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The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent

electromagnets is presented. Each model includes a state variable feedback controller which has been designed using

the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic
circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's
field relations.

A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points
within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf
bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical

type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and

the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.

IN T ROD U C TION

The suspension of a rotating shaft in a magnetic field without mechanical contact or lubrication is an old idea.

Many studies concerning the feasibility of electromagnetic levitation in various applications like magnetic bearings,
high speed ground transportation, electromagnetic dampers for vibration control, etc. can be found in the literature

[refs. 1,2,3]. Now, with advanced electronic control, high speed magnetic bearings are a commercial reality, being

used in grinding and polishing machinery, vacuum pumps, compressors, turbines, generators, and centrifuges [refs.

4,5]. Electromagnetic dampers have been shown to be capable of effectively eliminating vibration at the critical speed

associated with the first bending mode of shafts [refs. 3,6]. In addition, the dampers have been seen to suppress the
system instability associated with the fluid film bearings.

This paper only considers attraction systems under active control. Passive systems using permanent magnets
in repulsion are usually incapable of generating sufficient loa4 carrying capacities. However, the constitutive model

presented here is applicable to electromagnets operating at sufficient speed that the dead weight is carried by eddy
currents generating lift from the lower magnet.

The control system studied varies the voltage to each magnet in response to the motion of the mass. Such a

suspension system with multiple magnets is a multiple input - multiple output system. A state variable feedback

controller, designed on the basis of pole placement technique, is used to stabilize the system and meet the design
specifications. Unlike in a single input - single output system, the multivariable problem has a much richer structure

and has many gain matrices yielding the same pole placement [ref. 7]. The direct method of choosing an arbitrary

vector and reducing the multi-input - multi - output system into a single input - single output system is used to
obtain the gain matrix.

Research and development activity on passive, active, and combination magnetic bearing systems spans over
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150 years. Earnshaw in 1839 demonstrated [ref. 8] mathematically that it is impossible for a pole placed in a static

field of force to have a stable equilibrium position when an inverse square law relates force and distance. Braunbek in
1939 carried out [ref. 8] a similar mathematical analysis specifically for suspensions in unvarying magnetic fields and

deduced that levitation is impossible in such fields when all the materials have relative permeabilities (Pr) greater

than or equal to 1, but possible if materials with/.tr < 1 can be introduced. It follows that it is impossible to achieve

levitation in static magnetic fields, that is, using permanent magnets or fixed current dc electromagnets, unless part

of the system consists of either diamagnetic material (Pr < 1) or a superconductor (/z = 0).

Examples of hybrid passive and active systems appeared as early as 1950 in which photoelectric positional

feedback was used. Stiffness and damping were minimal because of the lack of sophisticated control components.

Early experiments with fully active systems (1957) were largely thwarted by the then high cost and size of control

system components. In time, it became clear that hybrid systems with simple electronics capable of carrying industrial

loads depended heavily on complex mechanical dampers. Meanwhile the cost and size of sophisticated electronics

for purely active systems continued to come down as performance rose. Since active magnetic bearings provide both
damping and support, the choice became clear. Subsequent efforts have concentrated on active magnetic bearings.

Several reviews of electromagnetic levitation are available in the literature [ref. 8,9]. Two electromagnetic
levitation methods have met with success: direct, position feedback control techniques; and ac modulated or indirect

feedback methods. In the latter, the magnet inductance is part of a tuned circuit whose natural frequency depends

on the gap between the suspended mass and magnet. This method has been used to suspend gyroscopic devices for

inertial sensors. It suffers from high eddy current losses and a small range of stable air gaps. Analysis of ac tuned

circuit methods may be found in Kaplan [ref. 10].

For heavily loaded bearings, direct feedback methods have to be used. However, dynamics has not seen as much

attention as it has in journal bearings. Most of the available literature deals with empirical ideas and concentrates

on reliability of the bearing, reducing the size, weight and complexity of tim devices [ref. 11].

Insight can be gained by studying a ferromagnetic suspension (suspended mass is not moving). Moon [ref. 12]

and Woodson and Melcher [ref. 13] are good starting points.

When the suspended rotor is spinning under the magnets and if the rotor is not laminated, eddy currents will be

induced in the material. The induced eddy currents create two kinds of force on the rotor: drag force which leads to

additional power dissipation and coupling of motions of the rotor in two perpendicular directions, and repulsive force
which tends to counter balance the attractive force. Expressions for the drag and repulsive forces can be derived

by studying the effect of material motion on the diffusion of magnetic fields [ref. 13], starting from Maxwell's field
relations. Moon [ref. 12] has shown that in certain magnetic levitation configurations eddy currents can produce a

positive or negative damping force depending on the speed.

Although a good analytical model is not available for eddy currents due to shaft rotation, a number of authors

calculate the eddy current effects in other geometrical configurations using a hypothetical simplified model and finite
element methods [refs. 14,15]. Several studies on linear induction motors are available [refs. 1,16] which can be

extended to magnetic bearings by making several assumptions and manipulations. In the above studies, the authors

calculate the induced forces by cross multiplying the current density vector, which does not take care of the attractive

force when the moving material is ferromagnetic. In this paper, the forces are calculated using the Maxwell's stress

tensor approach which in one calculation gives all the forces involved.

Matsumara [ref. 17] has derived the fundamental equations for a horizontal shaft magnetic bearing taking into

account the rolling, pitching, and yawing of the rotor. In deriving the equations of motion, he assumes that the rotor

consists of a laminated core and consequently no eddy currents are generated in the material. He has proposed an

integral type control system which stabilizes the system without steady state shaft position error.
Hebbale [ref. 18] has studied the nonlinear dynamics in terms of equilibrium points, transient response, on-set

of instability, limit cycle size, and forced response. The material which follows was taken from [ref. 18].
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Unit vectors

Control voltage

Total voltage to magnet

Initial voltage to magnet
Nonlinear functions

Magnetic force

Acceleration due to gravity

Magnetic field intensity
Current in coil

V-2-i
Wave number

Feedback gain matrix
In duetance of circuit

Flux path length
Mass of rotor

Real and imaginary parts of Y
Number of turns in coil

Complex wave number
Resistance of coil

Nondimensional velocity
Time

Velocity vector

Velocity (magnitude)

Field energy density

Field energy stored
shaft displacement
State vector

shaft displacement
Linearized state vector

System constant =/.toN 2A

System constant = L1/lzrl +L2//-tr2
Complex number = cosh kA +ltoq/,uk sinh kA

Magnetomotive force
variation from equilibrium

Equilibrium gap length

Magnet pole angle with respect to vertical

Flux linkage

Permeability

Electrical conductivity of rotor material
Closed surface, Summation sign

Magnetic flux
Spin speed of rotor

FOUR MAGNET BEARING

The shaft is suspended within four magnets, as shown in Fig. 1. The shaft has high permeability and high

conductivity and is not laminated. (Lamination would serve to inhibit eddy currents.) All of the four electromagnets
are identical, modelled as a coil of N turns on a laminated core of high permeability. The coil has resistance R and

an initial voltage E0 applied. The dead weight is suspended by the difference in forces exerted by top and bottom

magnets. All magnets carry a steady state voltage, adjusted so that at zero speed, the gap lengths under the magnets
are equal.

This fully energized configuration was chosen so that the magnets could generate the effect of repulsion by
decreasing the attraction. The horizontal magnets generate equal force when the shaft is centered and the control

system is commanding equal voltages. The shaft displacement is measured by two coordinates (x,y) as shown in
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Fig. 1,measuredfromthecenteroftheclearancespacein thehorizontalandverticaldirectionsrespectively.When
therotor isnotspinning,thecenterof therotorisat theoriginandthegaplengthsareall equalto A.

If theshaftisnotlaminated,motionof theconductingshaftthroughthesupportingmagneticfieldswillgenerate
inducededdycurrents.Eddycurrenteffectscausebothlossof lift andadragforcein theperpendiculardirection.
It isassumedthattherotor isspinningin theclockwisedirectionsothat thedragforcedueto thetopmagnetacts
in thenegativex direction,that dueto therightmagnetactsin they direction,andsoon.

Severalgeometricalassumptionsaremade.Therotoralwaysremainsperfectlyalignedwithin thebearing(no
tilting). Undersmalldisplacementsthesurfacesof therotor andthemagnetpolefacesareassumedto remain
parallel. Sincetheindividualpolesarelocatedat angles+0 relative to the vertical axis in the case of vertical

magnets or relative to the horizontal axis in the case of horizontal magnets, it is assumed that when the rotor moves

vertically a distance y, the change in gap length for the vertical magnets is ycosO. Similarly, when the rotor moves

horizontally by a distance x, the change in gap length for the horizontal magnets is xcosO. Any other translational

motion of the rotor can be written as a superposition of the motions in x and y directions. The effect of unequal

gap lengths under a vertical magnet caused by a rotor motion in the horizontal direction or vice versa is neglected
because the total gap length under that magnet remains constant.

The control system studied varies the voltage to each magnet in response to the motion of the mass. Such a

suspension system with multiple magnets is a multiple input - multiple output system. A state variable feedback

controller, designed on the basis of pole placement technique, is used to stabilize the system and meet the design

specifications. Unlike in a single input - single output system, the multivariable problem has a much richer structure

and has many gain matrices yielding the same pole placement [10]. The direct method of choosing an arbitrary

vector and reducing the multi-input - multi - output system into a single input - single output system is used to
obtain the gain matrix.

EQUATIONS O17 MOTION

The differential equations of motion describing the response of the rotor are given by

My = _.aff m,g . _, -- M g
(1)

where _F_ og are the vectorially combined magnetic forces from all the magnets. Expressions for resolutes of/_m ag

have been derived in Appendix B for a single magnet. The reader is cautioned that thex, y coordinates in Appendix B

are local tangential and normal directions for each individual magnet and do not correspond the the x,y coordinates
for motion of the shaft. /_mo8 includes the steady state attraction forces and eddy current forces (both repulsion and

drag). Only spin velocity is assumed to generate eddy currents. Motion of the shaft (_,))) doesn't generate eddy
currents.

The remaining differential equations are obtained from a voltage balance in each of the four electromagnetic
circuits:

Ei = IiRi -I'Ni_i i = 1,2,3,4 (2)

where subscripts refer to the top, right, bottom, and left magnets respectively. An expression for the magnetic flux
¢ has been derived in Appendix B.

Expressions for the magnetic forces are given in Appendices A and B. If eddy currents are neglected, then there

are no terms in the differential equations which depend on speed. In general

/_,, og = f (x, y, 11,12,13,14, _) (3)

and

¢i = f (x,_, y, _,[1,[2,[3,[4, _))

The general procedure is to

(a) Determine E0i such that the equilibrium location at zero speed is centered.

(b) Design a state variable controller by pole placement.

(4)
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(c) Determine all steady state equilibrium locations as a function of speed.

(d) Linearize about equilibrium locations to determine stability as a function of speed.

Choosing eight state variables _,y, Yc,x,11,12,13,and 14, Eqs. (1) and (2) can be put into a standard first order
form

=f(X,E, fl) (5)

E = E0 + 6E (6)

b'E = KX (7)

6E = (6EI 6E2 6E3 6E4)T (8)

X = () y Y¢ X I1 I2 I3 I4) T (9)

where X is a 8-vector containing the state variables.

SINGLE MAGNET CASE

The single magnet suspension serves as a paradigm for the more complicated models which follow. Consider

only the top magnet, with x constrained to be zero, and with no rotation ( _ = 0.0). The approximation for Fmag

from Appendix A can be used, giving F_ a8 oc (12, hat). Furthermore, F_ _g is always positive.

This system is well known to be unstable without feedback. A complete state variable feedback would be

x -- x 0 }
_E=[C1 C2 C3]

I -Io

(10)

Fig. 2 shows how the static magnetic force is affected by the choice of C1. Obviously, there is some minimum

value of CI to produce a positive slope at xo = 0.001. High values of C_ produce a stiffer system but with a penalty.

A second ( unstable ) equilibrium point exists. Increasing C1 moves this point closer to the stable operating location.
The safe operating domain in the state space is therefore decreased.

In addition, Fig. 2.5 shows the extreme nonlinearity of the system. The complete equations of motion can be
written as a variation about the equilibrium point (x0, 0,I0)

U=X--Xo

w=I -I0

(11)

where

where

_ v = A v + E
w w

(12)

A = 0 - and B = (13)

a VMgl

[ ](u)5E = C1 C2 Cs v
w

(14)

O_ = t.toN2A (15)

Note, the equilibrium values (Xo, Io, Eo) are related and consistent values must be used so that the position is actually

a fixed point.

1 rEo./--z_ (16)x0=
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E0
Io - (17)

R

The various terms in Eq (13) can be identified as representing the magnetic force, the voltage drop due to back
emf and the voltage drop due to inductance.

The controllability of this system can be determined from the rank of the controllability matrix Q.

Q= [B AB A2B ] (18)

Substituting from Eq. (13) results in a matrix that has full rank. The total dynamic matrix turns out to be

[ , 0 ]()0 u
= Eo Eo V

waR a "M g -- aR C3

(19)

The system is stable if

C3<R

+C1<2R T 1- -_'-4_---_g\ -R--

The first constraint can be interpreted as requiring the coil to behave with positive resistance. The minimum value of

C1 is that required to overcome the effective negative stiffness of the magnetic force. The third condition enforces an

upper bound on C1 which is dependent on C2. This implies that the system cannot be stable without some velocity

feedback. Apparently, the damping induced by the back emf is cancelled by the inductive lag of the coil, leaving an
unstable system unless velocity feedback is used to add dissipation.

Given values of Ca, C2, C3, the system may be linearized about the other equilibrium point ( the one at lower

gap). This point is found still to be unstable. Fig. 3 shows a sketch of the response in 3-D state space. The
stabilized equilibirium point is a focus in two dimensions and has a stable subspace in the other dimension. The

unstable equilibrium point is a saddle point in two dimensions and has a stable subspace in the third dimension. The

presence of the unstable equilibrium point close to the stable one significantly affects the domain of convergence.

Rather than developing this problem further ( including for example, the effect of eddy currents) discussion will

be shifted to a two magnet configuration.

TWO MAGNET VERTICAL CASE

Consider a bearing consisting of only the top and bottom magnets in Fig. 1, with x constrained to be zero.
This problem will study how the eddy currents affect the system, and so Appendix B will be used to represent the

magnetic forces. The rotor is suspended by the difference in magnetic forces due to the top and bottom magnets.

The stationary steady state voltages are such that the gaps are equal top and bottom, and the magnetic flux density
is well below the saturation value of 1.5 - 2.0 webers/m 2.

The 8 state vector reduces to (_, y, 11,13). _Frn ag becomes F,, _ga -Fm _gs. Since the system is constrained in

x, the drag force due to eddy currents and the resulting coupling is neglected. The governing differential equations
are

d

_y = 3_

d Fmagl -Fmag3
-_Y = M -g

(21)

( ) 2,11 COS01
d 2(A -ycos01)+ill E01+3E1 -R111 -
dt 11 - al 2(A - y cos 01 ) + fll

d 2(A-ycosOs)+flS(Eos+SE3-Rsl3)-- 2,13 cos03dt I3 - o_3 2(A -- y cos 03 ) + f13
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The voltages E01,E02 have been adjusted so that the equilibirium point is y = 0 with no spin speed. It then
follows that

E01
lol -

R1

Eo3 (22)
103 --

R3

M g = Fm ,_gl - F,,, ag3

A state variable feedback controller is designed for this case using the linearized set of equations at zero speed

(f_ = 0.0). Because eddy currents are not a factor at zero speed, the formulae in Appendix A can be used ( giving
a significant simplification over Appendix B ) . The linearized system can be written as

Z=AZ+B 8E3 (23)

A is the Jacobian, B is the control matrix containing the inverse of the inductances of the two circuits at equilibrium
and (tSE1 8E3) T is the control vector for the perturbation voltges to the magnets.

This is a two input - single output system and unlike the previous single magnet case, there are many gain

matrices K yielding the same eigenvalues. The solution to this control problem is discussed in [18]. However, the result

is a gain matrix K such that the poles of the closed loop system ( at zero speed ) are placed at -1000, -1000, -100+
jl00.

(SE1 _ = (_/ (24)
SEa / K t_II

\aI3/

The complete closed loop system can now be considered with speed as a parameter. The equilibrium points
are found by the numerical solution of the right hand side of Eq. (21) with () = 0). It turns out that there are 3

equilibrium points. This can be understood from a graph of the net magnetic fource versus y as in Fig. 4. The point
at y = 0 is a stable equilibrium point. However, points at y _ 4.4 10 -4 and y _ -8.4 10 -4 are also equilibrium
points.

Furthermore, as speed increases, the force curve changes. The central equilibrium point drifts downwards, and

the slope there decreases. Eventually, at sufficiently high speed, the central and lower equilibrium points coalesc and
disappear. This is shown in Fig. 5.

The catastrophe occurs at f2 = 47000rpm for the values of parameters in this paper.

However, before that occurs, a more interesting dynamic phenomenon is observed. The dynamic equations

can be linearized at each (shifting) equilibrium point. Since the equilibrium points must be found numerically, the

linearization was also performed numerically using a central difference scheme in each state variable. The eigenvalues

of the resulting dynamic matrix are shown in Fig. 6 as a function of the shaft speed f2.

At zero speed, the eigenvalues are very near the design points -1000, -1000, -100_+ j 100. The difference is

because magnetic circuit theory ( Appendix A) is used in the zero speed controller design, but the full eddy current

field theory solution ( Appendix B ) is used when linearizing and calculating eigenvalues. The system is stable (
in a small neighborhood of the central equilibrium point ) up to a value of f2 = 40406rpm, at which time a Hopf

bifurcation (flutter instability) occurs.

The system loses stability through a single pair of eigenvalues crossing the imaginary asis at f2 = 41M06rpm. In
such a case, a limit cycle must grow from the bifurcation point. This can be either a stable limit cycle which increases

in amplitude for f2 > 40406rpm or an unstable limit cycle which closes down around the focus as f2 _ 40406rpm.

A standard bifurcation analysis was performed using the program BIFOR2 [19]. A stable supercritical limit cycle is

predicted. The amplitude is shown in Fig. 7 along with the limit cycle actually found by simulation. It should be
noted that the actual phase space is four dimensional and only a 2-D subspace is shown.

The reader is cautioned that the study was not extended to determine what ( if anything) happens to the limit

cycle when the two equilibrium points coalesc and disappear at 47000 rpm.

FOUR MAGNET CASE

Each coil is excited by initial constant voltages denoted by Eoi, i = 1,2,3,4, and the steady state magnetic forces
(at f_ = 0) are such that

Eft" ag = -mghy. (25)
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The equilibrium points for this system at any spinning speed can be determined by equating the right hand side of

Eqs. (5) to zero. That is,

0 = f (X,q, f_) (26)

give the equilibrium points of the system. Eq. (26) represents a set of coupled nonlinear algebraic equations which

has to be solved by a numerical technique. But, at zero speed, the equations decouple in x and y giving two separate
problems, one of which has been discussed briefly. Without feedback control, this system has a single equilibrium

point. It is possible to track the movement of this equilibirium point as speed increases [18].

To find the nature of the equilibrium point at any speed D., the differential equations are linearized and studied

for their behavior in the neighborhood of the equilibrium point. As expected, the eigenvalues of the linearized system

show that the four magnet bearing without active controls is inherently unstable.

A state variable feedback controller is added to the system to stabilize the bearing and provide it with suitable

damping and dynamic characteristics. The effect of a gain matrix which is speed dependent is beyond the scope

of this paper, and the control system is designed using the system characteristics at f_ = 0.0. At zero speed, the

equations of motion are uncoupled, and two 4th order control problems can be solved rather than one 8th order

problem. State variable feedback controllers were designed for each subsystem to place the closed loop poles at -1000,

-1000, -100&-_jl00. This placement provides dominantly second order response over a frequency range of 0 to 5000
rpm.

Note that because the system decouples, all states are not fed back to the control inputs for each magnet. For

example, the variations of the gap length, velocity, and currents of the horizontal magnets are not being fed back to

the vertical magnets and vice versa. Another advantage is that designing a state variable feedback controller for a

four-input two-output system is more involved in terms of computation that two versions of a two-input single-output

system. The feedback gain matrix K for this four magnet bearing is given in Table 3.
where

_E1 q

aE2 / =
_e3 | [K ]X (27)
_E4]

Itisnot possibleto deriveanalyticalexpressionsfor the equilibriumpointsof the system. However, the pattern

of 3 equilibriumpointsfor a pair of magnets in one dimension isextrapolated to an expectation of 32 equilibrium

pointsin2 dimensions.This has been confirmed by numerically solvingthe equations. As in the simplercases,in

designingthe controlsystem,the choiceofpole assignments for the centralequilibriumpoint (and resultingfeedback

gains and stiffness)affectsthe locationof the surrounding equilibriumpoints.A faster,stiffersystem (polesfurther

intothe lefthalfof thes-plane)pulisthe outlyingequilibriumpointsclosertogether,as shown in Fig. (8).

As the spin speed increases,the equilibriumpointsshiftdue to changes in the magnetic forces,and in thiscase

includingthe coupling due to eddy current drag forces.Furthermore, because the dynamics are affectedby the gap

lengths,the dynamic coefficientshave changed, and the stabilityof the system isaffected.Fig. 9 shows how all9

pointsmove within theclearancespace.At low speeds not much happens but above I0,000rpm the pointsbegin to

shift.At about 15,000rpm points 3 and 9 coalesceand disappear.

At any running speed, the system can be linearizedabout any of the equilibriumpoints. Since the equations

are rather unmanagable, the linearization was performed using a central difference method to find the derivatives of

each function with respect to each state variable. The result is

Z = A Z. (28)

where the Z column vector contains perturbations about the speed dependent steady-state vector X. Eigenvalues of

A give stability information about each point. Points 2-9 ( the outlying points ) were always unstable.

The eigenvalues corresponding to the central equilibrium point (1) as a function of the spinning speed are plotted
in Fig. 10. The system is stable in a small neighborhood around the equilibrium point up to about 9306 rpm. As

the spinning speed is further increased, a pair of complex conjugate eigenvalues crosses the imaginary axis with all
the other eigenvalues still in the left half of the complex eigenvalue plane. This means that the system undergoes a

classical Hopf bifurcation to flutter instability at the critical speed of 9306 rpm.

Because of the existance of the outlying unstable equilibrium points, a supercritical limit cycle was expected.

However, a conventional Hopf bifurcation analysis on the full set of nonlinear equations, using BIFOR2, indicated

that an unstable limit cycle will enclose the central equilibirum point for speeds less that D_r. Fig. 11 shows three
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transient responses at f_ = 2500 rpm, calculated by numerical integration of the complete set of nonlinear
equations. Two converge to the equilibrium point and one diverges. The domain of convergence was approximated

by slowly incrementing x(0) and y(0) and noting convergence or divergence. The domain of convergence is marked

in Figs. 11,12. This is an overly simple approach because changes in the initial conditions of the remaining 6 state

variables are not explored. However, it does lend credence to the prediction of an enclosing unstable limit cycle.

Forced response of this system is discussed in detail in [18]. The global resopnse is quite different from what
might be expected from a linear analysis. The linear eigenvalues at _ = 2500 rpm indicates a damping ratio of

0.7. However, the orbit resulting from a periodic excitation of 25N only converges quite slowly (damping ratio <_

0.05). Further discussion is beyond the scope of this paper. The topic is opened here only to point out the pitfalls

in extrapolating a linearized analysis.

CONCLUSION

Without considering eddy current effect, there is no speed dependent term in the constitutive model for a

magnetic bearing. Eddy current cause a loss of effective lift which, viewed as as external load, causes a classical sag
for a proportional controller. More importantly, eddy current drag causes coupling between (x,y). Any change in

the x gap affects the drag force in the y direction. Straightforward proportional control produces extra equilibrium

points as the applied voltage is driven negative but the force remains attractive. These points are unstable but affect

the global response of the system. In fact, designing a stiff system draws these points quite close to the equilibrium

point. The equilibrium point is surrounded by an unstable limit cycle. Furthermore, as speed increases, the unstable

limit cycle shrinks until the central point loses stability in a classical Hopf bifurcation. Above critical velocity, there

is no equilibrium response.

The loss of lift is about 30% at 12500 rpm, which agrees approximately with experimental results of Yamamura

[20]. The expression for the drag force under a single sinusoidal field density wave is the same as that obtained by
Meisenholder [1].

The system may also lose stability by a simple catastrophe, the coalescing and joint annihilation of two equi-
librium points. For the parameters used in this paper, this happens after the Hopf bifurcation. However, further

parameter studies are needed to determine if this might occure before the Hopf bifurcation.

Further study is needed in designing state variable controllers. The zero speed design point is useful because it

decouples the system, reducing the order. However, many other types of control can be envisioned.

The size of the enclosing unstable orbit is quite small, as shown in Fig. 12. A transient excitation could rather

easily throw the shaft outside this into an unstable response. Also, a periodic excitation such as rotating unbalance,

produces an orbit about the central equilibrium point. Simulation has indicated that if this orbit is large enough
to touch or exceed the enclosing unstable limit cycle, the system becomes unstable. The loss of stabiliity is quite

complicated, with bifurcations of the periodic orbit and possibly bifurcation to chaos. Discussion of this is beyond

the scope of this paper.

Further problems which should be investigated are the effects of flux saturation in the magnetic material. Also,

the model developed in Appendix B is applicable to repulsion type electromagnets, which would run at high speed

and likely require superconductivity to implement. Stability of these bearings has not yet been addressed.

A final comment is the topic of bearing coefficients ( equivalent stiffness and damping matrices ). The situation is

different from that of journal bearings, it is not possible to determine the 8 classical coefficients just by differentiating

the force expressions with respect to x, y,_, p. The dynamics of the electrical components must also be incorporated.
However, in all cases, the response in one 'mode' was very fast( Fig. 3) indicating that some subspace reduction

might be possible.

APPENDIX A

ESTIMATION OF MAGNETIC LIFT FORCE

Magnetic circuit theory can be used to approximate the magnetic lift force of a single magnet, but

eddy currents must be neglected. The following assumptions are made in deriving the expressions for the
magnetic lift force:

1. Field fringing is neglected.

2. Magnetization curve is linear (B =/_H).

3. Magnetic flux density B and field intensity H are uniform over cross-sections of the core, gap, or mass.
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An electromagnetic circuit is considered whose elements are gap, core, and suspended mass, as shown in Fig.

A.1. Each element has constant crossection Ai and length Li. The magnetic flux ¢ is assumed constant throughout

the circuit, and F is the total magnetomotive force within the circuit elements.

The density relationship ¢ = BA and the constitutive law B =/zH can be used to express field intensity in the

ferromagnetic material in terms of the field intensity within the air gap.

By definition F = fHdl Integrating around the circuit and equating F to the current linked (NI) results in an

equation for field intensity within the air gap. The field energy is determined within each element w = ½#H and the

total field energy is obtained by a volumn integral over all the elements.
By definition, the force is the rate of change of stored field energy with respect to the mechanical displacement.

#°N2AI2 (A.1)
F.o, = (Zx+ +

In addition, the total flux ¢, the magnetic field density B, the magnetic flux linkage _., and the inductance L can be

expressed in terms of the gap length x and current I as:

¢_= poNIA (A.2)
(2x + _--:T+c-z-/t,2 )

B = #oNI (A.3)

X = IroN 2IA (A.4)

(2x +_-_ + c-z-/*,2 )

L = #oN 2A (A.5)

(2x + _ + _--_)/t,1

APPENDIX B
ESTIMATION OF MAGNETIC FORCES

INCLUDING EDDY CURRENT EFFECTS

Motion of a conducting material through a magnetic field will cause eddy currents to be generated within the

material. These eddy currents will produce an additional magnetic field and change the net force acting across the

air gap. The complete eddy current analysis for 4 magnets as shown in Fig. 1 is analytically intractable. (It is

probably amenable to finite element techniques.) An approximate solution is developed in Ref [18], and only the

assumptions, general method, and results will be presented here.
As the shaft starts spinning, the eddy currents tend to repel the applied magnetic field and the skin depth of

penetration becomes very small. This motivates a semi infinite assumption in the radial direction.
First, the problem will be unwrapped and considered as periodic on a half-space. However, before net forces are

calculated, the surface tractions predicted by Maxwell's stress tensor will be wrapped around a circular shaft.

Second, each magnet will be considered separately, and the magnetic field for each magnet can be determined
individually. The net force of each magnet is then determined, leading to 4 vector forces which are then summed

vectorially. An alternative (more complex) solution is developed in Ref. [18] to find net magnetic field for all four

magnets at a single system (simultaneously). The net magnetic field of all 4 magnets may be determined, and a

single force predicted. However, this approach requires the assumption that all the gaps are equal. At low spinning

speeds there is no difference between the two methods. Only at very high speeds do the two differ. (For parameters
in this paper, 4% at 105 rpm). The simpler technique has been used here.

The square wave applied flux density is expanded as a Fourier series

B(x) = _i -_ [cos(_-_--_) --cos(_-)]sin(_- ) (B.1)

or

B (x) = _,_Bisin(kix) (B.2)
i

The field density and current density distributions within the moving material solve a linear problem, and hence

the principle of superposition can be invoked and each harmonic handled separately. After finding the field density
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inside the whole region, the forces acting on the rotor can be determined by calculating the Maxwell's stress tensor
and integrating it over the surface area.

The following assumptions are made to simplify the analysis:

1. The conductive plate is infinite in x,z and positive y directions.
2. The conductivity o" and permeability/t are constants.

3. The field problem is two dimensional.

The equation that describes the distribution of the magnetic field in the conducting medium is derived from
Maxwell's field equations [7].

1 V2ff + _ff
#a "_- = V x (17 x if) (B.3)

where ff = Bxe'1 + Bye_2(e-'l and e'2 being unit vectors in x and y directions respectively). The y component By

is determined from the y component of (B.3) The remaining component Bx can be determined from the relation

V-B = 0. The magnetic field is driven by the applied magnetic field density, and so solutions with the same traveling

wave dependence on (x, t) are assumed. That is, it is assumed that the flux density takes the form

ff = [Bx(y)b'l -FBy(Y)_2]e i(kx-_°`) (B.4)

The solution form in the y-direction is ef qY where

q, = ki _[1-t-js=ki_l +j.l'tk-_V (B.5)

i

Eqn (B.5) can be used to predict the skin depth.

The solution domain is divided into two regions, denoted by subscripts 1 and 2 respectively:

Region (1), the air gap where a = 0(0< y < A); and

Region (2), the moving conducting medium (A < y < oo).

The solutions within each region have two constants of integration, determined from the following 4 boundary
con dition s:

(1) one is set to zero because the solution cannot grow as y ---_oo.
(2) the applied flux density at y = 0

(3) At the interface y = A, the condition of conservation of flux V .B = 0 is invoked. Using the divergence

theorem, this leads to By1 = By2.
(4) at the interface, V x H = 0. Using Stokes theorem, this leads to H,1 = Hx2.

Hence, the flux density distribution throughout both regions can be determined.

The forces acting on the conducting medium are calculated by Maxwell's stress tensor [8]. For magnetic problems
with currents and no charges, the forces acting on a body are given by

(B.6)

where Z is any closed surface surrounding the body and not containing any other body and B is the value of the

field on the closed surface., Choosing a closed surface Y. such that it extends from --oo to oo and includes only the
conducting medium, the integration is carried out with h = -_2.

The complete flux density distribution in the whole region of Fig. B.1 due to all the applied sinusoidal waves is

determined by superposing the individual fields. Each component of the field (B,,By) is an infinite series in sine or

cosine terms. The value of the ff field at the interface, which is required for calculating the forces, is calculated by
substituting y = A and letting Bx = B,1 and By = By1. Substituting for B and evaluating the integrals, the forces
per unit area acting on the material turn out to be

B_ si
1 12o E (n2i +n22i)Re_+jsi (B.7)F_, - 4//0/2
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where

1- ,' 2,[1-( ) +s_]
F, 4#0 E (n2i . n2, )

_tTV

si - kl

and where nl and n2 are the real and imaginary parts ofyi.

)'i = [cosh(kiA ) + !1o _-sinh(kiA )]
# gi

(B.8)

(B.9)

(B.IO)

Eqs. (B.7) and (B.8) are the expressions for the drag and lift force per unit area acting on the moving conducting

medium. As expected, when the currents are not induced in the slab (V=0) (S=0), there is no drag force (F_) and

Fy is the magnetic attractive force. There is an optimum value of V at which the maximum force per unit area Fx
is produced. The lift force decreases as V is increased, and at some value of V the force becomes zero, and at high

values acts in the opposite direction (repulsion). At very high values of V, there is no drag because all the flux is
excluded from the material and the repulsion force reaches an asymptotic value irrespective of the permeability of

the material.

It is interesting to note that the integral and the summation are interchangable in order. That is, the force for

one component of the fourier series can be determined and then summed or, as in the preceding, the fields summed
and the force determined. This is perhaps surprising because the problem is nonlinear, but the infinite series for Bx

and By are made up of sine and cosine terms which are orthogonal to one another and all the cross terms drop out

during integration over one period.
The total flux can also be calculated and compared with that predicted by magnetic circuit theory (Appendix

A). The more detailed solution is about 8% lower, showing the effects of magnetic circuit assumptions (uniform field

density and no leakage in air gap).

For the magnetic bearing, the forces acting on a rotating shaft are calculated by wrapping one period of the B
field distribution back onto the circular shaft. Choosing a closed surface _ on the circumference of the rotor and

simplifying the integral in Eq. (B.6) give the forces acting on the rotor per unit width as

JtD xD
"'2-- "/--

1 BxB,cos(-_)dx 1 _B2)sin(__)d x
liD zD

--'£-- --"12--

(BAD

where

_- ,q-

1 -_)dx 1 _B2x)COS(__)dxF, 1- f BxB,sin( f (BE#o 2ao
xD _D
-_ -- --_;-

(B.12)

B_l(y)y A _ 1#o_
Bx = = -- Bi ejklx

= )'i -_

By = Byl(Y) y=A = ETi ffffTiBieik'x

(B.13)

(B.14)

The effect on the values of the forces of the number of terms used in the fourier series was investigated. The

magnetic forces were calculated at different spinning speeds using 10, 25, 50, 100, and 500 terms in the series. There

is very little change in the results when the number of terms used in the series is 50 or more. There is approximately

3% change in the lift force when the number of terms is increased from 10 to 25 or from 25 to 50. The change is

much less in the case of drag force calculations. Striking a compromise between these two, and to save computer

time, 25 terms were used in all the calculations in this paper.
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TABLE 1

Single Magnet Suspension Parameters

Mass M = 8.91 kg
Acceleration due to gravity g = 9.80665 m/sec 2
Area of cross section A = 0.00025 m 2

Initial voltage E0 = 5.0 volts
Resistance of coil R = 3.0 ohms

Path length in core L1 = 0.28 m

Path length in Mass L2 = 0.05 m

Permeability of free space/10 = 4_E - 07Him
Relative permeability of core material/.trl = 10000.0

Relative permeability of mass material/it2 = 100.0
Number of turns N = 800

FEEDBACK GAIN MATRIX: Poles at -1000, -100 + jl00

K = [261013.13 1486.86-92.44]
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ROTOR

MAGNET

TABLE 2

Two Magnet Bearing Parameters

Diameter of rotor D

Mass of rotor M

Path length in rotor L2
Relative permeability of mass material/It2

Electrical conductivity of mass material o"

= 0.15 m

= 15.6 kg
= 0.05 m

= I00.0
= 1.0 E+07 mho/m

Pole angle

Path length in core L1

Relative permeability of core material #rl

Area of pole face A
Width of pole face W
Number of turns N

Distance of pole corner a

Distance of pole corner b
Initial voltage (top) E01

Initial voltage (right) Eo2

Initial voltage (bottom) E03

Initial voltage (left) Eo4

Resistance of coil R

= 15 degrees
= 0.28 m

= 10000.0

= 0.00025 m 2

= 0.008333 m

= 800.0

= 0.0075 m

= 0.0375 m

= 7.5 volts
= 2.5 volts

= 2.5 volts

= 2.5 volts

= 3.0 ohms

TWO MAGNET FEEDBACK GAIN MATRIX

Poles at -1000, -1000, -100 + j 100

I 4570751.1 11052.9 -565.5K = 1523583.7 3684.3 -188.5

KT_

TABLE 3

Feedback Gain Matrix for Four Magnet

"4570751.1 0.0 1523583.7

11052.9 0.0 3684.3

0.0 7185390.6 0.0

0.0 18021.2 0.0

-5675.5 0.0 -188.5

0.0 -3500.0 0.0

-2200.5 0.0 -733.5

0.0 -3677.7 0.0

Bearing

0.0"

0.0

7185390.6

18021.2

0.0

-3500.0

0.0

-3677.7
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Figure 1: Four Magnet Bearing
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Figure 2: Effect of Feedback Gain on Stiffness of Single Magnet Suspension

411



k

/ I --\

I
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Figure 4: Net Magnetic Force vs Shaft Displacement, with Feedback
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DOuble _ole$ cl

• -l_r-'O0, -_500, -15C:j150

• -:CO0.-IOOC,-lOC:,:O0

z -500, -500,- 50:_50

1

Figure 8: Equilibrium Points at f_ = 0 for Three Different Pole Assignments

4]4



Four M_ g r,ll_l
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Figure B.2: Lift Force as a function of Spin Speed
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Figure B.3: Drag Force as a function of Spin Speed
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