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The rotordynamic coefficients of an incompressible-flow annular pressure seal were

determined using a bulk-flow model in conjunction with two different friction factor rela-

tionships. The first, Hirs' equation, assumes the friction factor is a function of Reynolds

number only. The second, Moody's equation, approximates Moody's diagram and assumes

the friction factor is a function of both Reynolds number and relative roughness. For each

value of relative roughness, Hirs' constants were determined so that both equations gave

the same magnitude and slope of the friction factor. For smooth seals, both relation-

ships give the same results. For rough seals (e/2Ho = 0.05) Moody's equation predicts

44% greater direct stiffness, 35(_ greater cross-coupled stiffness, 19% smaller cross-coupled

damping, 59% smaller cross-coupled inertia, and nominally the same direct damping and

direct inertia.

NOMENCLATURE

C, c = direct and cross-coupled damping coefficients

D -: diameter

e = surface roughness height

F_,F. = components of the seal reaction force

f = Friction factor

H = seal clearance

K, k = direct and cross-coupled stiffness coefficients

L = seal length

M, m = direct and cross-coupled inertia coefficients

m,n = Hirs' constants

p = pressure

Ap -- pressure drop across the seal

R = Reynold number (= 2pVH/#)

r .... seal radius

t = time

Uz, Uo = fluid velocity in the z and 0 direction

V = fluid velocity

X, Y = rotor displacement from its geometric center
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Z,O

#

P

cu

= axial and circumferential seal coordinates

= eccentricity perturbation

= viscosity

- density

= shaft angular velocity

0,1

x,y

s,r

z,O

Subscripts

= zeroth and first-order perturbations

= rectangular coordinate directions

= shaft and rotor

= axial and circumferential coordinate directions

INTRODUCTION

The design and safe operation of today's high-performance turbomachinery require

accurate predictions of the hydrodynamic forces developed by annular pressure seals. For

small orbital motion of the rotor about its geometric center, the hydrodynamic forces

are quantified by specifying a set of linearized rotordynamic coefficients as shown in the

following equation.

Fy K y + (1)- = -c C 1) +- -rn M

In this equation, (X,Y) define the motion of the seal rotor relative to its stator;

(F_, Fy) are the components of the hydrodynamic reactive force acting on the rotor; and

(K,k), (C,c), and (M, rn) are stiffness, damping and inertia coefficients respectively.

Extensive efforts have been made in the last two decades to theoretically predict,

and to experimentally measure these rotordynamic coefficients. Lomakin [1] first demon-

strated and explained the characteristic "hydrostatic" stiffness of annular seals for a small

displacement from the centered position. Most of the subsequent theoretical developments

have been made by Black, Jenssen, Allaire, Fleming, Childs, and Nelson [2-16]. The most

recent of these developments by Childs [11-14] (liquid seals) and Nelson [15,16] (gas seals)

include the effects of fluid prerotation, convergent-tapered geometry, and different surface

roughness treatments for the stator and rotor. Both of these analyses proceed from a single

set of governing equations which are based on Hirs' turbulent bulk-flow model [17,18].
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Comparison between theoretical and experimental results shows moderately good

agreement. However, the theory generally tends to underpredict the experimentally mea-

sured direct stiffness. Furthermore, this underprediction appears to get substantially worse

as the relative roughness, e/2Ho, of the seal increases. This has been found to be true

both for liquid seals [13,14,19] and for gas seals [22]. There is, however, a specific need

to accurately predict rotordynamic coefficients of seals with very rough stators and/or

rotors. To retard leakage, soften the effects of rub, increase damping, and decrease the

destabilizing effect of the cross-coupled stiffness, various kinds of intentionally roughened

surfaces are being tested and used in liquid and gas seal designs [14,16,23].

Failure of the analysis to predict the correct stiffness may, in part, be due to inade-

quacies in Hirs' equation for the friction factor. For a given set of Hirs' constants, Hirs'

equation can accurately reflect the change in the friction factor for small changes in the

Reynolds number, but has no functional dependence on the relative roughness. Neverthe-

less, the relative roughness does change in the circumferential direction when the rotor is

displaced from its centered position.

The results presented in this paper compare the theoretical rotordynamic coefficients

obtained by using a bulk-flow analysis in conjunction with two different friction factor

relationships. The first relationship is Hits' equation. The second, Moody's equation,

assumes the friction factor is a function of both Reynolds number and relative roughness.

GOVERNING EQUATIONS

Figure 1 illustrates the basic geometry and coordinate system used for the annular

pressure seal. Using a bulk-flow model and the control volume shown in Fig. 1, a complete

derivation of the governing for compressible flow is given in reference [15]. For incompress-

ible flow, these equations reduce to the following form.

OH 10(HUo) O(HUz)--+ + -o (2)
Ot r O0 Oz

H Op

p Oz
Uz 1/2 Uz [U2z + (Co - rw)2] a/2 f_
2 (U2z ÷U2) f_+ 2

( O :z voOUz VzOVZ)+ H \-0_-+ r O0 + Oz

Igl

(3)



H Op

pr O0
uo (v_ + u_) _/_ (vo - r_)
2 f_ + 2 [U2z ÷ (Uo- rw)2] 1/2 fr

+H\--g-i-+ r O0 + Uz--g2_]

(4)

Hirs' Equation

In the governing equations, f_ and fT represent the friction factors relative to the

stator and the rotor respectively. Hirs' turbulent bulk-flow model assumes that these

friction factors can be written as:

f = nR m (5)

where R is the Reynolds number relative to the surface upon which the shear stress is

acting, and the constants n and m are generally empirically determined from static pressure

flow experiments. Substitution of the parameters for the annular pressure seal yields the

following equations for the friction factors:

2pH (U 2 + U_)1/2] m"f_=n_ (6)
g

2pH [U 2 + (Uo -- rw)2] 1/2 }mrfT=nr (7)
/Z

Moody's Equation

Figure 2 shows a simplified version of Moody's diagram. Moody produced the follow-

ing approximate equation for the friction factor [24].

f =0.001375 1 + 20000 b + _- (s)
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This equation gives values within +5% for Reynolds numbers between 4000 and 107

and values of e/D up to 0.01. For e/D > 0.01 , it significantly underestimates the friction

factor. Substituting in the parameters of the annular pressure seal, f_ and fr become:

f_ = 0.001375 1 + 10 _ + pH(U2z + U_)I/e (9)

 r=000137 /l+  04e ,10,11J3}-H + pH [UZz + (Uo - roe)z] U2
(10)

Solution Procedure

Assuming small motion of the rotor about its geometriccenter, the pressure, density,

axial velocity, circumferential velocity, and local seal clearance can be expanded in termS

of zeroth-order and first-order perturbation variables.

H = Ho + cH:, P = Po + cpl, Uz = Uz o @ ¢-Uzl, Go = Uoo 4- £Uol (11)

Substitution of these expanded variables into the governing equations (2-4) and ei-

ther (6, 7) or (9, 10) yields a set. of zeroth-order and first-order equations. The nonlin-

ear zeroth-order equations are numerically integrated using a bisection methocl to obtain

matched boundary conditions. The linear first-order equations are expanded from three

partial differential equations to twelve ordinary differential equations by assuming that

the shaft moves in an elliptical orbit. These twelve ordinary differential equations are

then numerically integrated using standard numerical integration techniques. A further

integration of the first-order pressures circumferentially and axially over a range of orbital

speeds yield the rotordynamic coefficients. Complete details of the solution procedure are

given in references [15] and [16].

RESULTS

Seal Parameters

To compare the results of these two friction factor equations, rotordynamic coefficients

were determined for a high-pressure water seal defined by the following parameters.
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Geometry

length:

radius:

nominal clearance:

nominal relative roughness:

L = 5.08 cm (2.00 in)

r = 7.62 cm (3.00 in)

Ho = 0.381 mm (15.0 mil)

e/2Ho = 0 --_ 0.05

Fluid Properties

density: p = 1000 kg/m 3 (1.94 slug/ft 3)

viscosity: # = 1.30(10) -3 N-s/m 2 (2.72(10) -5 lb-s/ft 2)

Operating Conditions

Reynolds number:

pressure drop:

shaft angular speed:

preswirl ratio:

Ro = 30,000

Ap = 3.5 --_ 7.0 MPa (508 _ 1015 psi)

w = 3000 rpm

u0(0, = 0.25

As indicated above, the stator and rotor nominal relative roughness, e/2Ho, was

varied from 0 to 0.05. To maintain a constant nominal Reynolds number of Ro = 30000,

the pressure drop, Ap, was increased along with the roughness. From Moody's diagram, it

can be seen that the friction factor varies from -_ 0.0056 to 0.018. This variation is shown

by the bold vertical line drawn on the diagram (Figure 2).

For each nominal relative roughness value, a new set of Hirs' constants was determined.

These constants were evaluated so that the magnitude and slope of the friction factor from

Hirs' equation matched that of Moody's equation. For example, the dashed line on Moody's

diagram shows the results of Hirs' friction factor for e/2Ho = 0.01.

Rotordynamic Coefficients

The resulting rotordynamic coefficients for the two solutions are shown in Figures 3 -

8. Results from Hirs' equation are shown by the dashed lines, and results from Moody's

equation are shown by the solid lines. For smooth seals (e/2Ho _- 0) both models predict

nearly the same values. This result can be explained by observing Moody's diagram. For

smooth surfaces, the friction factor curves are close together. That is, changes in relative
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roughness for a smooth surface cause only minor changes in the friction factor. Thus,

circumferential changes in relative roughness due to rotor displacement are not significant.

As the nominal relative roughness is increased, the most striking difference in the

predictions is for the direct stiffness and cross-coupled inertia coefficients. For rough seals,

use of Moody's equation results in predicted stiffness coefficients which are 44% greater,

and cross-coupled inertia coefficients which are 59% smaller., (Cross-coupled inertia terms

are, however, so small that their effect on rotordynamic calculations is rather insignificant.)

The physical explanation for the increase in predicted direct stiffness can easily be

seen from Figure 9. As shown, stiffness in annular seals is accounted for by the increase in

the axial pressure gradient on the near side of a non-centered rotor. When using Moody's

equation, the increased relative roughness on the near side results in a larger friction factor

then when using Hirs' equation. This in turn, leads to an even larger pressure gradient.

Finally, use of Moody's equation results in predictions which are 35% greater for cross-

coupled stiffness and 19% smaller for cross-coupled damping. Direct damping and direct

inertia predictions remain nominally the same.

CONCLUSIONS

As stated in the introduction, there is a specific need to accurately predict rotordy-

namic coefficients of seals with very rough stators and//or rotors. Annular pressure seals

are being tested and used which have sui_faces that are honeycombed, grooved, knurled, or

contain various sizes and shapes of holes and projections. The ratio of the height of these

surface irregularities to the clearance is often close to unity (i.e., e/2Ho _- 1.0). For these

rough seals, the theoretically predicted direct stiffness based on Hirs' equation has been

substantially smaller than the measured direct stiffness.

In this analysis, it has been shown that for rough seals, the use of Moody's equation

gives significantly larger predictions for direct stiffness than use of Hirs' equation. This

occurs even though the magnitude and slope of the nominal friction factors from the

two equations are the same. This difference can be explained by the fact that Moody's

equation is a function of both roughness and Reynolds number, while Hirs' equation is a

function of Reynolds number only. Thus, Moody's equation can account for the effect of

the circumferential changes in relative roughness on the friction factor of a non-centered

rotor.
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From these results, it would appear that reliable predictions of direct stiffness for

rough seals must be based on a more sophisticated model than Hits' equation. This does

not, however, imply that the Moody equation used in this paper is the answer. This

equation underestimates the friction factor given in Moody's diagram when e/2Ho > 0.01,

and the diagram itself gives no values for friction factors when e/2Ho > 0.05. Furthermore,

the equation does not account for the effect of size, 'shape, and spacing of large surface

irregularities on the friction factor. It is possible, however, that some type of modified

Moody's equation could be used. That is, for each type of surface irregularity, friction

factor relationships co'uld be determined experimentally and/or analytically. From these

relationships, a new set of Moody constants could be determined and replace those in

Moody's original equation.
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Figure 1. Basic Geometry of the annular pressure seal.
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Figure 2. Moody's diagram.
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Figure 4. Cross-coupled stiffness vs. relative roughness
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Figure 6. Cross-coupled damping vs. relative roughness
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Figure 7. Direct inertia vs. relative roughness
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Figure 8. Cross-coupled inertia vs. relative roughness
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Figure 9. Axial pressure gradient for non-centered rotor.
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