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SUMMARY

The present study evaluates a higher-order modal method proposed by Leung
for transient structural analysis entitled the force-derivative method. This
method repeatedly integrates by parts with respect to time the convolution-
integral form of the structural response to produce successively better approxi-
mations to the contribution of the higher modes which are neglected in the modal
summation. Comparisons are made of the force-derivative, the mode-displacement,
and the mode-acceleration methods for several numerical example problems for
various times, levels of damping, and forcing functions. The example problems
include a tip-loaded cantilevered beam and a simply-supported multispan beam.
The force-derivative method is shown to converge to an accurate solution in
fewer modes than either the mode-displacement or the mode-acceleration methods.
In addition, for problems in which there are a large number of closely-spaced
frequencies whose mode shapes have a negligible contribution to the response,
the force derivative method is very effective in representing the effect of the
important, but otherwise neglected, higher modes.
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SYMBOLS 2

cross-sectional area

damping matrix

modulus of elasticity

error norm (see eq. (17))

ith modal forcing function

moment of inertia

stiffness matrix

beam length

mass matrix

bending moment

number of modes used in truncated modal summation

total number of degrees of freedom

applied non-dimensional force vector (Q=qL2/EI or Q=qL3/EI)
applied load
distributed load
frequency ratio %;
shear force

time

normalized time T = wot

structural displacement response vector
cartesian coordinates

ith modal displacement function

forcing frequency

vector of difference between converged response and approximated
response using m modes

ith modal viscous damping factor

unit step function

mass density

dummy variable of integration

ith natural vibration mode

modal matrix

diag [w) ,wp...un] diagonal matrix of circular natural frequencies
ith circular frequency of the damped free vibration

ith circular natural frequenc
normalizing frequency w .—.../.El_4

pAL
converged
response using a truncated set of modes (1 to m)
initial

differentiation with respect to time
nth derivative with respect to time




INTRODUCTION

Dynamic analysis of complicated structures which are modeled as discrete
multidegree-of-freedom systems often requires the solution of very large systems
of equations. Reducing the order of such systems is highly desirable from the
standpoint of increased computational efficiency. Some of the many methods for
reducing the order of discrete multidegree-of-freedom dynamic systems include
mass condensation methods (refs. 1-2) and reduced basis methods (refs. 3-7).

The reduced basis methods use the expansion theorem and a truncated set of basis
vectors (e.g. undamped free-vibration modes (modal methods) or Ritz-vectors) to
approximate the dynamic response. Some problems such as large space structures
require a large number of basis vectors to accurately represent the dynamic
response and in some cases, such as when singularities occur in the loading,
convergence of a solution is not guaranteed. Also, for problems which require
the derivatives of the response with respect to a design parameter (e.g. system
identification or optimization problems) not only is the size of the probiem
increased but the convergence of the derivative equation is not generally
guaranteed.

When a reduced basis method uses the natural vibration modes of the
structure the method is referred to as a modal method. Two of the most
widely-used modal methods are the mode-displacement method (MDM) and the
mode-acceleration method (MAM). Comparisons of the MDM and MAM methods (ref. 6)
indicate that the MAM converges to an accurate solution with fewer modes than
the MDM. One reason for this improved convergence is that the MAM incorporates
a pseudo-static response (the inverse of the stiffness matrix muitiplied by the
applied forcing function) which approximates, to some degree, the flexibility of
the higher modes which are neglected in the modal summation. The work of
reference 7 reveals that the MAM method can be derived by integrating-by-parts
with respect to time the convolution-integral form of the original MDM method.
It is also shown in reference 7 that higher-order modal methods may be obtained
by further integration-by-parts. Thus, integrating the convolution integral two
more times produces a higher-order modal method (ref. 7) than the MAM which is
called here the force-derivative method (FDM). It is called the
force-derivative method because, analogous to the MAM, the FDM produces a term
which is a function of the forcing function and additional terms which are
functions of the time-derivatives of the forcing function. These additional
terms produce successively higher-order approximations to the higher, neglected
modes. It is shown that for the case of zero damping the MAM is a higher-order
method than the MDM, and can be derived by integrating the convolution integral
by parts two times. The purpose of the present study is to evaluate the use of
higher-order modal methods which have the ability to significantly reduce the
number of degrees-of-freedom (modes) necessary to accurately represent the
transient structural response. The present study extends the work of reference
7 to include modal damping and clarifies the relation of the MDM and MAM to the
FDM.

The rate of convergence or accuracy of each of the modal summation methods
(MDM, MAM, and FDM) is investigated with respect to the differentiability of the
forcing function, the level of damping, and the time at which the response is
calculated. A relative, spatial error norm is used to measure accuracy and con-
vergence of the transient response. The forcing functions were chosen to illus-
trate the effect of a continuous forcing function (with respect to time) which
has continuous higher derivatives and a discontinuous forcing function (a unit
step function) on the solution. A quintic function of time was selected to
illustrate what happens when the force or one of its derivatives vanish at some
point in time. The convergence for a sinusoidal forcing function is also
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studied. A series of numerical examples has been selected to illustrate the
adequacy and/or inadequacy of each method: (1) a uniform cantilevered beam sub-
ject to a tip loading condition of (a) a unit step load input, and (b) a quintic
function of time; and (2) a simply-supported multispan beam (10 equal length
spans) subjected to (a) a uniformly distributed load varying as a quintic
function of time and b) two concentrated loads located about the center of the
first span and varying as a quintic function of time.

UNIFIED DERIVATION OF MODAL METHODS

The equations of motion, in matrix form, of an n-degree of freedom system,
together with the initial conditions, are given by

IMI{U(t)} + [C{u(t)} + [KI{u(B)} = {Qlt)) (1)

{U(o)} = {Up}» {ULo)} = {Ug}

where [M], [C], and [K] are the mass, damping, and stiffness matrices of the
structure; U(t) and Q(t) are the displacement and force vectors, respectively,
and a dot represents differentiation with respect to time. For certain forms of
[C], equation (1) can be transformed into a set of uncoupled equations of motion

using the undamped normal modes, {¢}i’ of the structure and the expansion
theorem, namely, by

n
(U0} = 1 {o}y¥y(® (2)
i=

where the natural vibration modes {¢}; are obtained from the solution of the
following eigenvalue problem

[K1{o} 4= wiIMI{e} (3)
The modes {4} may be normalized such that

{o}]IMIe}; = 1. and then {s}]IK]{o};= u] (42)

Using the modal matrix [¢] which contains all n modes equations 4(a) can be
written as

[o1TIMIle] = (11 and [o1T[KI[el = [22] (4b)

In modal coordinates, equation (1) can be expressed




Y, (8) + 2050,Y, () + 02V, (t)

Fy(t) §=1,2,3...n (5)

Y°i = {¢}I[M]{uo}. ?oi {¢}I[Ml{ﬁ°}

where the ith modal force Fj(t), is defined by
= T
Fi(t) = {o}; {0(t)} (6)

and ¢; is the ith modal viscous damping factor.

The mode-displacement method (MDM) calculates m-values of Y;(t) by solv-

ing the first m-equations (eq. 5) and substituting this into a truncated form of
equation (2).

m
{u(t)} =_21{¢}iYi(t) where m < n (7)
i=

The solution of equation (5) can be written by using a convolution integral
as follows ‘

_ -;imit 1 .
Yi(t) = e [cos (wdit) Yot ;;T(Y°i+ ;imiYoi)sin (mdit)] (8)

7

i

t -zju;(t-1)
+_u1)— f e T 05 Tsin (wdi(t_T)){Fi(‘l')}d'l'

[+ 8

i o

where

wy = m_i-ll - ;2

R i
i
Substituting equation (8) into equation (7) gives

1 .
* w (YO

m -;imit
{u(t)} =1 {{e};le (cos (wy t) Y,
i=1 i i di

[ EyY )sIn og NI (9)

1 t -;imi(t-r)
— e

W
di 0

+ {¢}i[ sin (wdi(t-t)) F{(T)dT]}

Equation (9) is an equivalent representation of the MDM. Integrating the convo-
lution integral of equation (9) by parts twice with respect to time and assuming
the forcing function and its first derivative are continuous over the interval
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_n Tyt 1 . :
{u(t)} -igl{ {e};[e (cos wy t) Yy + ==Y, +gu;¥, Jsin (wdit))] u

i i Y4 % 1104

“fwsit - 4
3 b —z- (_w_iﬁ sin (“d.t) + cos (md.t))]{¢}§{00} (10)
i 1

w
i di

+ {¢} ;e

2

z.w.t 2 w .
sfobyle 1 B T sin (ug ) + 2zq0c0s (wdit))]{¢}¥{00}
w5 wdi 1

2

-;imi(t-‘l')((;%ui) - w
W

1 ¢ d. .
+ {"’}1[7{, e )sin (wdi(t-T))

Wy i

+ 2g 0 c0s (wy (t-t))}{e} 1{0(x)} k]
1

2C ;w2 .
v Lo} I-Lel THace) - (o}, I— (e} THQ(D)} |

Wi ol |

If the forcing function or its first derivative were discontinuous at some point
in time the appropriate jump conditions would have to be included in
equation (10).

I1f all the modes are used in calculating the last two terms of equation
(10) these terms can be represented as

ne~-1z

i 1{¢}i(-lzo{¢}§{o(t)} = [odla220e1"{0(t)} =[o][[e1"KIe1) 1" = K1 "M{a(t)}
“f

(11)
and similarly
n g T A2 R T -1 1
121{¢}i°“1r‘”¢i} {Q(t)} = [oll—71e] {0(t)} = [KITLCIKI"{Q(t)}

where [#] is the complete (nxn) matrix of eigenvectors and [2-2] is the




2z .0,
diagonal matrix [—123 —lz, ...-lzJ and L——%rll is the diagonal matrix
ml (1)2 wn [}\]

Y o I 2w ]

The term, [K]‘I{Q(t)}, is called the pseudo-static response in reference 6.
Hence, if all the modes are used in the last term of equation (10) it is
expressed as

m -;iwit 1 . .
fu(t)} =i£1{{¢}i[e (cos (mdit) Y°i + ;;T(Y°i + ¢iin°i)s1n (mdit))]
1

Tt L g4e T
+ {o},le ;:2’(;;—— sin (mdit) + cos (”dit))]{¢}‘{°°} (12)

i
-cimit (c.w.)z-wd. . T .
+ [e 1 ¥ i sin (w, t) + 2z.w;c0s (0, t))]
{4’}1 w_iT( (_.____mdi_ —) “’d" L3994 wdi {0}1{00}

2 wz
-;iwi(t-f)((tiwi) -
(5=

1t 4
+ {o}l—g e )sin (wy (t-1))
wy; O di i

+ 20 0,08 (wdi(t-rn}n}l{é,.(ﬂ}ar] }

+ kI o)) - k3 teka e

For the undamped case, equation (12) can be easily shown to be equivalent to the
MAM given as

m .o
fult)} = X1 ot -_21{¢}i[(—!-2-)\'i(t)] (13)
1= mi

As shown by equation (13) the MAM uses the modal expansion to approximate the
deviation from a pseudo steady-state response. It can be expected to perform
better than the MDM for low frequency excitation, where the response can track
the 1oad well. The pseudo-static term, by making use of the inverse of the
stiffness matrix of the structure, is a first-order approximation to the flexi-
bility of the higher, neglected modes.
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The force derivative method makes use of the fact that successive integra-
tions by parts of the convolution integral produces terms which are functions of
the natural frequency to successively higher negative powers and terms which, if
all the modes are used in the summation, can be represented by the system mass,
stiffness, and damping matrices and the forcing function and its derivatives.
Hence, higher-order methods can be developed by successively integrating the
convolution integral by parts.

Integrating the convolution integral of equation (10) two more times, one
obtains

_ m 'c‘i“’it 1.,
{u(t)} -izl{ {o} ;Le {cos ‘wdit) + ;E;(Y°i + ;imiYoi)sin (mdit)}]

¢ fo}yle TSL “d‘ S0 (ug ) + cos lug £{+}}{Q]] (14)
w3 i
Tt (mici)zJ”ﬁi T.°
+ {¢},[e -—11(0—-—-—;4———— )sin (md t) + 2¢ w cos (md t))]{¢}i{00}
Wy Wy, i i
1
2
-Z ;0 z.w; (3-425) ..
+ folyle L ‘wd 1 )sin log t) + (1-4z%)cos (mdit))}]{¢}l{oo}

i

L 182 + &t (823-8c)
{_T((—r——)s1n (md t) + ——cos (md t)} Ne } {Q

W d‘. Wy

}(3)

{ } [ft e'Cimi(t"l’)r(l-sC%i’Bc?) ( ( ))
+ {¢}; { sin (o, (t-1
1 (o] mi4 udi di

(8z2-4z )
. gy

cos lug. (t-x)) e} Hatn)} Har

i

2 (1-8z2)
. {4»}‘[“—121{”1{0“)} - ol ST} - {o) t—4—1{¢} Tai)

8;?-4

- {o} [‘—5—]{¢}i {om}“’ }




where
. . . .. (3) (3)
{a(0)} = {q }, {alo)} = {q }, {alo)} = {qz}, and {q(e)} = {q,}

if a1l the modes are used in the modal summation of the last four terms they can
be represented as

It -
i

n
1 ey [—T]m - (K7l (15)
'I
2
n (1-4;°) -1 -1 -1 -1 -1
121 {s },E——-1r——]{ o} = It mka™ - ka7t eatka T ek
- 9q
and

(8c3 -1 -1 -1 -1 -1 -1 -1
{¢} [——5-—-]{1»} = [KIT[CIkI"CcIk] "[clik])™® - X1 *CcIlk] “[mILk]
wy

Using equation (15), equation(14) becomes

m -t;iu)it .
{u(t)} =i{=1{ {};[e {cos (“’d t) + —d-(Y o, + ‘i‘“ivoi)s"‘ (wdit)}]
i
Tt o) T4y

+ {o};Le -211 sin (uy t) + cos (mdit)}ml{oo}] (16)

i

2w
-C 0 t ((ﬂ C') - d .
+ {o}4le LI ‘9—14-{( L ‘: )sin (wdit) + 2g 4 ;c08 (mdit)}]{¢}¥{00}
i d

i

Liw4 (3- 4;2)
(—-—w————)sm (ud t) + (1- 4c1)cos (md t))}]{o} {0 }
(Di di
2 4
1-8¢< + 8¢ (8g3-4z.)
+ {o}; [e e {—1—4-((———d——l)sin (wd t) + ——icos (wd t))}]{¢}}.{00}(3)
9 i
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t, Tqwilt-r) (1 8;i+8;4)
+ {¢}i[f T [ sin (wy (t-1))
0 i

W

(8; -4z ;)
b s (g, (e Do} et} M} + kI o(n))
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Hence, analogous to the MAM for zero damping which retains a first order approx-
1mat1on to %he effect of the neglected modes by the [K]-! Q{(t) or

[e1lo %1s] {Q(t)} term, the FDM offers a second-order approximation to the

neglected modes by including the [K]'l[M][K]'l{Q (t)} or [é][9'4][¢]T{Q (t)}
term. Results of reference 7 indicate that this higher-order-approximation can
significantly reduce the number of modes required for convergence, depending on
the nature of the forcing function. Higher-order approximations than those pre-
sented for the FDM (using four integrations by parts) can be developed by suc-
cesively integrating the convolution integral by parts several more times.

IMPLEMENTATION

The above equations were programmed for beam examples using analytical
expressions for the mode shapes {¢}; and modal displacements and their deri-
vatives. Modal vectors assume 51 equally-spaced points a1ong the 1ength of
beam. Moment and shear forces were calculated from M(t)=EI32U(t)/ax? and
S(t)=EIa3U(t)/ax3 . For most cases a converged solution was assumed to
occur using 30 modes and, hence, a total of 30 modes were used to approximate
expressions such as

30 30
k1! - i£1{¢}i(_i?——){¢}1, k1~ lmaka! - -21{¢}‘(7i1_){¢}1 » ete
p i

Whenever necessary a total of 50 modes is used in the above expressions to
represent a converged solution.

The following section investigates the effect of various forcing functions,
load distributions, and damping levels on the transient response of a uniform
cross-section cantilevered beam, and a uniform simply-supported multispan beam.
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Cantilevered Beam With Tip Loading

The first problem studied is a uniform cantilevered beam under tip loading.
The first 30 natural frequencies of the beam are listed in table 1. The beam is
subjected to various levels of modal damping (same for all modes) and a var1ety
of loading conditions which are described below.

Case 1: Q(T)=1000(T4-T5).- This problem was presented in reference 7 for the
case of zero damping (z=0). The funct1on or one of its derivatives vanishes

af yar1ous times: Q(T)=0 w?sg T=1.0, Q(T) =0 when T=0.8, Q (T)=0 when T=0.6
Q{3)(T)=0 when T=0.4, and Q'4)(T)=0 when T=0.2 and this fact affects the
convergence of the method as will be shown subsequently. As shown in figure 2
for £ =0.05 and T=1.2, the FDM offers an improvement in accuracy of several
orders of magn1tude in the error norm over either the MDM or the MAM methods.
The advantage in using higher-order modal methods (either the MAM or the FDM)
lies in the ability of those methods to approximate the flexibility of the
higher, but neglected, modes with terms which are functions of the stiffness,
mass, and damping matrices and the forcing function and, in the case of FDM, its
derivatives (see for example eqns. 14 and 16). The FDM offers a higher-order
approximation to the neglected modes by the use of additional terms in addition
to the pseudo-static response ([K]-1{Q(t)}). Figure 3 is a plot of the moment
error norm (using 5 modes) as a function of time; at T=1.0, the moment error
norm associated with the MDM is equivalent to the MAM value because at time
T=1.0, Q(T)=0 and there is no difference between MDM and MAM (see eq. 12). A
similar dip in the MAM error occurs at time T=0.8 which corresponds to a time

when Q(T)=0. These narrow regions where there is a sharp increase in solution
accuracy can be anticipated a priori from the zeroes of the forcing function and
its derivatives.

A comparison of displacement, moment, and shear errors for %;=0. and
times T=0.6 and 1.0 are shown in figures 4a and 4b, respectively. The error
associated with the displacements is lowest, the moment errors are greater and
the shear errors are the largest. This occurs because the moments and shears
are functions of successively higher spatial derivatives of the displacements
(ref. 6). When T=0.6 and ¢;=0., the MAM and FDM methods coincide (fig. 4a)

because Q (T)=0. When T=1.0 the MDM and MAM methods coincide (fig. 4b). From
figure 4b, when T=1. and ;=0 the only difference between the MDM and MAM

. 1{e1;{Q(M)} (eq. 16).

Wy

methods and the FDM lies in the term {¢},[

The difference in errors between the methods is less at T=1.0 (Q(T)=0) than at
T=0.6 (fig 4a) where the difference between the methods lies in the

{o}; [ o) {e}; {Q(T)} term. The higher-order terms are functions of the
1

frequencies to successively higher negative exponents and, hence, should have a

negligible effect as higher modes are used providing the time-function term does
not grow proportionally.
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RESULTS AND DISCUSSION

The convergence of each method (number of modes versus accuracy of the
transient response) is measured by using a relative, spatial error norm. The
error norm, e, of an approximation to the displacement vector based on the first
m modes {U}y is given as

T
e = _1_6_}_.{_6_}_ (17)

where

{U}m and {U} represents a converged solution (for most of this study
the first 30 modes are assumed to provide a converged solution). Similarly,
moment and shear error norms are calculated by substituting the moment or shear
response vectors in equation 17.

The effectiveness of the error norm, e, as a measure of accuracy and con-
vergence in quantifying the global error associated with each of the modal
methods is demonstrated for a cantilever beam problem. For this problem
wo = YEI/pAL* and time t is normalized such that T = wgt. Figures la and
1b demonstrate the use of the error norm in describing the accuracy of
displacement and moment distributions for a tip load (Q(T) = 1000(T*-T5)) at a
normalized time T = 0.4 and for z; = 0.05. 1In figure la only one mode is
used, and for the MDM e = 0.045 and displacement errors are noticeable, and MAM
and FDM results having error norms of e = 0.00627 and e = 0.0000317,
respectively, are indistinguishable from the converged solution (MDM(30)).
Similarly, for the normalized moment distribution (fig. 1b) the MDM (using the
first two modes) has an error e = .128, the MAM and FDM (both using only the
first mode) have errors of e = .0379 and e = .00019 respectively. There is a
qualitative improvement in the solution (response distribution) as the error
norm e decreases in magnitude.

The rate of convergence of each of the methods (MDM, MAM, and FDM) is
expected to depend on the nature of the forcing function, the level of damping
and the time at which the response is calculated. The forcing fuctions were
selected to investigate the effects of continuous forcing functions with vanish-
ing higher derivatives at various times ( Q(T) = 1000(T*+-T3) ), the effect of a
discontinuous forcing function, a unit step at t = 0 (Q(T) = u(T)), and the
effects of a sinusoidal forcing function (Q(T)=sin yT). It is assumed that for
all forcing functions Q(T) = 0 for T<0. Several example problems, described
below, were selected to evaluate the accuracy of each method.
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The effect of damping on the accuracy of the response is shown in figures
5a and 5b. Increasing the modal damping % does not always increase the
accuracy of the MAM as suggested in reference 6. For the case studied in refer-
ence 6, a uniformly loaded cantilevered beam subjected to a step loading,the
accuracy of the MAM is enhanced in the presence of damping as can be seen from
equation (16). Since all the derivatives of the forcing function vanish, the
only terms remaining are the pseudo-static response and a term which is a func-

tion of o~"i”it. Hence, as i increases, the relative imPortance
of this term as compared to the pseudo-static term ([K]-1{Q(t)}) decreases and
therefore the accuracy of the MAM increases.

ZC s & .

. . i°1 T .

For other forcing functions, terms such as {¢}i[7;—1_3 {e} ;{Q(t)} increase
i

in importance as % increases and so the effect of & on accuracy is

more complex. For example, the case of a linearly varying forcing function,

Q(t) = t, the damped system response can be represented, assuming zero initial
conditions, as (see eq. (16)):

: 2
{u(t)} = ; {¢};[e [ ¢ )S‘"(”dit)+ Z;imicos(mdit)]{¢}i{00}]

- W

+ [e][27?)[e] 0t} - [¢1[2‘—‘“} [e]" {a(t)]

wj

From this equation, the MAM assumes all the modes are used in the second to last
term and it is represented as the pseudo-static response [K]-1{Q(t)}. The
remaining terms are represented by a truncated modal summation. The first term
decreases exponentially as damping (Cj) increases but the last term increas-

es proportionally to &£;. If the magnitude of this last term does not

decrease with respect to the pseudo-static term the increase in damping will not
necessarily result in an increase in accuracy as in the unit step function case.

Case 2: Q(T) = u(T).- This forcing function is discontinuous at time T=0 and
hence the integration by parts of the convolution integral must begin at a time
T=0*. The MAM and the FDM produce the same results for a step forcing func-
tion because for T>0, Q(T) is constant and all its derivatives vanish (see for
example eq. (16)). As shown in figure 6, the FOM and MAM methods are more accu-
rate than the MDM and require several fewer modes than the MDM for the same
degree of accuracy. Figure 7 is a plot of moment error, using the first 25
modes, as a function of time. Over the time range considered (7=0.001 to 0.01)
the moment errors of FDM and MAM methods are about one-half the magnitude of the
error using the MDM method. Also, as time increases the error associated with
each method for a given number of modes used tends to decrease.

For a discontinuous forcing function, such as a unit step, u(T) at T=0, the
modal method exactly predicts a zero response at time T=0. The MAM and FDM
methods, however, require a summation of all the modes to exactly predict a zero
response. Therefore, the MDM will produce qualitatively better results for
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times near T=0 or close to discontinuities. To calculate the transient response
at very small times a large number of modes is necessary. The MDM using two
modes, qualitatively approximates the displacement distribution with the same
accuracy as the MAM and FDM methods using 17 modes for a unit step loading at
T=.0002 and g = .05 (see fig. 8). Figure 9 shows that the error norm associ-
ated with the MAM and FDM methods is exceedingly large when fewer than about
five modes are used to approximate the response. If a sufficient number of
modes are used to predict the displacement distribution accurately (m > 20) the
FDM and MAM methods appear to give better results.

For cases where the forcing function or its derivatives are discontinuous at
some point other than T=0, the appropriate jump conditions must be included to
use the FDM correctly. The jump conditions are necessary because the integrat-
jon by parts requires the functions and their derivatives to be continuous.

This complicates the implementation of the FDM (integrating-by-parts four times)
for cases where the forcing function is not continuous at least up to its third
derivative. The FDM can be applied up to the point of discontinuity and then
re-started using the proper initial conditions.

Simply-Supported Multispan Beam (10 Spans)

The second problem studied is a uniform multispan beam (10 equal length
spans) subject to two loading distributions and one forcing function. The beam
has a nominal frequency mo=/EI/pAL“ and time, t, is normalized such that
T = wgt. The first 30 natural frequencies of the beam are normalized and
listed in table 2. An analytical solution for the mode shapes and frequencies
of multispan beams was obtained using equations from reference 8. This problem
was selected because the frequencies are closely spaced (in groups equal to the
number of spans (10 in this example)) and the chances of a neglected higher mode
having a considerable effect on the response is increased.

Case 1: Uniformly distributed 1oad with Q(T)=1000(T4-T5).- Figure 10 is a plot
of the moment distribution, normalized to the maximum value of M, of the multi-
span beam at T=1.2 and z;=0.05. The FDM converges using only one mode whereas
the MDM and MAM methods require 30 and 10 modes, respectively for e<.01 . The
moment error norm as a function of the number of modes for T=1.2 is shown in
figure 11. The first nine modes are nearly orthogonal to the uniform load

distribution, hence, the modal load {¢}E{Q(t)} is negligible and has a

negligible effect on the response (fig. 11). The 10th and 30th modes, how-
ever, have an effect on the solution as shown in the figure. The effect of
these higher modes, however, is taken into account to some degree, by the
pseudo-static response (note the MAM curve for m<10) and to a greater degree by
the higher-order approximation of these neglected modes used in the FDM. Hence,
the FOM using only one mode gives a more accurate response than the MDM using 49
modes or the MAM using 9 modes. The moment error norm as a function of time for
each method (using 10 modes) is shown in figure 12. The accuracy of the FDM is
at least two orders of magnitude greater than the MDM and one order of magnitude
greater than the MAM. The MAM and MDM methods are identical at T=1.0 as expect-
ed because Q=0. At T=1.0, the error associated with the MDM decreases an order

of magnitude and that associated with the MAM increases an order of magnitude as
shown.

Case 2: Two concentrated loads equally spaced about the center of the first
span with Q(T)=1000(1°-1°).- For this loading distribution, the solution does
not converge in a step 1ike manner as in figure 11 but does so gradually as
shown in figure 13. This occurs because the loading distribution is not nearly




orthogonal to many mode shapes and hence the associated modal load ({¢}1{Q(T)})

is not negligible as in the previous case and these modes contribute to the
response. Once again, the FDM converges more rapidly than either of the other
methods and is at least an order of magnitude more accurate. The accuracy of
the FDM tends to increase as T increases (fig. 14).

Comparison of Convergence for a Sinusoidal Forcing Function

In this section it is shown that, for the case of a sinusoidal forcing
function, the higher-order modal methods such as FDM converge faster than the
lower-order methods provided that the modal summation encompasses the forcing
function frequency. For a sinusoidal forcing function ({Qg}sinyt) with zero
initial conditions and no damping, the response using the mode-displacement
method (MOM) is:

{¢}i(372){¢}11oo}sfmt Lo} By {o}] {0 ) sinu;t

m
i i
u(t)} = ( - )
tutel] ;=1 (1-r (1-rd

where rj=y/wj. The mode-acceleration method (MAM) form of the response can
be written as:

2

]
! ; {¢}i(5%) (415 {Qglsimt {°}i(£;3){¢}1{00}sinnit

U(t) = |[K - Q SinYt + ( ) )

(oo} = (7 g sime L T o

Comparing the two equations, the last term in the modal summation is exactly the
same, the first term in the modal summation is different and will converge
faster (proportional to ri2) using the MAM provided that rij<l or wj>y.
This is not unreasonable since the frequencies used in the modal summation must
usually encompass the forcing frequency to provide an accurate transient
response. The FDM method, using four integration by parts (eq. 16), results in
the following expression:

4

s I
{o};(—) {e};{Qp}sinvt

1

{un} = (K] Hagpsimt + k17 Mk 2ot simt + T ~
i=1 (1 - ri )

T .
{¢}; (:—‘3) {o}; {Qg)sTmoyt
- L 5 )

The first term in the modal expansion of the FDM converges proportional to
ri* or (y/wi)* and so for rj<l this term converges much faster than the
MDM or MAM methods. The last term, however, in the modal expansion remains
the same for all of the methods.
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CONCLUSIONS

The present study evaluates an improved modal method proposed by Leung- for
transient structural analysis and generalizes it to damped systems. The improv-
ed method, entitled the force-derivative method, is a higher-order method rela-
tive to the mode-displacement or mode-acceleration methods and is based on
repeated integrations by parts of the convolution-integral form of the response.
The repeated integration-by-parts produces terms which give successively better
approximations to the contribution of the higher modes which are neglected in
the modal summation. It is shown that the procedure used for deriving force-
derivative method can be used to derive even higher-order methods and to explain
the lower-order mehtods such as the mode-displacement and mode-acceleration
methods. Comparisons are made of the force-derivative, mode-acceleration and
mode-displacement methods for several numerical example problems for various
times, levels of damping, and forcing functions. The forcing functions were
chosen to study the effects of both continuous and discontinuous forcing func-
tions (with respect to time) and to study what happens when the force or one of
its derivatives vanishes at some point in time. The example problems include a
tip-loaded cantilevered beam and a simply-supported multispan beam (10 equal-
length spans).

In general, the force-derivative method was found to be more accurate than
either the mode-displacement or mode-acceleration methods and results in a con-
verged solution in fewer modes. In addition, for problems in which there are a
large number of closely-spaced frequencies (e.g., large truss-type space struc-
tures and multispan beams) the force derivative method is very effective in rep-
resenting the effect of the important, but otherwise neglected, higher modes.
Results of a sinusoidal forcing function indicate that the higher-order modal
methods will generally converge faster (proportional to the ratio of the forcing
frequency to the natural frequency raised to some power) providing the natural
frequencies are higher than the forcing frequency. This is to be expected since
accuracy suggests that the modal summation include frequencies which encompass
the dominant forcing function frequency components. Convergence of the moments
and shears was found to be slower than convergence of displacements, as expect-
ed, since the former quantities are functions of the spatial derivatives of the
displacements. At response times close to discontinuities in the forcing func-
tion and/or its derivatives, the mode-displacement method qualitatively gives
better results using fewer modes than the mode-acceleration or force-derivative
methods. Implementation of the force-derivative method at the discontinuity
requires the inclusion of the necessary jump conditions. It was also found that
increasing modal damping levels does not always increase the convergence rate of
the mode-acceleration method. The relative importance of damping on the conver-
gence rate of the modal solution is shown to be complex and dependent upon sev-
eral factors including the existence of the derivatives of the forcing function.
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TABLE 1 - NATURAL FREQUENCIES OF A CANTILEVERED BEAM

(wg =4—E-I-4-)

pAL

MODE  |NORMALIZED NATURAL FREQ.
NUMBER w/ug

1 3,51601
2 22,0345
3 61.6972
a 120,902
5 199,860
6 298,556
7 416,991
8 555,165
9 713.079
10 890,732
11 1088.12
12 1305. 26
13 1542,13
14 1798.74
15 2075.08
16 2371.17
17 2687.00
18 3022.57
19 3377.87
20 3752.92
21 4147.70
22 4562, 22
23 4996, 49
24 5450, 49
25 5924.23
26 6417.71
27 6930.93
28 7463.89
29 8016.59
30 8589.02




TABLE 2 - NATURAL FREQUENCIES OF A SIMPLY-SUPPORTED
MULTISPAN BEAM (10 SPANS)

(wo='%)

pAL

MODE NORMALIZED NATURAL FREQ.
NUMBER m/mo
1 9.86960
2 10.1479
3 10.9435
4 12.1691
5 13.6959
6 15,4212
7 17.2490
8 19,0691
9 20,7508
10 21,9115
11 39.4784
12 40,0728
13 41,7202
14 44,1072
15 46,9043
16 49,9649
17 53.1222
18 56.2347
19 58.9525
20 60.9470
21 88.8264
22 89,7765
23 92,2339
24 95.7363
25 99,8682
26 104,248
27 108.879
28 113.289
29 117,133
30 119.972
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