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The Binary Weight Distribution of
the Extended (2™, 2™-4) Code of Reed-Solomon Code over GF(2™)
with Generator Polynomial (x-a)(x-a2)(x-a3)*

Tadao Kasami Shu Lin

Osaka University Texas A&M University

ABSTRACT: Consider an (n,k) linear code with symbols from
GF(2®). If each code symbol is represented by a binary m-
tuple using a certain basis for GF(2™), we obtain a binary
(nm,km) linear code, called a binary image of the original
code. In this paper, we present a lower bound on the minimum
weight of a binary image of a ¢yclic code over GF(2™) and

the weight enumerator for a binary image of the extended
(2™,2™-4) code of Reed-Solomon code over GF(2®) with
generator polynomial (x-a)(x-a2)(x-a3) and its dual code, :
where a is a primitive element in GF(2™).

1. Introduction
Let {84, By, ***, B} be a basis of the Galois field GF(2™). Then

each element 2z in GF(2™) can be expressed as a linear sum of 81,-é2} see,

By 38 follows:
Z = CqBy * CpBy *+ cee *+ Cpbp

where cieGF(Z) for 1 £ 1 £ m. Thus 2z can be represented by the m-tuple
(c1, Coy **°, cm) over GF(2). Let C be an (n,k) linear block code with
symbols from the Galois field GF(2M™). If each code symbol of C is
represented by the corresponding m-tuple over the binary field GF(2) using
the basis {B8;, B, °*-+, By} for GF(2™), we obtain a binary (mn, mk)
linear block code, called a binary image of C. The weight enumerator of a
binary image of C is called a binary weight enumerator of C. In general, a
binary weight enumerator depends on the choice of basis. A basis {81. Bos

e, Bm} is called a polynomial basis, if there is an element 8 ¢ GF(2™)



such that BJ = 83'1 for 1 £ jJ S m. A polynomial basis will be said to be
primitive, if 8 is primitive.

Let a be a primitive element of GF(2™), and let n = 2®-1. For 1 S k <
n, let RS, denote the (n, k) Reed-Soiomon code over GF(2™M) with generator
polynomial (x-a)(x-a2)~~-(x—a“'k)[1], let RSk.e denote the (n, k) Reed-
2)

Solomon code over GF(2M™) with generator polynomial (x-1)(x-a)(x-a
(x-a""K~1), and 1let ERS, be the extended (n+1, k) code of RS,. The dual
code of RSk is Rsn—k,e' and the dual code of ERSk is ERsn+1-k’ B

Binary weight enumerators for RS, ; with 1 S 1 52, RS;_; o with 2 3
i £ 3 and E:RSn_,_i with 1 £ 1 $ 2 were presented in [2], and those for

RS , the dual code of RS._,, and RS,, the dual code of RS were
2,e n-2 3

< ’
derived in [3,4]. These binary weight enumerators are 1ndepe;LeiLeof the
choice of baslis. _7

In section 2, the binary image of the dual codé of a linear code C
over GF(2™) by using the complementary basis of a basis {31, Boy *°°, Bm}
is- shown to be the dual code of the binary image of C by using basis {81.
82. see, Bm}. In section 3, ‘a lower bound on the minimum weight of a

binary image of a cyeclic code over GF(2™), In section 4, the binary weight

enumerator of ERSy, 1is derived for a class of bases including the

complementary bases of primitive polynomial bases. By Theorem 1 the binary
weight enumerator for ERSA_3 is obtained. This approach can be readily

extended to derive the binary.weight enumerator for ERSS.

2. Binary Images of Linear Block Codes over GR(2™)
Let C be an (n,k) linear code with symbols from GF(2™). Let c(p)

denote the binary (nm,km) linear code obtained from C by representing each

code symbol by the corresponding m-tuple over GF(2) using the basis {8,,
Boy *+°, By} for GF(2™). Let {&,, §,, ==+, 6} be the complementary (or
dual) basis of {81'82""'8m}’ i.e.,

Tr(Bisj) =0, fori#]}],

TP(BIGI) -1,

where Tr(x) denotes the trace of the field element x [5,p.117]. Let cD be

-



the dual code of C. Let cP(®) denote the binary (nm, (n—k)m) linear code
obtained from CD by representing each code symbol by a dbinary m-tuple over
GF(2) using the complementary basis [61. 82, °°*, 85} of {84, Bos o+,
8 } Then we have Theorem 1.

Theorem 1: CD(b) is the dual code of C(b).
Proof: Let (a;, a5, *--, a,) and (bq, by, *+*+, b,) be codewords of C
and cP respectively. Then

n
Let
m -
ai - JE] aiJBJ ’ ) ; (2)

It follows from (1) to (3) that

n m m n m m y

Taking the trace of both sides of (4), we have -

n m
& L S5 nf a13bynTr(8yé,) = 0 . (5)

Since Tr(BJGh) =0 for j # h and TP(BJG ;) =1, it follows from (5) that

I T ajb.,=0 (6)
{a1 jo1 1L |

Equation (6) implies that cP®) 15 the dual code of c(P), AA

For a basis {8y, B, <+-, 8} for GF(2®) and an n-tuple ¥ = (vq,

Vo, *ve, V) over GF(2™), let w7j be defined as

GJ. = (Vlj' Vagr ttty vnj)' for 1 S j Sm, (7)

m
JE1ViJ8J with vy € GF(2) for 1 S i Sn. If {81, 65, v+, &

where v; = o!



is the complementary basis of (8, B, °*°°*, By}, then VJ is represented as

vy = (Tr(yvy), Tr(8yvp), ooe, Trlsyvy)) (8)

and VJ is called the GJ component vector of v. The binary weight of v,
denoted |?|2, is given by

- m .

3. Binary Images of Cyclic Codes over GF(2T)

Let n be a positive integer which divides 2®-1. If s is the smallest
number 1in a cyclotomic coset mod n over GF(ém), 8 Is called the
representative of the coset and the coset is denoted by Cy(s). Let m(s)
denote the number of integers in Cy(s). For a subset I of {0,1,2, see n-
1}, I denotes the set union of thosé cosets which have é nonempty
intersection with I, and Re(I) denotes the set of the representatives of
cyclotomic cosets in I.

) Let Y be an element of order n in GF(2®). For a subset I of {0,1,2,
"~ ++% ,n-1}, let C(I) be the cyclic code of length n over GF(2™) with check
polynomial _ . V

I (x-v).
iel

and let Cb(I) be the binary cyclic code of length n with check polynomial

L (x-vl).
iel :

) n-1
For a polynomial f£(X) = 120 aix1 with a; € GF(2™), 1let v[{f(X)] and

ev[f(X)] be defined by

vIE(X)] = C £01), £0Y), £(Y2), «oe , £ 1) ), (10)
and '
ev[£(X)] = ( £00), £(1), £(Y), «eo , £(Y"1) ) . (11)

It follows from (8) and (9) that



| el [, = T | vCTe(s, e |5 (12)
J=1

| ev{f(0] |5 = T | evlTr(s,e(xXD] |, - (13)
=1

For a subset I of {0,1,2, <+ ,n-1}, let P(I) be defined by
P(I) = { I a;x! | a;eGF(2™ for 1eI} .
iel
As is well=-known{ § ],

c(1) = {v[r(X)]]feP(I)} .

It follows from (8),(10) and the definitions of C(I) and Cy(I) that for v
= v{f(x)] € C(I), the 85 component vector of v, denoted Vj, is given by

¥y = vITr(s52(X))] , 1S3sm , (14)
and

¥y e Cy(D) . - - (15)
As is also known [ § 1,

Co(I) = {v[ & Ir, (a.xb) Tla, ¢ GF(2®(1)) for 1 € Re(I) } , (16)
b ieRe m(i) i i

Re(I)

where

3-1
Try(X) = X X2 4 eee # X270

Polynomial f(X) € P(I) can be expressed as

£(X) xi2d | (17)

= I L a
ieRe(I) qeQ(i,I) 129

where 129 is taken modulo n and



Q(1,I) = {q] p:129Z p(mod n), pe I and 0 S q < m(1)} .

It follows from (17) that for 1 $J s m

i

I
ieRe(I)
where

i)- i)-
om(1)-q aZm( )-q

s 1 Re(I) , (1

- byy = (@) ¢

where for a divisor h of m

h 2h ~-h
M (x) = x + X2 + X2 4 vee 4 x2m . (20)
Note that
by e ar(2®(1)y . (21)
It follows from (14) and (18) that for 1 S j S m
T 21
VJ - V[ieéc(I) Tr'm(i) (bji x ) ] -7 (22)
For i € Re(I), let Cy be defined by
= 4 (m(1)) om(1)-q
C, = by,bs, **+ ,b b; = T ! ’
1s3sm abe GF(2™) } . (23)

Note that the following matrix D over GF(2") is invertible [5,p.117] :

—

—

52 m=1
2 .2 2
61 61 61 eee 61

2 22 om-1
62 83 83 ** &

A
D = (24)

2 m=1
2 2 2
§ & 5m cee O

. -t



zm(i)-q

qeQ(4,1) I

ag)=0for1s5ysm, then
a& = 0, for q € Q(i,1) . : (25)

Hence (-:1 is a linear ( m, #Q(i,I)n/m(i) ) code over GF(Zm“)), where #M
denotes the number of elements in set M.

For a code C, let mw[C] denote the minimum weight of C. Then the
following theorem holds.

Theorem 2 : For { ¢ I,

m{C(D®] 2 min { mlC,Jmwlc,(D, awlc(r-(1D(®)] 1, (26)

where m(C(I-{I1)P] < =, if IS(IT.

Proof: 1If follows from (19) and (25) that in =0 for1S3jsSmifand
only if 8y, = 0 for h ¢ IN{i}. Suppose that there is an integer h ¢
IN{1} such that ay # 0. Then the weight of (by;,byy, ==+, by,) is at
least mw[C;]. Hence there are at least mw(C;] nonzero codewords of Cy(I)
in {\?1 ,72, cee ,im} where \71‘ is given by (22). Then this theorem follows
from (12). - AA

The following lemﬁla holds for Ei‘

Lemma 1: Suppose thatA m(i) = m and there are integers h and s such that 0
Sh<m, 0<s Sm and

Q(i,I) = {q|m-q = h+j(mod m), 0 S q <m and 0 S j < s}.
Then Ei is a maximum distance separable (m,s) code over GF(2T).

Proof: Consider a polynomial F(X) over GF(2®) of the following form:

m-
F(X) = I e x2" 9,
qeQ(i, 1) ¢
Then,

-1 m-h
2 sz,

2m"h
cm-l'x--,j

s
F(X) =7
J



where the suffix of a coefficient is taken modulo m. Since F(x)zm-h is a
linearized polynomial of degree 2%~ or less [ 5 ], the zeros of F(X) in
CR(2%T) form a subspace of GF(2®) whose dimension is at most s-1. Hence #t
most s-1 elements of {61.62. eve ,Gm} can be roots of F(X). if follows
from the definition of EJ-that mw[ail - m—3+11 '
Since #Q({,I) = 8, C; is a maximum distance separable (m,s) code.
AA
Example 1: For an integer m greater than 2, let n = 2l - 1, and let I =
{1,2,3,4}. Then C(I) is RSy er Q(3,1) = {0}, and Q(1,I') = {0,1,2} where
I'=1I- (3}. It is known [6,7] that
mw(Cy (1)1 = 2871, for odd m,
= 20~1.50/2=1 " 5 even m such that m/2 is even,
- 20-1_58/2 5 even m such that m/2 is odd,
and
mwl(Cp(I)] = 2m-1_2(m-1)/2’ for odd m,

- 2m=1_om/2 for even m.

Since mw[E1J = m-2 and'mw[63] = m by Lemma 1, it follows from Theorem 2
that ' - -
mw[C(I)(b)] - mw[C(I')(b)] 2 (m-2)2"7',  for odd m, ]
] 2 (m-2) (20" 1-om/2-1, -
for even m such that m/2 is even,
2 (m-2) (207 1-2/2),
for even m such that m/2 is odd.
AA

4. Binary Weight Enumerator for ERS),

Hereafter we assume that
mz2 3,

n = 20-1,
For 0 $ {1 < Jj <n, let

Ii,J = { 1,1"1,"',:]}0-
Then it is known [5] that



RS = { v(£(X)) | £(X) € P(Ig oq) ), (27)

RSy e = { v(£CX)) | £(X) e P(I, )}, (28)
and
ERS, = ( ev(f(X)) | £(X) € P(Ig yoq) } . (29)

For 0 S h < n-1, v[f(a"X)] 1s the vector obtained from v[f(X)] by the h
symbol cyeclic shift, ev[r(ahx)] is the vector obtained from ev[f(X)] by
the h symbol cyclic shift among the second to the last:symbols, and

[vLe(a™0) 3], = |vir()1], , : (30)
levie(a™0]], = Jevir(0]], . : (31)

- 2 3 -

For f(X) ao + a1X + a2X + a3X € P(IO,3)' eV[f(X)] € ERSu ERS3 if
and only if a3 e 0. The cyclic permutations on the second to the last
symbols induce a permutation group on the codewords of ERSu, which divides
ERSH—ERS3 into disjoint set of transitivity. Each set consists of (2™-1)/v

codewords, where : -

v = (2"1, 3),

where (a,b) denotes the greatest common divisor of integers a and b. If m
is odd, then

v=1, (32)
and otherwise,

vV = 3 f (33)

Let ev[a0+a1x+a2X2+ahx3] for 0 S h <v represent each set of (2™-1)/v
codewords of ERSu-ERS3. Note that

Tr(85a0*6 52, X+853,X2+6 5a"3)



On the weight of ev[Tr(bo¢b1X*b3x3)J where by, by and by are in GF(2™),
the following theorem holds [6,7].

Theorem 3:
(1) For odd m and 0 S { < n,

|ev[Tr(b0+aib1X+a3ix3)]|2
=281, arr(yy) =0, (35)
- 2071 4 2(mT12 e tr(py) -1 (36)
(2) For evenm and 0 S { < n,
|ev[Tr(b0*a1b1x+u31X3)]|2
- 2071y 22 | gr (@ (p) -0, (37)

=2 e @) w0, (38)

(3) For evenm, 0 Si <nand1 £hs2,

[ev[Tr(bo*b1X+a3i+hX3)]|2

- 21, om/2t (39)

(4) If Tr(by) e Tr(by), then
|eviTr (by+byX+b3x3) 1, + [evlTr(bgeb X+bax3) 1],
=20, (40)
aA
For 0 £1i 8 m2m, let Ngk) denote the number of codewords of weight { in

ERSk. For deriving the weight enumerator for ERSQ-ERS3. there are two

cases to be considered.

-10-



4,1 Case I: m 1s odd.
Suppose that m i{s odd. Then, v = 1. For 1 s 3§ S m, let 61 be

represented as
u -
=ad. (41)

Since 2®-1 and 3 are relatively prime, there is an integer u such that 1 S
u < 20-1 and

3u 1 mod (2™-1) . (82)

Then 3
§y = o " (43)

Let ev[a0+a1x+a2x2*x3], denoted Vv, be a-representative codeword in

ERS&-ERS3. Then the £ component vector of V,VJ, is defined by
T . 2 3
vy ev[Tr(ajao+6ja1X+5Ja2x +GJX )] for 1 $jJSnm .
By (34) and (43), we have that
2 3
Tr(8ag+8 a,X+8 52X 46 X°)

2uuja
1

. -1 _
- (o Magra™ (@ Na, o [0" M2, 12T a3y L )

m-1
Since Tr(X2) = Tr(x2 ) = rr(g) for X € GF(2®) , it follows from (1) of
Hu 1154
Theorem 3 and (44) that if Tr(a ja1) = Tr(a ja2) , then

’ (us)
and otherwise, .
lvjlz - 2m'1 + 2("1‘1)/2 . (us)
Let S,(V) and S_(V) be defined as

S,(V) = #L 1 | [Vy]p = 2" 2m=1)/2 'y s5sm},

SUV) = # 1] [Fylp =2 =22 [y sysay,

~11-



Then it follows from (45) and (46) that

HOL | [Fylp=2"" L 15350} =m- 5.9 5. . -
Then we have that

7]z = w2+ (s,(D-s_@2")/2 (47)

Suppose that {&}, &}, -+, §}} is linearly independent. It follows
from (42) that yu is relatively prime to 2P-1. If { §11805°0,8,) 1s a
polynomial basis, then {&},85,¢+-,5}} i:sr linearly indepehdent.. Since & =

Hujy 1uu1’ aiuuz’

3yuy-C } ipu
a J:V,and 63-‘ = a , fa eee, @ P} is linearly independent

for 1 £1 £ 3. Therefore, we have that

{ (Tr(a" Yay), Tr(a" 2ap), o+, Tr(a" May)) | a, € GF(2M) }
- 2 ’ 2
= {ATr(a uu‘,'a‘), Tr(a e,

‘ 2
1)y cee, Tr(a uuma1)) | a; e GF(2™) }

3uu

= { (Tr(—33uu1ao)p Tr(a3uuzao)| ety TP(G mao)) I ao € GF(Zm) }

= the set of all binary m-tuples. (u8)

It follows from (40) and (45) to (48) that for given nonnegative integers
s, and s_with 0 S s, + s_ S m, the number of choices of (ao, ay, a2) of
Vv such that S (V) = s, and S_(v) = s_ is given by

m-s S.+s_ M-8, -sS_
My 2 Tt
+ -

Since there are 2B-1 choices of nonzero a, it follows from (47) and (u48)
that for 0 $ §J £ m ,

(4 - N(3)_ _
Nng"hjz(m"‘)/Z m2™1452(m=1)/2

-12-



(m-)/2
. (2ol migo .J(JTI)(m-i-I)zzm-J-21 ' (49)

N - {30, for other 1, | (50)
where sign + is to be taken in the same order.

4,2 Case II: m is even.
- Suppose that m is even. Then, m 2 4 and v = 3. For 1 S J S m, let Gj

be represented as

65 = °3UJ+WJ. (51)

where 0 S uj < (2™-1)/3 and 0 S Wy S 2. For f(x) € P(I, 3) - P(Io'z). let
the coefficient of X3 be represented as ue, and let

e=h, md3, 0shga2. (52)

Let ev[a0 + aqxX ¢+ a'2x2 +~ahx3], denoted v, be a representative

codeword. Then the GJ component vector of v, VJ. is defined by

- 2 hy3
vy ev[Tr(GJao + GJa1X + 852X + §5a X2)], for 1 $j S m.

By (34), we have that

VJ = ev[Tr(uBuJ*uJao + [a3uJ*wJa1 + (uBuJ*wJaz)zm-1]X + aBuj*wj+hX3)].
(53)
For 0 sh s 2, let

Iy = U3 | wi*h S0 (mod 3), 1 53 S ml,
and
CJh = {1,2,"',!!1} - Jh.

It follows from (3) of Theorem 3 and (53) that for 0 Sh <$2and je Cdp»

IVJ|2 - 2m-1 + 2m/2-1. . (54)

13-



For 0 Sh $2and §edJdy, it follows from (53) that

2 2 -2
VJ - evtTr(aBUJao + auJ[u uja1'+ (a uJag)2m X + a3uJX3)] ’

for h = 0 , (55)

: 2 1 2u;+1 2 -2 1
- eVETr(a3uJ+ ag * GuJ*‘[G ) a; + (a u3a5>2m X + a3(u3+ )X3)] ,

for h = ir, (56)

1 1 2u. 2u;=-2 -2 1
- ev['rr(a3uJ+ ag + ou+ [a uJa1 + (a 4 ag)2m JX + as(uj+~)x3)] .

for hr? 2. (57)

m-2 ‘
since Tr2x2" %) = Tr(@)(X) for even m and X in GF(2%), it follows from

2u
(2) of Theorem 3 and (55) to (57) that if either j ¢ Jq and Tr(Z)(a" Ja,)
ug+l
J

2 2 2
- Tr(2)(q uja%). or j € Jy and r{2)(q ay) = 1r(2)(a uja%). or j e Jy

2u: 2u,;=2
and Tr{2)(a pJa1) - Tb‘zkc ?J agftthen

|VJ|2 - 201 4 22, ) (58)

and otherwise,
[¥515 = 2. (59)

2u
Suppose that for 0shs2, {a J | Jed h} is linearly independent
over GF(22). This condition holds for a primitive polynomial basis.
For 0 £ h $2, let { uj | J ¢.Jy} Dbe represented by {upq, upo,
tey Upj }, where jj, = #J,. Since { a | a € GF(2®)} = { aia.] a e GF(2™)
} = GF(2") for an integer i, we have that

2 2 2ug
{(Tr(z)(a u01a1), Tr(z)(a u02a1), see, Tr(z)(u JOa1)) | ay € GF(2™)}

2u
2 2 0
-((1r(@) (o7 0142y, 1r(2)(o"022), v, Tr(2)(q J°a§>> | a, € GF(2™)}

~14-




- the set of all Jo~tuples over GF(ZZ), (60)

2u 3 +1

+1 134

2Uu, ,+1
a1),Tr(2)(a 12 .al),---,Tr(Z)(a

2u
(@™ M a;)) | ajecF(2™} -

2u
2u 2 1
- {(Tr(z)(u ?135), Tr(z)(a u12ag), see, Tr(Z)(a -J1ag)) | a, € GF(2™)}
= the set of all j;-tuples over GF(ZZ). (61)

2 2 2up
{(1r(2)(q u21a1), () (q u22a1). e, (2 (a J2a1)) | a; € GF(2™)}

2u,q -2 2u,,-2 2upj =2
-1 ("2 Tad), (D (0”22 %8), 000, r @@ T2 33)) | ayecR(2™))
= the set of all j,-tuples over GF(22). (62)

For any given Jo—tuple (b1,b2.--- bJ ) over GF(ZZ), the number of a,

- 230. For

in GF(2") such that Te(2(a”"0da) . by for 153 S 3y is 2
other sets in (60) to (62), similar results hold. Since {61.62,---,6ﬁ} is T
’iinearly independent, we have that ‘

{Tr(8,3q), Tr(s,ay), ==+, Tr(dpay) | ag € GF(2™)}
= the set of all binary m-tuples. (63)

Let S,(v), S_(v) and T, (V) be defined as

S{W) = # L1 | [Tyl =2+ 2™, je gy, (64)
SL(¥) = # (1] [Tyl =2 - 22, 5 e gy, : (65)
TW) = # 01| [y, = 2%+ 23T, 5 e eyl (66)

Then it follows from (S4) and (59) that

FOL| [ylp=2"" =22 1 sy snlen- gy -1, , (6D

-15-



UL %l = 1 sy sml =gy -5 - sl L (68)
Then it follows from (13), (2) and (3) of Theorem 3 and (64) to (68) that
|VJ|2 - mzm—j + (25,(v) - 25_(Vv) + 2T, (V) - m + Jh)zm/z"_‘_ (69)

It follows from (4) of Theorem 3 and (54) to (63) that for given
nonnegative integers s,, s_andt, with O s s, + s_;s Jpand 0st, sm-
Jp» the number of choices of (ag,ay ,az) of v such thaf. s, = S, (V), s_=S_
(V) and t, = T,(v) is given by

(ih)(Jh;sf)(m;Jh)ZZ(s*+s‘)2ujh-s*—s'22m-th.
+ - +

(70)
For 0 £h s 2--and integer j with -2m £ J € 2m, let Dh 3 be defined by
Dh,J = { (s,,s_,t,) | 0S5, SJ,,0Ss_5J,,08s,+s_SJy,

Oskt*SM‘Jh. 2(3+-5_+t+) -{n#‘j-‘jh} -(71)

Since there are (2%-1)/3 choices of nonzero a® satisfying (52), it
follows from (69), (70) and (71) that for -2m < j S 2m,

(4
Nng"" +j20/271 - NS_:%H +320/2-1
. - - =8,” -2
= (2%-1)/3 % I ih)(3h33+)(m Jh)quh s, s_um+s++s_ Jh’
and h-o (S¢,S-,t+)€Dh’J + - +
Ngn) = N§3) , for other {. (72)

4,3 Binary Weight Enumerator for ERS3

Let v = ev[a0+a1x+32X‘], and VJ = ev[éjao + Gja1x + 5Ja2x23. If a, =
a, = 0, then

V]2 = levlagl|; = 2%|agl2, (73)
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where |ag|, denotes the weight of the binary representation of ag in
GF(2™). For 0 s § S m,

(1) 2 (m
N om (5) » (74)
N§1) -0, for other {. (75)

Suppose that either a; e Qor a, =» 0. There are 2M(22m_1)
combinations of such (ao, ay, a2). Note that

Tr(6529*+8 431 X+852,X°)

- Tr(85ag + [85a) + (553027 10) . "~ (16)

= 0 if and only if a, = a?$

= ) m .
For each § with 1S § S m, 65a;+(4a,)? 5
There are m2®~1(2®-1) combinations of (ag, a5, a,) such that ay = aféj and

1
Tr(sjao) =0 (or 1). 1If 6Ja1 + (Gjaz)2m = 0 and Tr(cjao) = 0 (or 1),

then

|vj[2 - |ev[Tr(6Ja0)Jl2 =0 (or 2™ . o (17)

om 1
Ir Gja1 + (Gjaz) = 0, then

m-1 _
[vila = |ev[Tr-(sja0+[5ja,+(aja2)2 101, = 2271, (78)

Therefore, we have that

(3) - §(m - m201(2m .

me)2mt T Ngepyoat T2 (2D (19)
N - N = @@ (80)
N(3) - 81 ;o= w2l (81)

(m-1)2%0"! (m-1)20"

Ng3) - Ng1) , for other i . (82)
Note that the binary weight enumerator for ERS3 is independent of the
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choice of basis.
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