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ABSTRACT

The ATMOS (Atmospheric Trace Molecule Spectroscopy) experiment has the broad purpose of
investigating the physical structure, chemistry, and dynamics of the upper atmosphere through the study
of the distributions of the neutral minor and trace constituents and their seasonal and long-term varia-
tions. The technique used is high-resolution infrared absorption spectroscopy using the Sun as the
radiation source, observing the changes in the transmission of the atmosphere as the line-of-sight from the
Sun to the spacecraft penetrates the atmosphere close to the Earth’s limb at sunrise and sunset. During
these periods, interferograms are generated at the rate of one each second which yield, when transformed,
high resolution (0.01 cm’l) spectra covering the 2.2 to 16 micron region of the infrared. Twenty such
occultations were recorded during the Spacelab 3 flight, which have produced concentration profiles for
a large number of minor and trace upper atmospheric species in both the northern and southern hemi-
spheres. Several of these species have not previously been observed in spectroscopic data. The data
reduction and analysis procedures used following the flight are discussed in the present paper; a number
of examples of the spectra obtained are shown, and a bar graph of the species detected thus far in the
analysis is given which shows the altitude ranges for which concentration profiles have been retrieved.

INTRODUCTION

Infrared absorption spectroscopy, using the Sun as the radiation source, has proven to be one of
the most powerful methods for studying the composition and structure of the Earth’s atmosphere. Such
measurements can provide information on the vertical and spatial distribution of the molecular consti-
tuents of the atmosphere, the local temperature and pressure regimes, and the photochemical, thermo-
dynamic, and radiative transfer processes which are occurring there. Studies of this kind were made in
the past from the surface and from low-flying aircraft [1] and have progressed more recently to high-
flying aircraft and balloons [2]. It has been apparent for some time that the next logical step in the
utilization of spectroscopic techniques for atmospheric measurements is to make the observations from
space. Such measurements afford the possibility of probing the entire altitude range of the atmosphere,
and offer the additional advantage of providing global coverage. The Atmospheric Trace Molecule Spec-
troscopy (ATMOS) investigation was conceived and implemented to take advantage of the capabilities
of the Space Transportation System (STS) which provides the space shuttle as a platform for making
such measurements from space and the Tracking Data and Relay Satellite System (TDRSS) for relaying
high data rate information to the ground.

THE ATMOS INSTRUMENT
Against the two obvious advantages of probing the upper atmosphere from space there lies the

disadvantage of the very rapid rates at which the solar occultations occur while in Earth orbit. This
disadvantage is compounded by the fact that there are more than 40 atmospheric molecular species of
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interest today which absorb at a wide range of frequencies in the near and middle infrared, making broad
wavelength coverage at very fast scan rates a necessity. The only technique capable of acquiring spectra
under such conditions is fast Fourier Transform (FFT) spectroscopy; this consideration established the
requirements for the sensor (a state-of-the-art Michelson interferometer) to be used in the investigation.

The ATMOS instrument, described in Reference 4 and illustrated in Figure 1, was designed and
built by Honeywell Electro-Optics Center (HEOC) in Wilmington, Massachusetts; an optical diagram
tracing the radiation path through the instrument is shown in Figure 2. The salient characteristics of the
instrument, dictated by the demanding task of acquiring broad band, high resolution spectra from space,
are listed in Table 1. The one-second scan time shown in the table is based on the need for good vertical
resolution in the measurements and the assumption of a worst-case occultation rate of 2.5 km per second.
In order to reduce the sampling rate and improve the signal-to-noise characteristics of the spectra, the
overall spectral range of interest, from 550 to 4800 cm'l, is divided into four smaller, overlapping wave-
length intervals using optical filters whose bandpasses fit within the alias limits created by sampling every
two or every three fringes of the He-Ne reference laser. The wavelength intervals covered by these filters,
together with those molecules of interest having absorption features which fall within each region, are
shown in Table 2. Not shown in the table are two additional filters including a notch filter (No. 5)
covering the regions from 600 to 700 em1 and from 2000 to 2500 cm! (used for temperature sounding
and thermodynamic equilibrium studies), and a broad survey filter (No. 6) which covers the entire
spectral region from 600 to 3600 cm! with reduced signal-to-noise performance.

MISSION PROFILE

The Spacelab 3 mission was flown by the space shuttle Challenger during the period from April
29, 1985, to May 6, 1985. The launch time for the mission was chosen by the ATMOS Science Team
such that sunset occultations during the flight would occur in a broad band of northern latitudes encom-
passing the region from 10° to 40°N, and sunsets in the southern latitude band from 40° to 50°S. Over
50 sunset and sunrise occultations had been allocated to ATMOS to fulfill the primary objective of
detecting as many as possible of the minor and trace species present in the upper atmosphere and deter-
mining their vertical distributions, and the secondary objectives as well as discerning their latitudinal and
longitudinal distributions. The use of the optical filters available in the instrument was planned such
that good sampling of the latitudinal and longitudinal distributions of each of the species could be
obtained.

Very early in the mission, engineering telemetry data from the instrument indicated a leak in a
pressurized housing which contained the He-Ne reference laser. This information forewarned that the
housing would eventually reach a pressure low enough to cause arcing in the high voltage power supply
for the laser. Prior to the shutdown of the instrument 20 sunset and sunrise occultations were obtained.
This number of occultations was completely sufficient to satisfy the primary objectives of the flight;
a summary listing of these occultations and their geographical locations is shown in Table 3. In all, the
total raw data returned during the abbreviated mission amounted to about 9 gigabytes.

DATA REDUCTION

One of the marked disadvantages of interferometric spectroscopy, at least until recent times, has
been the amount of processing required on the raw data contained in the interferograms. Because of the
large dynamic range of the data in an interferogram, most interferometers contain both a high and a low
gain data channel and these must be merged into one data stream at the beginning of the reduction
period. Corrections for phase distortion must be applied to a subset of the interferogram points in the
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region of the zero path difference fringe, and finally the entire set of interferogram points must be
Fourier-transformed from interferometric space to spectral space in order to provide data records suitable
for examination. Not until the evolution of modern computers and array processors, with their large
throughput capacities and ultra-high operational speeds, did large scale measurements with high resolu-
tion Fouricr transform spectrometers become a viable technique. In the case of ATMOS, a dedicated
facility was constituted at JPL to accomplish the formidable data reduction and analysis tasks. At the
core of this facility are a powerful minicomputer and two fast array processors which can — in a matter
of seconds — perform the phase correction and Fourier transformation required to convert a 400,000
point, 16 megabit ATMOS interferogram into a spectrum.

During the Spacelab 3 mission, 3 minutes’ worth of data were gathered by the instrument at
each occultation opportunity. Since the occultation rates on Spacelab 3 were of the order of 2 km/sec,
more than half of the spectra in each occultation set were solar, i.e., were acquired above the Earth’s
atmosphere and contained features of solar origin only. In order to simplify the analysis task on the
atmospheric spectra, a number of the solar-only spectra were averaged together for each of the occulta-
tions and the resultant spectrum was ratioed against each of the spectra in the set which contained
telluric features, effectively removing all of the superimposed solar lines from each spectrum. At a later
date, more comprehensive averages of the solar spectra available from the mission will be assembled and
the results published as a high signal-to-noise, high resolution solar atlas covering the infrared wavelength
region from 2.2 to 16 microns.

DATA ANALYSIS

There are two major phases involved in that part of the analysis of the data leading to profiles
of concentration for the minor and trace gases. While initially both may be pursued simultaneously on
an iterative basis, the accuracies achieved in the first phase, which involves the extraction of temperature
and pressure information from the spectra for each occultation, ultimately establishes the uncertainties
associated with the retrieval of the mixing ratio profiles themselves (which constitutes the second phase).
In view of this, one of the advantages of the wide spectral coverage and high resolution of the data is the
convenient access to spectral features that can be used for determining the vertical profile of pressure
and temperature corresponding to each occultation location. Of particular importance in this context
are the lines of the 1-0 Ny quadrupole band that occur between CO; v3 band head and the v1 + 2»2
band of N72O. A number of these lines can be seen in the lower trace of Figure 3. The S8 and S10
lines of Ny at 2403.6 and 2418.7 are essentially insensitive to temperature (having lower state energies
of 143.2 cm! and 218.8 em 1, respectively), and their strengths give lines of convenient intensity at
this resolution for quantitative analysis of tangent heights from the tropopause to about 35 km, which
is the range over which refraction coupled with increasing atmospheric opacity result in nonuniform
spacing of the tangent altitudes of successive scans. They thus provide an ideal means for the deter-
mination of the line-of-sight column density corresponding to each scan. Furthermore, since ray paths
with tangent altitudes of between 15 and 30 km correspond to air-mass values between 10 and 1,
respectively, the N7 lines can be carefully “calibrated” by reference to spectral scans made by the instru-
ment observing the Sun from the ground. Together with the temperature sensitive (high-J) CO- lines,
these features provide the basis for inverse methods for the retrieval of temperature-pressure profiles.
In the 30 to 40 km range numerous temperature insensitive CO, lines can be utilized for the determina-
tion of the line-of-sight column density; by comparison of these with the N lines in the same spectra,
systematic uncertainties in the molecular spectral parameters of the CO, bands can be minimized. In
this way the range over which reliable temperature profile retrievals are possible can be extended upwards
well into the mesosphere, to altitudes where the effects of photolysis of COy and departure from local
thermodynamic equilibrium negate many of the assumptions that can be made at lower altitudes in com-
paring the observed spectra with the results expected from the application of simple radiative transfer
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theory. Figure 4 shows an example of two retrievals to determine the pressure-temperature profiles
corresponding to two of the ATMOS Spacelab 3 occultations.

At the time of writing, most of the effort in determining the atmospheric temperature, pressure,
and density structure at the occultation locations has been concentrated on analyses in the 4 and 2.7
micron regions (i.e., the data obtained with filter 3), mainly for reasons related to the quality of the
laboratory spectral data available in these bands. It was anticipated prior to the Spacelab 3 flight that
this would be the case, and filter 3 occultations were scheduled with sufficient frequency such that
temperature and pressure data derived from them could reasonably be extrapolated to the occultations
utilizing other filters recorded in the near (geographical) vicinity.

The approach adopted for deriving the profiles of concentration from the data was to preselect
very narrow wavelength regions in the spectra which contain analyzable features of each gas of interest,
and to manipulate these ‘“‘microwindows™ rather than the huge spectral sets themselves. To give an
indication of the quality of the data and to illustrate the remarkable power of the Fourier transform
technique when used in this way, the top trace in Figure 5 shows a segment of about 500 cm1 from one
of the Filter 2 observations. The succeeding traces show the same data at successively higher dispersions
by factors of ~10 and finally ending with a 1.0 e segment centered at 915 cm'l, which corresponds
to one of the selected microwindows for NO. Figure 6 shows the entire set of spectra in this micro-
window region for this occultation and the windows depicted in both Figure 5 and Figure 6 are non-
ratioed tracings showing the very different growth characteristics between the NO lines and the water
vapor lines identified in the figures, and the constant absorption characteristics of solar features. Suit-
able microwindow regions were selected prior to the Spacelab 3 flight by the ATMOS Science Team
members using the best distribution estimates available at the time for each molecule, a standard physical
model of the atmosphere, and synthetic spectra generated with the aid of a 150-layer model atmosphere
program. To analyze the actual flight spectra, a program was created which automatically extracts from
the data the microwindows specified by the user and displays them — three successive spectra at a time —
on the computer terminal screen. Starting at the highest altitude desired, the user can then activate
automatic features of the program which create and iterate synthetic spectra to fit the spectral features
contained in the microwindow and proceed downward (in tangent altitude) in ‘“‘onion peel” fashion until
a concentration profile for the species of interest as a function of altitude is derived. In general, several
microwindows are used to derive separate profiles for a given species in each occultation, the individual
profiles then being averaged to improve the accuracy of the final result.

Because of the magnitude of the spectral data sets which can be obtained from an instrument of
this type, a large body of additional software has been written to facilitate the ATMOS data analysis
activities, including programs for displaying and manipulating real and synthetic spectra, the atmospheric
physical and chemical models, and the contents of the ATMOS library of molecular spectral parameters
(the “ATMOS linelist”). Both on-line and off-line plotting programs and devices are also available for
hardcopy graphical presentations of the data. All of the spectral examples shown in this report were
reproduced directly from the output of these peripheral devices.

RESULTS

Representative examples of the ATMOS spectra illustrating the quality of the data and a few of
the many interesting spectral features observed are shown in Figures 7 through 11. Figure 12 is a dia-
grammatic summary indicating the vertical range of detection for those species whose profiles have been
extracted from the data at this stage of the analysis. Notable among the results are the detection of
several trace species that had not been observed previously (namely COFj, N205’ and HNO4), the
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confirmation of the presence of CIONO7 in the stratosphere through the identification of 5 separate
vibration-rotation bands, and the first measurement by remote sensing techniques of the principal natural
halocarbon, CH3Cl. As can be seen in Figure 12, the resolution and sensitivity of the ATMOS instru-
ment is sufficient to allow continuous profiles of concentration for some minor gases (and at least one
trace gas) to be determined extending from the upper troposphere through the stratosphere and meso-
sphere and, in the case of CO9, CO, and NO well into the lower thermosphere (i.e., ~130 km). However,
the derivation of the profiles in the mesosphere is complicated by the fact that the onset of photochemi-
cal thresholds for dissociation and the potential departure from thermodynamic and equilibrium condi-
tions in these regions rander invalid many of the assumptions which can be made at lower altitudes to
help in establishing the temperature and pressure environment for the species being measured. It is the
task of the ATMOS Science Team over the next several months to unravel the radiative transfer, thermo-
dynamic, photochemical, and transport processes which are occurring in these regions and improve our
understanding of the physical conditions at these hitherto uncharted altitudes in our atmosphere.

FUTURE MISSIONS

While the ATMOS flight on Spacelab 3 was conducted in accordance with a comprehensive set of
scientific objectives, it can also be viewed as a “proof of concept” flight which validated the instrument
and experimental techniques to be used for the long range objectives of the ATMOS Investigation.
ATMOS will be a core part of the Earth Observations Missions (EOM) beginning in August of 1986 and
continuing for a period of at least an eleven-year solar cycle with about one flight per year. Short range
objectives for these missions are expected to be planned on the basis of the current status of upper
atmospheric knowledge and the flight conditions for the individual mission opportunities as they arise.
The opportunity will be taken to make flights at different seasons and inclinations in order to provide the
required range of observational parameters for discerning latitudinal and seasonal changes in the upper
atmospheric inventory of molecular species. The data from Spacelab 3 will provide an archival record
against which the results from later flights can be compared to study any long term changes in the com-
position of the atmosphere.
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TABLE 2. BANDPASSES OF THE PRIMARY ATMOS FILTERS WITH THE ATMOSPHERIC SPECIES
WHICH ABSORB IN EACH REGION SHOWN. PARENTHESES INDICATE A SECONDARY REGION
OF ABSORPTION FOR A GIVEN MOLECULE, WHOSE PRIMARY FEATURES LIE IN THE
BANDPASS OF ANOTHER FILTER.

BAND 1 BAND 2 _, BAND 3 | BAND4 |
600-1200 cm 1100-2000 cm 1580-3400 cm 3100-4700 cm
co, co, co, co,
H,0 CH, Co H0
0, H,0 CH,
H,0
0, HF
NH, N, (HCN)
HNO, H0,
(HNO,) HO,
HNO,, NO
(NO) (NO,)
CCIf NO,
CCLF, NO¢ HDO
CH,CCIF, HNO, (H,0,)
CH,Cl H.CO
ccl, HOC!
COF, CF, HCI
COCIF (CH,CH)
clo S0,
CIONO,, 0cs
HCN
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Figure 5. The top trace in this figure shows a 500 cm™1 region of spectrum between 1495 and 1995
em1 recorded with Filter 2. The second trace shows an expanded view of the 1900 to 1950 cm-!
region from the first,the third 4 cm~! similar expanded from the second in the 1913 to 1917 cm-1

region, and finally 1 cm-] expanded from the third trace centered on 1915 cm-l. This one
wavenumber region represents one of the selected microwindows for NO.
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Figure 6. Shown in this figure are an entire set of 1.5 c¢m-1 spectral excerpts approximating the NO
microwindow shown in Figure 5. For the purpose of clarity, the spectra have been overlaid as a
function of altitude. Several other solar lines and lines of telluric origin are also present in
the window, in addition to the two lines for NO at 1914.99 and 1915.77 cml.
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