridpoint values.

Assume { now represents elements
Here “NLON" and "NGRID"

are, for a given model level, the number of longitude points along

a given latitude circle and the total number of gridpoints, respec-
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tively. Note that data for the conjugate (i.e., Southern Hemi-
sphere) latitudes appear in the last 32 columns of the matrix.
Thus,

|
|
J T NV 335 . ... . R ENEY b
I (LEVEL 1) (LEVEL NLEV) (LEVEL 1) (LEVEL NLEV) ‘
1 ‘P(M,uﬂ e e W(A],u]) L W(A]:"U]) ... IP(M,-U]) =F
2 w(kzaU") Lo w(A2>H1> ¢(>\2 "U]) . w(kza'U])
/F‘
///
NLON | $ Oy gt - - - WOyoeiy) | ¥0yanei) e PPy L
NLONHT | w(Agoky) e W) T R0gem) e b0y y)
NLON+2 \U(}\Z,Uz) . e W(Xzapz) w(Azs‘Uz) <. . L’J(AZ:'U2>
=¥
/%
PNLON | WOy gota) - - - WOyoeRe) L Vw2 s B0 i)
// . ad
2*NLON+1 W(X]’U:;)) e W(Mal‘%) 14‘)()»]3'“3> .. . ‘P()\1"U3)
& : g
NGRID/2 | Wy govigg) < - - $Owionoteg} YionHen) - Ll’“NLON"“EQ)//f

Subroutine SPFOR2 (DSPEC, DATA)

This routine determines Fourier coefficients (returned in "DATA") for
each latitude using the spectral coefficients in "DSPEC".

1. “DSPEC" is the input coefficient field as in subroutine "SPCGD2".

2. The complex Fourier coefficient output is returned in "DATA" 1in a
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form which combines the conjugate latitude values. Thus, "DATA"
will contain the Az(u) and Bﬂ(u) fields defined in (E.5) as re-
required for the grid value expansions of (E.6). In the following
matrix table, Lyax is the maximum planetary (or longitudinal) wave
number, LR1 = LMAX+]’ and "NLAT" is the number of Gaussian lati-
tudes. A1l other quantities have been defined previously. The
storage arrangement for AZ and BK is as follows:

(See following page).
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1

NLEV 32 + NLEV ,/17
(LEVEL 1) LEVEL NLEV) 1/ LEVEL 1) (LEVEL NLEV) !
r -
1 RQ{AO(H])} Re{Aq (uy)} A Im{A o)} Im{Ay(uq)} 4]//
2 | RefAy(u)} Relhy(uy)) o Tmihy (k) I (u)
R . #
LR1 | Re{A (b )} . . . Re{A (u)} L Im{A (nq)? Im{A (1)}
Lyax ! Loax. VA by ! Ly ! //,%
LR1+1 0 0 £ 0 0 a4l
: v 4 . 17
NLON-Lyny 0 0 P4 0 0 7
NLONM- LMAX+] Ra{BLMAX(u1)} ... RQ{BLMAX(u1)} Im{BLMAX(UT)} Im{BLMAX(p])}
NLON-1 Re{Bz(u])} Re{Bz(u])} Im{BZ( 1)} Im{BZ(p1)}
NLON RQ{B](H])} Ra{B](u])} /y Im{B]( )} Im{B1(u])} 4%;
NLON+1 RQ{AO(uZ)} RQ{AO(UZ)} Im{AO(uz) Im{AO(uz)}
NLON+2 RQ{A](UZ)} Re{A1(u2)} Im{A]( 2)} Im{A](pZ)}
Y S 7
2*NLON | Ref{B(u))} Re {8, (u,)} Y Im{By (1)) Im{8, (1)} 7
: |
7 '
NLAT/2*NLON RQ{B](UEQ)} RQ{B](UEQ)} )4 Im{B1(uEQ)} Im{B](uEQ)} /
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Subroutine FFTFR2 (DATA)

This routine converts the Fourier coefficients obtained in "DATA"

from “SPCFR2" to grid values (also stored in "DATA"), as described

for subroutine "SPCGD2", using fast Fourier transform (FFT) techniques.
The transformation can be reversed by changing the sign on the flag
variable, "ISIGN". It thus is used as the first step in transforming
grid data to full spectral coefficient data.

II. Grid to spectral transformations.

a.

Subroutine GDSPC2 (DSPEC, DATA).

This routine reverses the procedure of "SPCGD2" and produces spectral
output in "DSPEC" from gridpoint data contained in "DATA". The storage
arrangements for these two fields are as described in "SPCGD2". The
program begins by moving one latitude (and its congugate latitude) of data
from "DATA" to "DSPEC" on a temporary basis and then calling subroutine
FFTFT2 (DSPEC) with argument "DSPEC" in order to compute the A, and B,
fields for that latitude.

"GDSPC2" then continues by combining the Az(“) and Bz(“) fields (again,
by latitudes) to obtain fields of Ez(“) and Oz(“) as defined in (E.3).
These are given (for £ > 0) by

Ep(1) = LA, (1) 4B, (u)] + 707, (w)-B,(1)]
0y (1) = 2LA,(u)#B(L)] - LA, (1)-B,(w)] o
and, for £ = 0,
Foln) = {RelAg(u)} + In{Ag(u)}]
(E.8)

0g(1) = 3lRe{A()} = Tm{Ag(u)}]

where Eo(p) and Oo(u) are both real quantities. Due to limitations in
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storage, however, the Ez(“) and OZ(“) values are stored both in the
“DSPEC" and "DATA" matrices. That is, it was found to be convenient

to place the EZ and Oz coefficients for the first three planetary

waves (£ =0, 1, and 2) in the region DSPEC(1,107) - DSPEC(64,190).

A1l of the other coefficients (£ > 3) are placed in."DATA" by latitudes.
The storage arrangements for both "DSPEC" and "DATA" follow. First,
however, we want to note, for ease of computation, that we can make use
of the definition, for example,

AT = Im{A} + iRe{A} (E.9)
so that (E.7) can be written as

25 [Ay ()+8,()+ (A, ()-8, (1)) "]

m

&S
T~

—
i

(E.10)
0,(u) = .25 [A,(u)+B, (u)-(A

)
—
T~
~—

]
(o)

)
—
=
~
~—
L

"

Define, NLATHF = (NLAT+1)/2 and J2 = NLATHF+NLATHF such that the
storage for "DSPEC" is:

(See following page).
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J ] C . NLEV | 33 e 32 + NLEV
I (LEVEL 1) (LEVEL NLEV)/’f (LEVEL 1) (LEVEL NLEV) |
1
2
106
107 RQ{EO(H])} Ra{Eo(u])} 0 0
108 Re{Oo(u])} Re{OO(u])} L 0 0
109 | RefE(uy)} Re{Eq (1)} g 0 0
110 RQ{OO(UZ)} RQ{OO(UZ)} 0 0
7
105+J2 RQ{EO(UEQ)} Re{EO(uEQ)} L 0 0
106+J2 RQ{OO(UEQ)} RQ{OO(uEQ)} 0 0
107432 Re{E } Re{E } Im{E )} Im{E;(u,)}
1(ky)? e{gq (i) » m{E, (u m{Eq (u, e
106+2*J2 R?’{O1(“EQ)} RQ{Ol(“EQ)} L Im{01(“EQ)} . Im{O1 UEQ)} §%
107+2*J2 Re{E, (1q)} Re{E, (uy)? Im{E, (17} Im{E, (uy)}
106+3%92 | Ref0,(ugq)} Rel0,(ugg)d & Iml0y(ugg)d + o Inl0,(ugg)t &7
| |
C-ob
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For "DATA" we let J2 = 2*NLATHF*(LMAX-3) where then:

f

J ] . NLEV 33 32 + NLEV |
I (LEVEL 1) (LEVEL NLEV) (LEVEL 1) (LEVEL NLEV)
2 RQ{O3(u])} .. Re{03(u])} /9Im{03(u])} . Im{03(u])} L
A A
3 RQ{E4(U])} .. RQ{E4(U])} Im{E4(u])} . Im{E4(u])}
4 Re{04(u1)} .. 22{04(u])} Im{04(u])} .. Im{04(u])}
2%, 107 | Re{E,  (ug)} CRe(E ()} | ImlE, (u)} . . . Im{E, }
HAX Lyax ] Luax V7 L7 vax ! " LMAX(H]) _
& Vi
2% -6 | Re{0 (uq)} . Re{0 (1)} | Im{O (ue )} . Im{0 (113
MAX Lyax ! Lyax ! Luax ! Lyax !
2%y =5 Re{E4(ny)} . RefE4(uy)} ﬁfjm{E3(ué)}' . Im{E4(ny)} ﬁﬁ'
2*Lyny -4 Ra{03(u2)} . Re{03(u2)} Im{03(u2)} . Im{03(u2)}
4%, =12 | Re{0 (us)1} . Re{0 (U, )} 7 Im{0 (o) 3 . . Im{0 (u,)} =
MAX Lyax 2 Lyax @ “ Lyax 2 Luax 2"
J2 | Ref{0 (uea)d - o - Re{O (uepn) LrIm{0 (uea)t - - - Im{0O (ven) bz
Lyax EQ Lvax EQT Lyay  EQ Lyax "EQE




