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This paper describes the results obtained from an experimental programme

concerned with a parametric identification of the damping and inertial coefficients

of a cylindrical squeeze-film bearing, through an analysis of transient response

data. The results enable the operating range for which a linear model of the

squeeze-film is appropriate to be determined. Comparisons are made between the

estimated coefficients and theoretical predictions. Presentation is by courtesy of

the Council of the Institution of Mechanical Engineers, London.

INTRODUCTION

Accompanying the development of modern machinery has been an increasing demand

for higher running speeds. AS a result critical speeds have been encountered before

the desired running speed of the machine has been reached. The consequences of this

can result in failure of associated components or, in some cases, an inability to

reach the desired operating speed. The present work is concerned with the

squeeze-film damper, which is proving very successful in mitigating these problems.

A manageable and realistic model for a squeeze-film damper can be derived by

applying linearisation techniques to the oil-film forces, which are obtained by

solving the Reynolds equation. This leads to a representation of the _ymamic

behaviour in terms of damping coefficients. The abillty to provide damping is a

feature of this device but there is no capacity to provide linear stiffness as the

latter depends on journal rotation.

The conventional representation of a squeeze-film in terms of damping coeffi-

cients has the attraction that it is very simple to incorporate these coefficients

into a discrete mathematical model of a rotor-bearing system. This approach

implicitly assumes that inertial forces within the oil-film are negligible.

However, theoretical investigations by a number of workers [i-ii] suggest that

inertial forces can be very significant in squeeze-films. Indeed, this is evident if

one considers the "gap Reynolds number"

R e --
fluid inertia force

f]uid viscous force
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where p is the density of the lubricant, _ is the frequency of vibration, c is the

radial clearance in the squeeze-film damper and _ is the viscosity of the lubricant.

In many practical applications R e is of order one, or Ereater. For such values one

cannot expect conventional lubrication theory, based on the Reynolds equation (ie.

on the assumption that R e q i), to give an accurate representation.

In a linearised approach, inertial forces can be incorporated into the model

through the introduction of "acceleration coefficients" in addition to the normal

dampinE coefficients. However, experimental estimates of acceleration coefficients

(or "hydrodynamic mass" effects), in Keometries typical of many squeeze-films, do

not appear in the literature; indeed, inertial effects have not been taken into

account at all in many previous comparisons between theoretical and experimental

dynamic behaviour. This may explain, at least partly, why it has proved so diffi-

cult to obtain satisfactory aKreement between theoretical and experimental values of

the dampin E coefficients.

In the present investigation a transient testinE technique has been developed

and used to obtain the dynamic characteristics of a "short" squeeze-film bearinE,

with a Eeometry typical of that currently adopted in engineerinE applications and

with Reynolds numbers in the ranEe 0.5 < R e < 1.5. The experimental results are

processed using a parametric identification technique to yield estimates of the

dynamic coefficients and these are compared with predictions from existing theory.

Limitations of the theory are highlighted which indicate promising avenues for

further research.

NOTATION

brr, bss direct fluid dampinK coefficients, for the r and s directions,

respectively.

structural dampinE coefficients, for the r and s directions,

respectively.

non-dimensional, direct fluid film dampinK coefficients, for the r

and s directions, respectively.

radial clearance between the journal and the bearing.

direct fluid film inertial coefficients, for the r and s direc-

tions, respectively.

initial displacement

non-dimensional initial displacement (see equation (27)).

time domain response function (see equation 17).

br0 ) bs0

Brr, Bss

c

crr, Css

d

d*

h(u)

kr, ks

Q

m

mH

shaft stiffnesses, in the r and s

land length of the bearinE.

effective, first mode mechanical mass.

hydrodynamic mass (Crr

transverse direction).

directions, respectively.

in the radial direction, Css in the

294



P

r

R

Re

s

t

x(t)

x(t )

y(t)

_(_)

Y

70

7*

6

80

8"

£

EO

n

P

AT

_ro, _so

T

hydrodynamic film force.

journal displacement in the radial direction (i.e. in the

direction of the attitude line).

radius of the journal.

Reynolds number (=_c2/_)

journal displacement in the transverse direction (i.e. in a

direction perpendicular to the attitude line).

Lime.

displacement.

non-dimensional displacement.

measured, free-decay record.

frequency response function, defined by equation (23).

frequency response function, defined by equation (23).

dampinE parameter, defined in equations (3).

value of y, in the absence of a fluid film.

non-dimensionalised y (see equations (i0)).

stiffness parameter, defined by equations (3).

value of 8, in the absence of a fluid film.

non-dimensionalised 8 (see equations (I0).

critical dampinE factors, in the case of no fluid film, in the

and s direction, respectively.

eccentricity ratio.

static eccentricity ratio.

absolute viscosity of the squeeze-film fluid.

density of the squeeze-film fluid.

sampling interval.

frequency of vibration.

natural frequencies of undamped vibration, in the radial and

transverse directions, respectively.

non-dimensional time (= _0t).
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TIIEOI_-'I"ICAI,TREATMENT

The equations of motion

The system consists of a mass of finite size (the squeeze-film journal)
attached to the centre of a beam, which is built-in to rigid supports at each end
and which plays the role of a conventional retainer spring. If the central mass is
given some initial,transverse displacement, achieved by a force applied at the

centre of the journal, and then released, the first mode of vibration will be

dominant in the subsequent motion. Thus to a close approximation, the motion can be

described in terms of two second order equations of motion.

In the present investiKation, the squeeze-film bearinK was run under full-film

conditions, that is with no cavitation. In these circumstances, it can be shown,

theoretically, that no cross-damping terms appear.

We thus write, for radial r and transverse s, displacements

(m + Crr)r + (b0r + brr)r + krr = O

(m + css)§ + (b°s + bss)s + kss : 0 ... (i)

Here c denotes inertial coefficients and b dampin E coefficients in the

squeeze-film, b 0 denotes structural damping and k structural stiffness emanatin E

from the spring beam. m is the effective, first mode mechanical mass. Both

equations can be written in the standard form

_ + Tk + 8x = O, ... (2)

where y and 8 are constants. For the radial direction:

b°r + brr
y-

m + Crr

6 - kr
m + Crr

and similarly for the transverse direction.

... (3)

From a free decay test, one can determine y and B, by using a parametric

identification technique. Suppose that a free decay test is carried out in the

radial direction, in the absence of a fluid film in the squeeze-film bearing. Then

brr = Crr = O, and we obtain the coefficients

b0 r
Yo - - 2¢r_o

m

80 kr= - _ro 2
m

... (4)

where _r0 is the natural frequency of undamped vibration and Cr is the damping

factor. On combining equations (3) and (4) one obtains

... (s)

brr = m[y --..880 Y0]

Crr = m( 80 - I)
O
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for the damping and inertial coefficients, where

m can be determined from measurements of k r and from a free decay test without

fluid in the squeeze-film bearing (giving 7o and 80). By combining this information

with estimates of y and 8, from free decay with fluid in the squeeze-film bearing,

one can estimate brr and Crr, by using equation (5). Similarly, measurements of

free decay in the transverse direction can be used to yield estimates of bss and

CSB.

In practice the structural damping is very small and one finds _r0 and _eo by

simply measuring the frequency of vibration, without fluid in the bearing.

Before processing the decay curves it is convenient to non-dimensionalise the

equation of motion (equation (2)). If _0 is the frequency of undamped vibration,

without fluid, then a convenient non-dimensional time is

7 = _0t = 8o_C ... (7)

Also, the displacement x( t ), can be

by the initial displacement, x(O). Thus,

non-dimensionalised by dividing

x(t) = _x(t)
x(o )

Equation (2) can then be recast as

_ + y* X + 8- X = 0

where

=_Y Yy* =

8 8
8_ = - _--

_o z 3o

... (8)

... (9)

... (lo)

are non-dimensional coefficients and differentiation is now with respect to 7. On

substituting these equations into equation (5) we obtain

brr = m_ro [y*/8* - Y0*]

1

crr = m(_. i)

... (II)

and similarly for bss and css.

The damping coefficients

The conventional approach to evaluating the coefficients brr and bss, for a

full squeeze-film is to use the Reynolds equation as the basis of the calculation.

For the general case it is necessary to solve this equation numerically, but simple,

asymptotic results can be derived for

(a) the short bearing: _/R _ 0

(b) the long bearing: _/R _ _.
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The short bearing theory gives the following results[12]

_RQ3] (I + 2 eo 2)
brr = [--_J (i _ e02)5/2

bss L c3 J (i - c02)312

... (12)

The corresponding long-bearing results are as follows[13]

[12_qR3_ ] 1brr = [ c _ - .
(i - CO2)_ (1 Co 2)

FZ2=nR3e]
bss = [ cy--J

2

(2 + ¢ O)(1 - Co 2)%

... (13)

As pointed out earlier, the use of the Reynolds equation implicitly assumes

that inertial forces within the fluid film are negligible. Theoretical studies of

the influence of fluid inertia on the damping coefficients of a squeeze-filmbearing

have been undertaken by Tichy[3] and San AndrOs and Vance[7]. Their results

indicate that, for the particular geometry of bearing studied in this investigation,

and for the range of frequencies of oscillation studied, the influence of fluid

inertia on the damping coefficients is negligible.

The inertial coefficients

A linearised approach to the evaluation of squeeze-film fluid forces allows a

separate evaluation of the inertial coefficients, which arise from the effect of

journal acceleration.

Smith[l] has shown that

coefficients are Eiven by,

for a very short full-film bearing (Q<<R) these

_pR_ 3 2 1

Crr - 12C-- {_ [ , i]}
(i - Co2) _

_pRQ3 2 [i (1 )%]}
Css - 12c {£-_Z-O - Co2

... (x_)

and Crs = Csr = 0. In the upecial case of zero static eccentricity (c 0

limiting operation performed on equation (14) gives

= 0), a

Crr = Css _pR_ 3 (Co = O) ... (15)

12c

This agrees with the result obtained by Fritz for very short bearings, in the

concentric case[2 ].
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For a lonE, ful]-film bearinE (i>>R) the appropriate expressions for the

coefficients are as follows [1]=

_pR3_ 2

err = css - c (c--_T-° [1 (1 - coz )') ... (16 )

and Crs = Csr = O. In the special case where e0 = 0 (concentric operation) equatiOn

(16) reduces to

_pR_J

Crr = Css = _ (E 0 = 0) ... (17)

which is a result first derived by Stokes [14].

It is interestinE to note that, for e0 = 0, the ratio of Crr for the lone bearin E

case to err for the short bearinE case, is from equations (15) and (17).

12(;)2

The dampinE coefficients from the lone and short bearinE theories, for the

concentric case, are in exactly the same ratio (see equations (12) and (13)). It

follows that, for short bearinEs (_ << R), the dampinE and inertial coefficients

are, according to the short bearing theory, considerably less than those predicted

from the lone bearinE theory.

Recently Szeri et al [9] have presented, graphically, numerical values for the

inertial coefficients, Crr and Css , for squeeze-films with finite values of _/R, in

the ranEe 0.2 _ £/R _ 4.0. They found it necessary to introduce an approximation,

based on the assumption that R/R is small, in their analysis but have indicated that

their results should be more accurate than a full short-bearinE approximation,

provided that _/R is small. Their numerical results are in virtually exact aEree-

ment with Smith's short-bearing results (equation (14)) for _/R < 0.5.

2.4 Parametric identification

It was shown in section 2.1 that the damping and inertial coefficients can be

related to the non-dimensional parameters 7" and 6*, which occur in the second-order

linear equation of motion Eiven by equation (9). From the experiment to be des-

cribed one can obtain a free-decay curve - i.e. X(t) versus time. The problem is

then to find, the values of y* and S* for which the solution to equation (9) gives a

"best fit" to the experimental observations.

This is a problem in parametric identification, on which considerable litera-

ture exists (for example see Ref. [15]). Of the various available techniques, we

have here selected the sequential method of Detchmady and Stidhar[16], since this

enables estimates to be obtained from a knowledge of a sinEle measured state

variable (here the displacement of the journal versus time either r(t) or s(t).

Details of the alEorithm are given in the Appendix.

The a]Eorithm operates on a discretely sampled record of the decay curve.

Suppose the experimental values are of y(i_7) (i=0,i,2,...), where _r is the

samplinE interval and 7 is Eiven by equation (7). The data is conveniently scaled so

that the start displacement y(O), is unity. By sequentially processinE the data,

the alEorithm generates least-square estimates of the state vectors X(t) and X(t),
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and also least-square estimates of y* and S*, at the times i_r. These estimates

"track" the experimental data and should converge as time increases - i.e. the

estimated state vector X(t) should approach the measured response, y(t), and the

estimated values of y* and 8- should approach constant values.

To obtain improved estimates of y* and 6,, the algorithm can be applied in an

iterative manner. In the first iteration 9 values of y* and 8* are guessed and used

to start the sequential estimation computation. The algorithm will give estimates

of y* and 8*, at the end of the data sequence_ i.e. at time 7m, where r m is the

time of the last data sample. These estimates can now be used, in place of the

initial guesses, as a start to the second iteration. By repeatin E the iteration a

number of times, the estimates of y* and 8,, at time rm, should converge to constant

values.

Prior to using this procedure on real decay data it was tested thoroughly on

simulated data, from which it could be concluded that the algorithm was an efficient

and useful method, for the present application.

Memory effects

The use of dampin E and inertial coefficients is based on the assumption that

the fluid film forces depend only on the instantaneous velocity and acceleration of

the journal. Although the coefficient approach is simple to incorporate into a

discrete mathematical model of a rotor-bearin E system, there are two serious

objections which can be raised, concernin E its validity:

(i) Implicit in the method is the assumption that the velocity and accelera-

tion are linearly independent variables, so far as the fluid film is

concerned. This poses conceptual difficulties - e.g. how can the accel-

eration be varied whilst the velocity is held constant?

(ii) No allowance is made for "memory" effects, which can be expected when the

bearing is runnin E under cavitation conditions. Even in the case of a

completely non-cavitated bearing, considered in the experimental work

reported here, memory effects may be significant , for sufficiently high

frequency motion, due to the visco-elastic properties of typical lubri-

cants (e. E. see Ref.[3]).

Considering, for example, the case of radial motion only, a general linear form

for the relationship between the hydrodynamic force Pr, and the motion, r(t), is as

follows:

Pr(t) = [ h(t r) r(r) dr ... (18)

Where h( ) is a time domain impulse response function.

The use of equation (18) allows a generalisation of the coefficient representa-

tion discussed earlier. To demonstrate this, consider the simple case of harmonic

motion

r(r) = Ae i_T ... (19)

On substituting this motion into equation (18) one obtains

Pr(t) = Aei_t[a(_) + iD(_)] ... (20)
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where

_(_o) =.ooI h(u) sin cou du

... (21)

Equation (20) may be compared with the corresponding result obtained by the co-

efficient approach, which states that, for a squeeze-filmbearins

Pr(t) = brr r + Crr r .,. (22)

Combining equations (19) and (22) one has

Pr(t ) = Ai_t [-_2 Cr r + i_ brr] ... (23)

Equations (20) and (23) are identical if

... (2t,)

However, the integral representation of equation (18) allows an arbitrary

variation of the "coefficients" with frequency, whereas, according to the coeffi-

cient approach, the damping and inertial coefficients are necessarily independent of

frequency.

It remains to be tested by experiment whether, over a frequency range of

practical concern, the frequency independent coefficient approach gives a satisfac-

tory approximation, or whether there is a significant "memory effect", with the

result that the coefficients must be treated as frequency dependent parameters. In

the latter case, an integral representation, such as that given by equation (18) is

more appropriate than the coefficient representation.

DESIGN OF EXPERIMENT

An outline drawing of the general arrangement of the rig is shown in Fig. I and

a photograph of the rig is shown in Fig. 2. A non-rotating journal is contained

within the circular bearing and is supported by a beam of circular cross-section

which provides a stiffness in parallel with the squeeze-film. A cross-_;ectional

view of the journal and beam assembly is shown in Fig. 3. The journal is heat

shrunk along its entire contact length with the beam, and the beam is rigidly

clamped at both ends. In the experimental work, three different beams were used, of

varying stiffness.

Adjustment of the static equilibrium position in the horizontal direction was

achieved by providing a machined channel in which the bearing housing could slide.

Care was taken to ensure that the journal was accurately aligned with respect to the

bearing. The alignment could De adjusted by moving the position of the beam end

supports, using shims. Angular misalignment could be effectively eliminated by

ensuring that the distance through which the journal could be moved, within the

bearing, was maximised.
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The bearing consisted of two plain lands separated by a central circumferential

groove. Lubricant was supplied from a pump, through top and bottom feed holes and

distributed around the bearing by the groove. No end seals were fitted and the

lubricant was free to discharge into a reservoir prior to recirculation. By

applying an adequate supply pressure to the inlet oil, full lubricant film condi-

tions were maintained with no cavitation.

The experimental technique consisted of pulling back the journal, across the

clearance circle, to a known position by a length of wire looped over the core of a

solenoid. The journal was released by actuating the solenoid. Capacitive probes

then transmitted the transient decay to a microprocessor based data-a(:quisit_on

system. This allowed the dynamic characteristics (i.e. the mass, stiFFness and

damping of the squeeze-film, support beam and journal mass) to be evaluated and

compared with simple linear theory.

EXPERIMENTAL RESULTS

In all the tests reported here the line of centres of journal and bearing, ie

the radial direction, was horizontal when the journal was in its static equilibrium

position. In the radial tests the journal was pulled out radially a further initial

displacement, d, and released. Processing of the results from these tests enabled

estimates of the damping coefficient, brr , and the inertial coefficient crr , to be

derived. In the transverse tests, the journal was given an initial transverse

displacement, d, (perpendicular to the line of centres) and released. From these

tests, estimates of the damping coefficient, bss , and the inertial coefficient, Css ,

could be derived.

It is convenient, henceforth, to refer to a non-dimensional initial displace-

ment, d*, defined by

initial displacement (d)
d* = ... (25)

radial clearance (c)

Tests without fluid in the bearing

For each of the three beams available, tests were carried out, in both the

radial and transverse directions, with no fluid in the squeeze-film bearing. Here

the damping is very small, and is structural in origin; it follows that the measured

natural frequency of oscillation is, in these circumstances, a very close approxima-

tion to the undamped natural frequency

By applying the parametric identification procedure to the results, estimates

of the undamped natural frequencies, _0, and the structural damping factor, ¢, were

obtained. For a given shaft these values were found to differ slightly, in the

radial and transverse directions (the maximum difference was about 5Z),and results

from each direction were averaged. Table 1 summarises the results obtained from

these tests.

Te.st_ with fluid in the bearing

A series of tests was carried out, with Tellus RI0 as a lubTicant in the

squeeze-film bearing, and with a sufficient supply pressure to ensure that full-film

conditions were maintained throughout (i.e. no cavitation). Measured decay curves,

in both radial and transverse directions, were obtained for static eccentricity
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ratios of 0, 0.I, 0.2, 0.3, 0.4 and 0.5 and for initial displacements, d*, of 0.2

and 0.4. The decay curves were normalised, in every case, to give an initial

displacement of unity.

If the journal-bearing system behaves linearly, then t)_ normalised decay

curves should be independent of the initial displacement, d*, if other parameters

are kept constant. Thus by performing a series of decay tests, with differing

initial displacements,and comparing normalised decay curves, one can assess the

range within the bearing clearance circle, for which linear conditions prevail.

At c 0 = 0.O and c o = 0.3, the system behaved linearly (to a close approxi-

mation), in both directions, for start amplitudes up to d* = 0.4. At the highest

static eccentricity ratio studied, c 0 = 0.5, a good collapse of the normalised decay

curves was still obtained in the transverse direction for d* = 0.2 and 0.4, whereas,

in the radial direction there was distinct evidence of non-linearity, for d* = 0.4.

It can be concluded that there is a fairly wide range of journal displacement

position, within the clearance circle, for which a linear mathematical representa-
tion is reasonable.

Figs. 4 (a) to (f) show a set of experimental, normalised decay curves,

obtained with the squeeze-film journal mounted on beam ]. ']"n(: _'sults cover the

static eccentricity range _o = O.0 to 0.5, and relate to both radial and transverse

tests. Similar series of results w_re obtained for beams 2 and 3. In general, for

each beam, _0 value, and chosen direction, results were obtained for d* = 0.2 and

0.4; where these collapsed reasonably well they were averaged to produce curves

such as those shown in Fig. 5. _ere non-linearity was indicated by a lack of

collapse (generally at e0 = 0.4 and c 0 = 0.5, in the radial direction), the result

for d* = 0.2 only was used.

A compavi._n between the results for c o = 0.0 for beam i, in the radial and

transverse directions, (see Figs. 5(a) and (b)) indicates some degree of asymmetry

in the journal bearing configuration. For example, the second, positive overshoot in

the radial direction is appreciably less than that observed in the transverse

direction. The reason for this asymmetry is not clear, but may be due to the

geometry of the oil-feed arrangement (fluid was supplied at the top and bottom of

the central circumferential groove). The corresponding results for beams 2 and 3

indicated that the asyn_netry was much less marked at higher frequencies of oscilla-
t ion.

Beam stiffness results

To enable estimates of the damping and inertial coefficients to be derived from

the free decay data, it is necessary to know the value of the effective, first mode

mass, m. This value will be related to the actual mass of the journal, together

with the mass of the beam, and so will vary, depending upon which beam is used in

the experiments.

In the face of various uncertainties regarding the precise end conditions of

the beams, it wa_; d(_cided to evaluate m, for each beam, from a knowledge of the

natural frequency of oscillation, _0- and the beam stiffness. Thus

k
m _- -

_o 2

will Rive an estimate of m, if k is the effective, first mode stiffness.
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The beam stiffness, k, was determined experimentally, by pullinK the
journal, radially, with a known static force, and measurinK the resulting radial
journal displacement. Table 1 showSthe results obtained for the effective masses

of the journal and beams.

COMPARISON BETWEEN THEORY ANDEXPERIMENT

Parameter estimation

As a first stake in the analysis of the decay data, the parameter estimation

procedure described in section 2 was applied to each decay curve. This yielded

estimates of the parameters y* and 8,, in the linear, second order model Kiven by

equation (9).

FiKs. 6 show typical results of applyin K the estimation method to a particular

decay curve. Here the experimental decay curve of FiE 6(b) was obtained for beam i,

in the radial direction, and with the journal initially concentric (E 0 = O) (see

also FiE. 5(a)). The iterative technique, described in section 2, was used to

refine the estimates of y* and S*, denoted y* and 8", respectively. FiE. 6(a) shows

the variation of y* and 6", with time (measured in units of T = _0 t) during the

fifth iteration; at this iteration stake converEence is achieved, as evidenced by

the fact that the final estimates in the cycle are equal to the initial estimates

(_* = 0.601, 8, = 0.662). FiK.6(b) shows a correspondinK comparison (for the fifth

iteration, aKain) between the estimated displacement state variable, _(t), and the

experimental decay curve_ this shows that the estimated state "tracks" the experi-

mental curve extremely well. A better idea of the deKree of fit achieved can be

obtained by comparin K the experimental curve with the theoretical curve, found by

usin K the final parameter estimates_ this comparison is shown in FiE. 6(c).

The excellent deKree of fit obtained in FiE. 6(c) can only be obtained, of

course, by allowing both the parameters y* and 8* to "float". If one assumes that

the squeeze-film produces only a damping effect then it is necessary to set 6* = 1

and to obtain a best fit by allowinK only y* to vary. Th_s can be achieved, using

the same parametric identification procedure as before, but setting the initial,

off-diaKonal elements of the P matrix to zero (see Appendix); this has the effect

of "lockinK" the 8* parameter to its initially set value, with the result that

optimisation is sought with respect to the y* parameter alone. FiE. 6(d) shows a

comparison between the experimental decay curve and the best-fit theoretical curve,

with 8, = 1.0 and y* optimised (y* = 0.912). A comparison between FiKs. 6(c) and

(d) reveals that the effect of deviations of S* from unity (due to inertial effects

in the squeeze-film) is very siKnificant and that a very poor fit to the data is

achieved by assuminK that only damping is present in the squeeze-film. Similar

comparisons have been made with other decay curves and these lead to a s_mi]ar

conclusion.

DampinK and inertial coefficients

Once y* and 8* have been estimated from a particular decay curve, then the

dampinK and inertial coefficients may be found.

To present the damping results it is convenient to introduce the non-dimen-

sional coefficients per land.
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c 3

Brr = brr 2_RQ3

c 3

Bss = bss _nR--_

According to the short-bearing theory,(equation (12)),

and

(i + 2e02 )
Brr -

(l eo2) 5/2

1

Bss -(I - e02)3/2

... (26)

... (27)

In the experimental rig the following values apply:

R = 0.06 m, C = 2.5/+ X lO-4m, Q = 0.012 m, 7] = 22 x 10 -3 Ns/m 2,

Using these values in equations (26), and equations (ii) one obtains an equation for

Brr (and also Bss ) of the form

Br r = ki Y'cot (i = 1,2,3) (28)
8_ "0"

where

Y*c0r = Y* Y0 .8. ... (29)

is the damping parameter, corrected for the effect of structural damping and k i is a

non-dimensional constant, dependent on the beam used. The appropriate k i values are

given in Table 1

The relationship between the present experimental values of Brr and Bss, and

the corresponding theoretical values, according to both long and short-bearing

theories, is shown in Figs. 7(a) and (b). It is evident that the experimental

values lie much closer to the short-bearing theoretical curve. At zero eccentricity

there is a factor of 300 between the two theoretical values, whereas the experimen-

tal values are only a factor of about 1.5 higher than the short-bearing theoretical

result. There is little indication of any "memory effect", due to changes in the

natural frequency of oscillation.

The inertial coefficients, Crr and Css , defined in section 2, have the physical

significance of hydrodynamic masses. Thus mH, the hydrodynamic mass, is given by

m H = Crr (radially)

= Css (transversely)

Figs. 8(a) and (b) show the variations of m H with static eccentricity ratio,

e0, for the radial and transverse directions, respectively. Here the experimental

estimates of m H are compared with both long and short bearing theoretical values.

The significant feature here is the magnitude of the inertial effect. In both

directions, the hydrodynamic mass is an order of magnitude greater than the short

bearing theoretical prediction. This is rather surprising in view of the small _/R

ratio pertaining in the experimental rig (0.2). For this value of @/R the results

of Szeri et al[9] lead one to expect that the short-bearing theory should give a

reasonably accurate estimate of m H.
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CONCLUSIONS

Damping coefficients for both the radial and transverse directions, aEreed

reasonably well with the short-bearing theoretical results, although the experimen-

tal values were generally higher than the theoretical values. The variation of

damping coefficients with static eccentricity ratio, e0, was very similar to the

variation predicted by short-bearin E theory. Thus, in the radial direction there

was a marked increase in dampin E coefficient with e0, whereas in the transverse

direction this effect was much less significant.

The experimentally-determined inertial coefficients (or hydrodynamic masse_;)

were generally much higher than the theoretical values given by the short-bearing

theory - typically an order of magnitude higher.

The experimentally determined damping and inertial coefficients, for the three

shafts, were found to collapse fairly well, when plotted against static eccentricity

ratio. This is a strong indication that, at least over the frequency range studied

here, "memory effects" within the squeeze film are not significant.

APPENDIX

Parametric Identification of Free Decay Data

General theory

Consider a dynamic system defined by the following differential equation of

motion:

= g(x) ... (AZ)

Here x is an n-vector containing the states, xl, x2, ...,Xn, of the system and

g(x) is an~n-vector function. If the system is stable, and is released from some

initial condition, x(O), then a transient response will result, with the motion

decayin E to zero. Suppose that observations of the output, or response, of the

system are made during the time interval 0 < t < T. An observation vector, y(t)

will be defined by

y(t) = h(x) + (observation error)
~ --

... (A2)

where y is an m-vector output and h is an m-vector function. Here the (observa-

tion error) term accounts for the fact that the output observation is of limited

precision, due to quantisation errors in A/D conversion, electrical noise, etc. The

estimation problem is to estimate the state vector x(T) from the observation

vector y(t), measured in the interval 0 < t < T - i.e. to find the vector x(T), say,

which corresponds to a "best fit" to the observations, and is consistent with

equation (AI).

A "best fit" is most conveniently achieved in a least-square sense. Suppose

that the followin E residual errors are defined:

el(t) = y(t) h(x*) ... (A3)

ez(t) = x* g(x*) ... (A4)
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Here x* is a "nominal" trajectory - i.e. a possible time history of x. From

the residual errors one can form the integral ~

I = _T[ll_1(t)ll + II¢2(t)11 ]dt ... (A5)

o Q2 - w2

where I I'IIQ2 and l l'}lW2 are suitably defined quasi-norms.

Suppose that I is minimised when x*(t) = _(t); a least -squares estimate of x(T) is

then x(T). ~ ~ ~

In practice, y(t) is usually measured at equi-spaced times, ti x idt (i =

0,1,2,...). It is then convenient to use a recursive algorithm, which will

generate sequential estimates of _(t), at times t i . It has been shown by Detchmendy

and Stidhar[16 ], using the method of invariant imbedding, that _(t) can be generated

sequentially by using the following equations.

d_
~ = g(x) + 2P(t) H(x) Q{y(t) - h(_)} ..° (A6)

dt ......

where

T

dP _g p + p [ _g 1 + 2p 8dt a_ a_ a_

T

c.5 >t(y(t>-)(6>))P

Here P(t) is an n x n matrix and Q is an m x m matrix.

allows weighting to be assigned to the elements in the observation vector.

n x m matrix.

... (A7)

... (AS)

The latter matrix

H is an

By integration of equations (A6) and (A7)one can generate estimates, x(t i ), at the

observation times, t i . An initial estimate, x(O) of the start condition, x(o), is

required, but the estimates _(T) will usually ~be insensitive to the choice of

x(O), providing that T is sufficiently large.

le

2o

3.

4.
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TABLE 1

Beam No.

1

2

3

Nat. freq.

(Hz)

33.8

58.8

94.3

Dampin E factor

= Y0*/2

0.010

0.010

0.015

Effective mass

of journal &

beam (kg)

7.73

8.35

9.60

k1

1.88

3.53

6.50
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Figure 1. - Squeeze-film bearing rig. Figure 2. - Photograph of the experi- 
mental rig. 
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Figure 3. - Cross section of journal

and beam assembly.
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Figure 4. - Experimental transient decay results; beam I.
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decay curve and the theoretical curve,

obtained by setting 6* = 1 and using

the estimated value of y_.

Figure 6. - Results of applying parametric identification to an averaged

experimental transient decay result for c o = 0; radial displacement.
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