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Governing equations of motion are derived for a bulk-flow model of

the leakage path between an impeller shroud and a pump housing. The

governing equations consist of a path-momentum, a circumferential -

momentum, and a continuity equation. The fluid annulus between the

impeller shroud and pump housing is assumed to be circumferentially

symmetric when the impeller is centered; i.e., the clearance can vary

along the pump axis but does not vary in the circumferential direction.

A perturbation expansion of the governing equations in the

eccentricity ratio yields a set of zeroth and flrst-order governing

equations. The zeroth-order equations define the leakage rate and the

circumferential and path velocity distributions and pressure

distributions for a centered impeller position. The first-order

equations define the perturbations In the velocity and pressure

distributions due to either a radial-dlsplacement perturbation or a

tllt perturbation of the impeller. Integration of the perturbed

pressure and shear-stress distribution acting on the rotor yields the

reaction forces and moments acting on the impeller face.

Introduction

Figure I illustrates an impeller stage of a multi-stage

centrifugal pump. Leakage along the front side of the impeller, from

impeller discharge to inlet, is restricted by a wear-ring seal, while

leakage along the back side is restricted by either an interstage seal

or a balance-discharge seal. Lomakin [I] originally recognized the

major influence that seals have on the rotordynamlc response of

centrifugal pumps. Recent analysis and test results are provided by
references [2-4].

More recently, various investigators have considered the forces

developed by flow through the impeller and its interaction with either

a volute or a vaned diffuser. Cal Tech researchers [5] have presented

measured force coefficients for an impeller precessing in a volute.

Ohashi and Shoji [6] also provide measured force coefficients for an

impeller whirling in vaneless and vaned diffusers. More recently,

Bolleter et al. [7] from Sulzer Brothers, Ltd. have also presented test

results for an impeller in a vaned diffuser. The Cal Tech and Sulzer
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test programs use conventional impellers in their test programs, but
use a radial face seal to minimize or eliminate the forces which would

normally be developed by the wear-rlng seals. The face seals employed

by these investigators sharply reduce the leakage flow down the front

face of the impeller. The impeller tested by Ohashl et al. has flat,

parallel, front and back shrouds. Test results from all these

investigators suggest that impellers create relatively benign forces

from a rotordynamlc viewpoint. Ohashl concludes that impeller forces

would damp forward whirling motion in most operating conditions. The

Cal Tech and Sulzer researchers conclude that impellers would provide

positive damping unless a rotor's running speed exceeded its critical

speed by an approximate factor of 2.5. Hence impellers are predicted

to yield smaller destabilizing forces than bearings or long seals which

are predicted to yield destabilizing forces when the running speed

exceeds twice the critical speed.

There is some contrary evidence from operating pump experience

with respect to impeller forces. Specifically, Massey [8] cites

experience with an 11-stage pump which was unstable and whirled at 80%

of running speed; i.e., the pump was unstable when Its running speed

was only 1.25 times the critical speed. The HPOTP (High Pressure

Oxygen Turbopump) of the SSME also whirled at 80% of running speed [9].

Thls evidence suggests that some unaccounted-for destabilizing force Is

present in pumps. The present analysis Is aimed at investigating the

forces and moments developed by impeller-shroud forces.

A bulk-flow analysis is employed similar to that of Chllds and Kim

[3]. However the analysis is extended to account for the changing

geometry of impeller surface. In addition, the shear stress

contribution to the reaction forces Is accounted for, and the reaction-

moment coefficients are calculated using the approach of reference

[10]. Specifically, the following general model is used to define the

reaction forces and moments which arise for small motion of a pump

impeller about its centered position.
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where (Fx, Fy), (X, Y) define the components of the impeller reaction

forces and relative displacements, and (My, MX), (eY, eX) define the

components of the reaction moments and rotation (small-angles) vectors.

Geometry and Kinematics

Figure I illustrates the annular leakage paths along the front and

back sides of a typical shrouded impeller of a multistage centrifugal

pump. The present discussion concentrates on the flow and pressure

fields within the forward annulus; however, the analysis also applies

to the rear annulus. As illustrated in figure 2, the outer surface of

the impeller is a surface of revolution formed by rotating the curve

R = R(Z) about the Z axis. A point on the surface may be located by

the coordinates Z, R(Z), e. The length along the curve R(Z) from the

initial point Ri, Z i to an arbitrary point R, Z is denoted by S and

defined by

Z R

S = I J I+ dR 2 du - I _ I + dZ 2 du (2)

Z i dZ R i dR

In the equations which follow, the path coordinate S and angular

coordinate e are used as independent spatial variables. The co-

ordinates Z,R defining the impeller surface are be expressed as

parametric functions of S, i.e., Z(S), R(S).

Trigonometric functions of the angle Y, illustrated in figure 3,
are defined as follows

dR

tanY =

dZ

dZ dR

cosy - m , slnY -

dS dS

(3)

The clearance between the impeller and the housing is denoted as

H(S,e,t), with the time dependency introduced by impeller motion. In

the centered position, the clearance function depends only on S and is

denoted by Ho(S). Displacement of the impeller in the X and Y

directions obviously causes a change in the clearance function. The

clearance function is also changed by pitching or yawing of the

impeller as defined by rotations _X, _Y about the X and Y axes,

respectively. For small displacements and rotations of the impeller
the clearance function can be stated

H(S,e,t) = Ho(S) - [(X + ayZ) cosy - ayRslnY] cose

- [(Y - axZ) cosy + axRslnY] sine

(4)

Observe in this equation that Ho, R, Z, cosy and sinY are solely
functions of S, while X, Y, _X, eY are functions only of t.

505



Governing Equations

Returning to figure 2, the path coordinate S and circumferential

coordinate Re are used to locate a fluid differential element of

thickness H(S,e,t) illustrated in figure 4. From the geometry of

figure 4, the continuity equation can be stated

3H 3 1 3 H 3R

-- ÷ -- (UsH) + (UeH) ÷ (-) -- Us - 0
3t 3S R 3e R 3S

where Us and Ue are the path and circumferential bulk-veloclty

components, respectively.

Figure 5 illustrates the pressure and shear-stress components

acting on the differential fluid element. The first subscripts (s,e)

in the shear-stress definitions (_ss, _sr), (Tes, _er) denote path and

8 directions, respectively; the second subscripts (s, r) denote stator

and rotor surfaces, respectively. The path momentum equation can be

stated

3P U82 dR

H - - pH + _ss + _sr

3S R dS

+ pH
[3Us 3Us UO 3Us
-- + + _ U s )
3t 3e R 3S

The clrcumferential-momentum equation can be stated

. (3u0__3oo" _8s + T@r + pH + - + -- Us
R 3e 3t 38 R 3S

UoU s 3R
+- )

R 3S

Following Hits' approach [11],

these equations can be stated

the wall shear-stress definitions in

ns ms+1

_ss " -- P Us e Rams [I + (US/Us)2] --2"--

2

(5)

nr mr+ I

_sr " -- 0 Us 2 Ramr {I + [(Ue-R_)/U_ 2} --2---
2

ns ms+1

_es " -- P Us ue Rams [I + (US/Us)2] -"2---
2

nr mr+ I

TSr - -- p U s (U8 - Rm) Ramr {I + [(Ue-Rm)/Us]2 _ -"2"-
2
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where

Ra - 2H Us /v (6)

The empirical coefficients (ns, ms), (nr, mr) account for different

surface roughnesses on the stator and rotor, respectively.

Impeller-Annulus Geometry

For this analysis, the assumption is made that the impeller is

nominally centered in its housing. Hence, in the centered position,

the clearance function Ho(s) is only a function of the path coordinate

S and does not depend on the azimuthal coordinate RS. The inlet-

clearance function Ho(O) , the inlet path velocity Us(O), and the inlet

radius R(O) are denoted, respectively, by C i, V i, and R i. In terms of

these variables, leakage volumetric flowrate is defined by

- 2wRiCiV i (7)

The length of the leakage path along the impeller face is defined by

Zi+L

L s - I J l+ dR 2 dZ

Z I dZ

(8)

Nondimenslonalization and Perturbation Analysis

The governing equations define the bulk-flow velocity components

(Us, U8) and the pressure P as a function of the coordinates (Re, S)
and time, t. They are conveniently nondimensionalized by introducing

the following variables

us - Us/Vi, ue = Ue/Ri_, P - P/pVi 2

h - H/Ci, s - S/Ls, r - R/Ri (9)

= mt, b - Vi/R i m, T = Ls/V i

The objective of the present analysis is to examine the changes in (Us,

Ue, p) due to changes in the clearance function h(e, s, t) caused by

small motion of the impeller within its housing. To this end, the

governing equations are expanded in the perturbation variables

us - Uso + eUsl , h - ho + eh I

u@ - U@o + eu81 , p = Pc + ePl (10)

were ¢-e/C i is the eccentricity ratio. The following equations result:

Zeroth-Order Equations

(a) Path-Momentum Equation

dPo

ds
+ Uso

duso

ds

I dr )2(--) Cueo/b + (°s_°r) Us2- 0

r ds 2

(11a)
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(b) Circumferentlal-Momentum Equation

du8o UOo dr
2--+2

ds r ds

+ [Or(Ueo-r) + CsU8o] - 0 (11b)

(c) Continuity Equation

r h o Uso = I (11c)

observe that the continuity equation follows directly from Eq. (7)

First-Order Equations

(a) Path-Momentum Equation

apl
= hiA1s - u01 A2s - Usl A3s

as

Im ausl U0o aUsl
- T + _T

a_ r ae

(b) Circumferential-Momentum Equation

(12a)

+ Uso _U,_S]1

as ]

L s I apl

Ri r a8
= h I A18 - u01 A20 - us1A38 (12b)

[e auel Ueo aUel
- T + _T

a_ r ae

(c) Continuity Equation

aue 1]

+Us° _sj

aUsl _T aug 1
+

as r ae

hIUso dh o I

ho2 ds ho

+ Usl

I dr I dh o

(--- + )-

r ds ho ds

__ahl U8o ahl __ahl)[_Uso + _T + _T

ds r ae aT

(12c)

Most of the parameters of these equations are defined in Appendix A.

The quantities % and or are defined by

os = (Ls/H o) As , Or = (Ls/Ho)A r (13)

where As and Ar are dimensionless stator and rotor friction factors

defined by

ms+1

As = ns Rao ms [I + (UOo/buso)2] --2--"
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mr+1

Xr - nr Raomr {1 + [(Ueo-r)/bUso]2} --2-

Zeroth-Order-Equation Solutions
The zeroth-order Eqs. (11) define the pressure and velocity

distributions for a centered impeller position, For a known volumetric
flowrate, the continuity equation completely defines Uso. The
continuity equations can be used to solve for Uso to obtain

duso 1 dho 1 dr
---- . - Uso (-- -- + - _)

ds ho ds r ds

substituting into Eq. (11a) yields

dPo 1 dr Ueo2 F. or+on 1 dh0

C-) -- +ds r ds b2 ho ds

dueo U9o dr
-- ÷

ds r ds

USO2 = 0
r

+ [Or(Ueo-r) + OsUeo]/2 = 0

(14)

Those equations are coupled and nonlinear and must be solved

Iteratively. The initial condition for Ueo(O) is obtained from the

exit flow condition of the impeller. The inlet and discharge pressure

of the impeller are known and serve, respectively, as the exit (Pe) and
supply (Ps) pressures for the leakage flow along the impeller face.

The inlet conditions for Pc is obtained from the inlet relationship

Ps - Po (0, e, t) = p (I+{) Uso2(O, e, t)/2 (15)

From thls relationship, the zeroth-order pressure relationship is

Po(O) = PslpVI 2 - (I+_) Uso2(O)12 (16)

The impeller exlt may also include

relationship of the form
a restriction yielding a

P

P (Ls,e,t) - Pe = - Cde Us2 (Ls,e,t)
2

(17)

The solution to the zeroth-order Eqs. (14) must be developed

iteratively since all of the coefficients depend on the local path

velocity Uso. In this study, the equations are solved by the following
Iterative steps:

(a) Guess or estimate VI which then defines Uso(S).

(b) Calculate Po(O) from Eq. (16), and use a specified Ueo(O)
as initial conditions to numerically integrate Eqs. (14) out
to s = I, i.e., the annulus exit.
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(c) Based on the difference between a calculated exlt

pressure and the prescribed exit pressure, calculate a

revised V i and repeat the cycle until convergence Is achieved.

Flrst-order Equations Solutions
The flrst-order Eqs. (12) define the first-order perturbations

Usl (s,8,_), u81 (s,e,_), and Pl (s,8,_) resulting from the perturbed

clearance function h I. From Eqs. (4) and (9), h I can be stated

Eh I " {- +ay "_) COS_ + ey _-_) rslnY } cose

(18)

[y (L--) z] cos_ - aX [R-!i)rslnX,slne+ {- -aX Ci Ci

- hlc(S,T)cose + hls (s,_) sln8

The theta dependency of the dependent variables is eliminated by

assuming the following, comparable solution format

Usl - Usl c cos8 + Usl s sin8

u81 = u81 c cos8 + u81 s sine

Pl = Plc cos8 + Pls sin{)

Substituting into Eqs. (12) and equating like coefficients of cos8 and

sine yields slx equations in the independent variables s,x. By

introducing the complex variables

Usl = Uslc + J Usls

_I = Plc + JPls ,

, u81 = Uel c + J uel s

h I - hlc + j hls

(19)

these real equations are reduced to the following three complex

equations in s and _.

" hl AIs - u81 A2s - ._sl A3s
3s

T "'''_
Ueo _i

- J _T- Usl + Uso
r

(20a)

b

- J --

r

(--) Pl " hl Ale - uel A2e - _sl A3e

Ri

7T j _T _ uel + Uso ---

3"t r _s ]

(20b)
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aus 1 _T
-- J

as r
uel + u._.1

I dr

r ds

I dh o) .

ho d_

LUso dho _T u

h 1 + J
0 2 ds ho

Uso ah 1 _T a_h1

ho as h o a_

From Eqs. (3) and (17), h I can be stated

(200)

_h_1- -q
L dz

C-)- -_Go
bs ds

(21)

where

L2 dz R4 2 dr

Go- C_) z- * C_)r-
CiL s ds CiL s ds

(22)

q- x+Jy , _- ay- Jmx

From Eq. (21), the following additional result is obtained

ah 1 L d2z

_--.-q(-)--
as Ls ds 2

-aF I (23)

where

o z] lrl- (--) + z- + [ ) ÷ r-
CiLs Lds ds2 CiLs Lds dsRJ

The time dependency of Eqs. (20) is eliminated

harmonic seal motion of the form

(24)

by assuming

Jf_ Jf_ Jf_

q - qoe a - _o e hI - hloe (25)

f = fll(_

where fi is the seal whirl frequency and qo and So are real constants.
The associated harmonic solution can then be stated

Jf_ Jf_

.__sl = "Usl e _Uel - fuel e

Jf_

P_I " Pl e

(26)
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Substitution from Eqs. (25) and (26) into the governing complex partial
differential equations yields the following three complex ordinary
equations in s

-- u0 ÷ [A] u81_ = -- g2 + ( ) g5
ds _I Pl _ ¢ g3 g6

(27)

where
(28)

[A] -- I dr I dho

r ds ho ds

A3e/Uso

_T
---) j

I dr I dh o

ABs - Uso (- -- + ) + j rT

r ds ho ds
B

(A2e + JrT)/uso

A2S + j_Tuso

0

b

-j
ruso Ri

I::l
g3

L

=(-)
Ls

rT dz

F2 + j
hods

dz
_ (AI___e ) __

Uso ds

dz

AIs usoF2 - jUso
ds

FT dz

ho ds

(29)

g4

g5

g6

and

F3 + jG o rT/h o

-A18Go/uso

-GoAls - Uso F3 - JGouso rT/ho

r = _ (f-Ueo/r)

Uso

F2 = --
ho

d2z I dh o dz

( )
ds2 h o ds ds

Uso

F 3 :- [FI
ho

Go dh o

ho ds

(30)

(31)
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The following three boundary conditions are specified for the solution

of Eq. (27):

(a) The entrance-perturbation, circumferential velocity is zero,

i.e.,

m

u@1 (0) - 0 (32.a)

(b) The entrance loss

(15), and the

relationship is

at the seal entrance is defined by Eq.

corresponding perturbatlon-varlable

pl (0) -- (I + E)usl (0) (32.b)

(c) The relationship at the exit is provided by Eq. (17) and

yields the following perturbation relationship

m

Pl (1) = Cde Uso (1) Us1 (1) (32.c)

The value for Cde depends on the wear-rlng seal geometry. Solution

of Eq. (27) for the boundary conditions of Eqs. (32) is relatively

straightforward, involving successive solutions for displacement and

rotation excitations. The complete solution is the sum of the

_omogene_us solution (which depends on the unknown initial conditions

Pl (0), Usl (0)) and the particular solutions which are proportional to

either qo or a o. Complete solutions are developed separately for the
two vectors on the rlght-hand side of Eq. (27), which satisfy the

boundary conditions of Eqs. (32). By virtue of the problem's

linearlty, these two solutions may be added to obtain the complete

system solution or employed separately to calculate the rotordynamic

coefficients. The solution to Eq. (27), due to displacement

perturbation, is obtained by setting a o = O, and may be stated

1u81 " -- _f2c + J f2s

Pl E _f3c + J f3s f3

(33)

The soluton due to angular perturbations is obtained by setting qo " 0

and may be stated

u

c )'f4cf4il_--u01 " (f5c + J f5

Pl _fec + J f6
olf41
E f6

(34)

Reaction Forces and Moments

From figure 5, the differential force

dlfferentlal-lmpeller surface area can be stated

components acting on a

dF x - - (PcosY - Trs sinY) R dedS cose + _r@ sine R deds

dFy - - (PcosY - _rs sinY) R deds sine - _r@ cose R deds

dF Z - - (PsinY + _rs cosY) R deds

(35)
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The shear-stress contribution to these differentlal-force components

has been neglected in prior analysis of seals. The X and Y components

are used to define rotordynamic coefficients; the Z component

define_ the axial thrust. Taking moments of the differential force

vector about the origin of the X, Y, Z system yields the following

differential moment components.

dMx : I-[P(RsinY-Zc°_) + _rs (Rcos_ + ZsinY)] sin8 + Z _rSCOS8

R dSds

dMy : I-[P(RsinY-Zc°s_) + _rs (RcosY + ZslnY)] cos8 + Z Trssin8

R dSds (36)

dMz = -%r8 R2 dSds

The X and Y components yield rotordynamlc coefficients; the Z component

defines the drag torque.

From Eqs. (35) and (36), the force and moment perturbations are

stated

L s 2_

FXI = -El f

o o

L s 2_

+El f
o o

(P1cos_ - Trs I sinY) cos8 R dSdS

%r81 sine R dedS

(37a)

L s 2_

Fy1 : -of f

o o

L s 2_

-d f

o o

(PI c°s_( - %rsl sinY) sine R dedS

TrB 1 cose R dedS

(37b)

L s 2_

MXI = -el : [P1(RsinY - ZcosT) + Trs I (Rcos_+Z sinY)] R sine dedS

o o

(37c)

L s 27

+of f TrO 1 ZR cose dOdS

o o

My1 =

L s 27

o o

L s 2_

+d f
o o

[P1(RsinY - Z cosY)+ trsl (RcosY+Z sinY)]cose R dedS

(37d)

_r81 ZR sine dedS
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From Eq. (5), the perturbation shear stresses can be stated

_srl = PVi 2 (Bsl Usl + Bs2 u81 + Bs3 h I)

_8rI = PVi 2 (B81 Usl + B82 u@1 + B83 hl)

(38)

The coefficients of these equations are defined in the appendix.

Successive substitutions from (a) Eqs. (9) and (18), (b) Eqs. (19), and

(c) Eqs. (21), (24), and (26) into Eqs. (37) yields

-j f_

Fr+jF 0 (FxI+jFyI)e

Fo Fo

e_L s I{ L dz- [L dr
I _I (--) -- + Usl ( ) -- Bsl + J Bel

CdL o Ls ds L Ls ds

dr
+ _01

ds

(39a)

Bs2 + J BO + hl -- Bs 3 + J BO: rds

ds ]

Ms-jM r

FoL

where

Note that

-jfT

(My1-JMxI )e

FoL

Cd o L LLs

+ "Us1 [ (Ri) (Z dr
Us ds

[
Ls ds

I • dr
+ % (z--

L s ds

Fo = 2RiLAP

pVi2

AP = Ps - Pe = Cd
2

dr L dz I

r-- + (--) z-- ]ds Ls ds

oz ]r --) Bsl + J B81
ds

dz

r --) Bs2 + j B82
ds

Ir --) Bs3 + j B83
ds

rds

(39b)

(4O)

(41)
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is the total pressure drop along the leakage path from impeller

discharge to inlet.

Rotord_namlc Coefficients for Displacement Perturbations

Eqs. (39) apply for simultaneous displacement and slope

perturbations and are solved alternately for displacement and slope

perturbations. For the displacement solution, a o is set equal to zero,

and Eqs. (21) and (33) yield

Fr(f) _ (L s I If (LLq) dz (LRIs)dr
frq .... ) 3c -- + flc -- Bsl -fls Bel

qoFo Cd L o _ ds ds

_) d_ (LRi) dz dr 3]+ f2c ( -- Bs2 - f2s B82 - Bs rds

L s ds L2s ds ds

feq - -- - - -- I 3s (--) -- + fls -- Bsl +flc Bel

qoFo Cd L o Ls ds L s ds

dr L dz 1

+ f2s (--) --Bs2 ÷ f2c Be2- (--)- Be3J rds
Ls ds Ls ds

Me(f) _ Ls I

_q .... (-) s
qoFo L Cd L o

(42)

f3s El + flc E2 Bsl - fls Bel + f2s E2 Bs2

Mr(f)

mrq _ _ .
qoFo L

L oz3]- f2s Be2 - (--) E2 --Bs rds

L s ds

f3e El + fls E2 Bsl + flc Be1 + f2c E2 Bs2

Ls I

-(-)s
Cd L o

where

L 0z ]+ f2c B02 - (--) -- Be rds

Ls ds

Ri dr L2 dz
El " ( ) r -- + (--) z --

LL s ds Ls ds

dr dz

_,2 (-) (z
Ls ds ds

(43)
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The right-hand side of Eqs. (42) is only a function of the

frequency-ratio, f, and can be evaluated for selected values of this

parameter.

The comparable results from Eq. (I) are

Fr(f) ~ ~

frq(f) - -- = - (K + fc - f2M)

qoFo

Fe(f)

feq(f) = __ = k - TC

qoFo

Me(f)

meq(f) .... (_ + f_ - f2_

qoFo L a_ a_ _

(44)

Mr(f)

_mrq(f) _ _ _ f_ f2m B _ m

q rL-o_o" _ a_ _

Where the nondimensional coefficients are defined by

B KCi/Fo, k " kCi/Fo, H " MC i _2/F o

= CCi_IFo, _ = cCi_/F 0
(45)

a_ = KmECi/LFo, _ = CmE Ci_/LF°' _C - MmECi_2/LFo

~

_ = k_cCi/LFo, omE = c_Ci_/LF O , ma Ci_2/LFo

The dynamic coefficients are obtained by equating the right-hand sides

of Eqs. (42) and (44) and by carrying out a least-square curve fit on

the results from Eq. (42).

Rotordynamic Coefficients for Slope Perturbations

Applying the procedure of the preceding section to Eqs. (42) with

qo = 0 yields

fr (f) "

Fr(f) _ L I
---C-};

_oFo Cd Ls o

L dz Ri dr

[f6c {-) --+ f4c {--} - Bsl - f4s Be_
Ls ds Ls ds

Ri dr Ri dr

+ f5c{-} - Bs2- f5sBe2- Oo{--}- Bs3]rds
Ls ds Ls ds

Fe(f) _ L I r L dz Ri dr

fe (f) ..... {--) f [fes {--) -- + f4s {--) -- Bsl + f4c Bel
aoF o Cd Ls o Ls ds Ls ds
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Ri

+ f5s (--)
Ls

Bs2 + f5c B82 - Go B83] rds

Ms(f ) _ L I F

me_(f ) - - (--) I [f6c El + f4c E2 Bsl - f4s B81

soFo L Cd Ls o

+ f5c E2 Bs2 - f5c B82 - Go E2 Bs3j
rds

Mr(f ) _ L I r

mrs(f) - _ - - -- (--) I [f6s El + f4s E2 Bsl ÷ f4c B_91
eoFo L Cd Ls o

+ f5s E2 Bs2 + f5c B82 - Go B83J
rds

Eq. (I) yields the corresponding solution format

(46)

fre(f) -

Fr(f)

eoFo

Fe(f)

fe_(f) - -- =(k - fC - f2m )
_oFo ee e_

Ms(f)

mea(f) - - (k + fc - f2M )

eoFo L

(47)

Mr(f) ~ _ .

-mr_(f) I k - fC - f2m

eoFoL

where

= K /Fo, k - k /Fo, M = M _2/F o
Ca E_ _ Ca E_ £_

~ 2

- E _/Fo, - c _/F o m = m _ /F°

a _/F°L' = M _2 /FoL

6 - C _/FoL , c - c _/Fo_ m_ = m_2/Fo L

The rotordynamic coefficients are obtained by

side of Eqs. (46) and (47).

(48)

equating the rlght-hand

Predictions and Comparison to Experimental Results
Figures 6(a) and 6(b) illustrate, respectively, a nominal pump-

impeller geometry with a conventional wear-rlng seal and a modified

pump impeller with a face seal. Bolleter et al. tested the face-seal

impeller to eliminate the forces which would normally be generated by

the wear-rlng seal. Their tests were at best efficiency point (BEP)
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with the pump running at 2000 rpm, while developing 68m of head and 130

1/see of flow rate. The impeller has seven blades and an impeller exit

angle of 22.5 ° . The test fluid is water at 80OF.

The present analysis requires an estimate of the AP across the

impeller versus the total head rise of the stage. At U. Bolleter's

suggestion, the impeller AP was estimated to be 70% of the total AP of

the pump. An estimate of the inlet tangential velocity is also

required. Fortunately, pltot-tube measurements are available,

indicating that the inlet tangential velocity is approximately 50% of

the exit impeller surface velocity; i.e., USo(O) _ 0.5. This is in

contrast to a theoretlcally-predicted tangential velocity of 0.72 Rio)
based on the blade-exlt angle. Adklns' measurements at Cal Tech [12]

also show substantially lower exit tangential velocities than predicted

from exit blade angles.

Both walls of the impeller were assumed to be smooth and

represented by Yamada's [133 test data; mr - ms - -0.25, nr - ns -

0.079. The inlet loss for the impeller, _, was assumed to be 0.1. The

discharge coefficient for the seal was calculated iteratively as

follows. With an assumed Cde , Eqs. (14), (15), and (17) were used to

calculate the leakage through the impeller annulus and the pressure and

tangential-velocity upstream of the seal. The seal is then analyzed

(with the same equations) using the calculated seal inlet

pressure and tangential velocity to determine leakage and Cde. The

iteration continues until the leakage predictions for the exit seal and

the impeller annulus agree.

Figures 7(a) and (b) illustrate the predicted radial and

tangential force coefficients frq and fSq versus the whirl frequency
ratio f s _/m for the face-seal, impeller. Results are presented for

Ueo(O) = 0.5, 0.6, and 0.7. The Ueo(O) - 0.5 data of these figures is

generally consistent with expectations based on experience with seals

except for a slight "dip" in frq and "bump" in feq- However, the peaks

exhibited at higher value for Ueo are quite unexpected. They arise

primarily due to the centrifugal acceleration term in the path-momentum

equation. If the term

2Ueo dr

/ b2 ,

R ds

is dropped from the A2s definition of Appendix A, the "peaks" are

substantially eliminated from the force predictions.

Figure 8(a) and (b) provide predictions for frq and fSq for the
conventional wear-ring-seal impeller of figure 6(a). The predlcitons

are only for the impeller and do not include the exit wear-ring seal.

The feq results for the two impellers are quite similar; however, the

frq values are generally larger for the face-seal impeller.

Table I below provides zeroth-order-solution results for the

conventional-seal impeller of figure 6(b).
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Observe that the leakage is reduced by increasing USo(O). Also observe
the relatively high seal-inlet-tangential velocity prediction for the
exit seals, which will predictably lead to increased cross-coupled
stiffness coefficients and decreased rotor stability. The Reynolds
number values suggest that care should be taken in extrapolating
impeller force data from one operating condition to another.
Specifically, changes in temperature or operating media would be
expected to yield significant changes in force data.

The freqency-dependency of frq and fSq exhibited in figures 7 and
8 for Ueo(O) = 0.6, 0.7 can not be modeled by the rotordynamic-
coefficient model on Eq. (I). Stated differently, The quadratic
dependencyof frq and feq on f, which is specified in Eq. (44), is
simply not true. A significantly more complicated dependency is
clearly in order. While these results of figures 7 and 8 are
surprising, recent data from the Cal Tech program by Franz and Arndt
[14] are qualitatively similar.

The USo(0) = 0.5 results of figure 7 are reasonably modeled by a
quadratic dependency of f and can be modeled by rotordynamic
coefficients. A comparison of predicted and measuredcoefficients is
provided in Table 2.
Keeping in mind that the present theory does not account for the
momentum flux exiting from the impeller or the pressure forces
on the impeller exit, the comparison between theory and experiment of
Table I is encouraging. The prediction of C and M are good. The
results for k are consistent with Adkins [12] statement that the
impeller annulus accounts for approximately one half of the measured
stiffness values in Cal Tech test results. The results for K and c are
obviously dissappointing; perhaps these coefficients depend more
heavily on the impeller-diffuser interaction forces.

Conclusions and Extensions

An analysis has been developed for the forces on the shroud of an

impeller. The "bulk-flow" nature of the analysis restricts its

applicability to impellers having fairly small clearances between the

impeller shroud and casing.

The results of the analysis are unexpected in that resonances of

the fluid system are predicted at inlet tangential velocities which are

higher than approximately 0.5 Ri_. Conventional rotordynamic-

coefficient models are not an adequate representation of rotor forces

if the resonances are present. The resonance phenomenon predicted by

this analysis are in qualitative agreement with recent measurements

from Cal Tech [14].

Rotordynamic-coefficients predictions from this analysis are in

reasonable agreement with test results from Bolleter et al. [7], for

the direct damping and cross-coupled stiffness coefficients, C and k.

The analysis which was developed in this paper for impeller

shrouds can also be applied to seals and provides an expanded
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capability with respect to clearances as a function of axial or path

coordinate. Prior analyses have been developed for either constant-

clearance or convergent-tapered seals. The present analysis would

apply for any continuously varying clearance function. This option can

be directly used to account for elastic deformation of the seal bore

due to pressure or other loading. It also provides possibilities for

optimizing the clearance function to maximize stiffness, damping, etc.

The addition of shear-stress contributions in the present

analysis made very little difference in seal calculations. As yet, no

comparisons have been made on impeller force calculations with and
without the shear-stress contributions.

The importance of the moment coefficients, which are defined by

the represent analysis, are as yet undetermined. Current rotordynamlc

codes are not yet up to accept these coefficients; however, a code is

under development at TAMU which will account for these coefficients and

can be used to determine their importance.

The significance of the "resonance" phenomenon, which is predicted

by the present analysis, on rotordynamics also remains unsettled. An

analysis of the phenomenon is planned which will include curvefitting

the frq(f) and feq(f) predictions and examining their influence on a
Jeffcott rotor model.

The present analysis can be readily extended to account for axial

force coefficients. An extension of this nature is projected for the

coming year.

APPENDIX A

Perturbation Coefficients

AIs" [Os(1-ms) + or (l-mr)] Uso2/2ho

A2s -
2Ueo dr

'/b2 + [or (mr+l) Bo ÷ Os (ms+l) 81] Uso/2
r ds

duso

A3s - --'-'- + [(2 + mr) or + (2 + ms) os] Uso/2
ds

-[(1+mr) or 8o (Ueo-r) + (1+ms) os B1 Ueo] /2

Uso dr
2A18 - Uso [(l-mr) (Ueo-r) or + (l-ms) Ueo os + 2 -- --]/ho

r ds

Uso dr
2A2e - Uso (Or+O s) + or (mr+l) (Ueo-r) 8o + 2-

r ds

+ 0s (ms+l) Ueo 81
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2A38 = ar (Uoo-r) [mr- (1+mr) 80 (Ueo-r)/uso]

+ os UOo [ms - (1+ms) 81 Ueo/Uso]

Bo - (Ueo-r)/b2Uso {I + [(Ueo-r) /buso ]2}

81 - Ueo/b2Uso [I + (Ueo/buso)2]

T
r8 Perturbation Coefficients

Bel " Ar (1÷mr)(Ueo-r)[1-8o(Ueo-r)/Uso]/2b

B82 " Ar [Uso÷(1+mr)(ueo -r)B°]/2b

Be3 " _r mr (Ueo-r)Uso/2bh o

Trs Perturbation Coefficients

Bsl - Ar[(2+mr) Uso - (1+mr) 80 (UOo -r)]/2

Bs2 - _r(1+mr) 8o Uso/2

Bs3 - ArmrUso2/2ho
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UBo(O)/R i

U8o(I )/R(I )m

0.5

0.884

0.6 0.7

0.947 0.996
Ji

3.75 3.44m(Kg/sec) 4.03
.- , ,

Rao ffi2ViCi/_ 73,300 68,100 62,600

Table 1. Zeroth-order-solutLon results for the

convent Lonal-wear-r Lng Impeller.

Table 2.

Heasured

K(N/m) -.5x106

k(N/m) .6x106

C(N see/m) 2570*

c(N see/m) 7610

H (kg) 29.6

m (kg) I - 10.8

Theory
Face-Seal

Impeller

-.042x106

.288x106

2020

2290

8.96

*Combined viscous and hysteretlc damping.

Theory versus experiment for the face-seal impeller.
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ZhlPELLER SHROUD

WEAR RING _ SURFACES

_" " _, l-INTER,STAGE

B

R

Fls'ure 1. Impeller stage.

Y

Z X

Figure 2. Impeller surface geometry.
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Fi&_ure 3- Local attitude angle of impeller surface.

\

\

Figure 4. Differential-fluid element.
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Figure 5. Free-body diagram for dlfferentlal-fluld element.

Figure 6. Nomlnal configuration of Sulzer test impeller [7]

with conventional wear-ring seal.
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Figure 7. Nondimensional force coefficients for the face-seal

impeller; h tangential-force coefficient,

B wadlal-force coefficient.
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Flgure 8. Nondlmenslonal force eoefflclents for the conventlonal

Impeller; A tangential-force eoefflclent0

B radlal-force coefficient.
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