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SUMMARY 

The present study evaluates a higher-order modal method proposed by Leung 
for transient structural analysis entitled the force-derivative method. T h i s  
method repeatedly integrates by parts w i t h  respect t o  time the convolution- 
integral form of the structural response to produce successively better approxi- 
mations to  the contribution of the higher modes which are neglected i n  the modal 
sumnation. Comparisons are made of the force-derivative, the mode-displacement, 
and the mode-acceleration methods for several numerical example problems for  
various times, levels of damping, and forcing functions. The example problems 
i ncl ude a ti p-1 oaded cantilevered beam and a simply-supported mu1 ti span beam. 
The force-derivative method is  shown t o  converge t o  an accurate solution i n  
fewer modes t h a n  either the mode-displ acement or the mode-acceleration methods. 
In addi t ion ,  for  problems i n  which there are a large number of closely-spaced 
f requenci es whose mode shapes have a negl i g i  b l  e contribution t o  the response, 
the force derivative method is  very effective i n  representing the effect of the 
important, bu t  otherwise neglected, higher modes. 



SYMBOLS 2 

cross-sectional area 
dampi ng matr ix  
modul us o f  e l a s t i c i t y  
error norm (see eq. (17) )  
ith modal forc ing funct ion 
moment o f  i n e r t i a  
s t i f f  ness matr i  x 
beam length 
mass matr ix  
bending moment 
number of modes used i n  truncated modal summation 
t o t a l  number o f  degrees o f  freedom 
applied non-dimensional force vector (Q=qL2/EI or  Q=qL3/EI 
applied load 
di  s t r i  buted 1 oad 
frequency r a t i o  

shear force 
t ime 
normalized t i m e  T = w 0 t  
s t ructural  d i  spl acement response vector 
cartesi  an coordi nates 
i th modal d i  spl acement funct ion 

fo rc i  ng frequency 
vector o f  d i f ference between converged response and approximated 
response using m modes 
ith modal viscous damping fac to r  
u n i t  step funct ion 
mass density 
dumny va r i  ab1 e o f  i n teg ra t i on  
ith natural  v i b r a t i o n  mode 
modal m a t r i x  
diag ,w2.. .wnI d i  agonal matr i  x Of 

ith c i r c u l a r  frequency o f  the damped 
i t h  c i r c u l a r  natural  frequenc + 

t l  normalizing frequency w o  =4 -4 
P AL 

c i  r c u l  a r  natural  frequencies 
free v i b r a t i o n  

Subscripts: 
C converged 
m 
0 i n i t i a l  

response using a truncated set o f  modes (1 t o  m) 

SUperscri pts:  

( n l  
d i f f e ren t i a t i on  w i th  respect t o  time 
nth de r i va t i ve  w i th  respect t o  t ime 
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INTRODUCTION 

c 

Dynamic analysis of complicated structures which are modeled as d iscrete 
mu1 ti degree-of-freedom systems often requires the so lut ion o f  very 1 arge systems 
o f  equations. Reducing the order o f  such systems i s  h igh ly  desirable from the 
standpoint o f  increased computational e f f ic iency.  
reducing the order o f  d iscrete mu1 tidegree-of-freedom dynamic systems include 
mass condensation methods ( refs. 1-2) and reduced bas4 s methods ( refs.  3-7 ) . 
The reduced basis methods use the expansion theorem and a truncated set  o f  basis 
vectors (e.g. undamped free-vibrat ion modes (modal methods) or  R i  tz-vectors) t o  
approximate the dynamic response. Some problems such as 1 arge space s t ructures 
requi re a large number o f  basis vectors t o  accurately represent the dynamic 
response and i n  some cases, such as when s i n g u l a r i t i e s  occur i n  the loading, 
convergence o f  a so lut ion i s  not  guaranteed. Also, f o r  problems which requ i re  
the de r i va t i ves  o f  the response with respect t o  a design parameter (e.g. system 
i d e n t i f i c a t i o n  or  opt imizat ion problems) not only i s  the s ize o f  the problem 
increased b u t  the convergence o f  the de r i va t i ve  equation i s  not  general ly 
gua ran teed. 

Some o f  the many methods for  

When a reduced basis method uses the natural  v ib ra t i on  modes o f  the 
s t ruc tu re  the method i s  re fer red t o  as a modal method. Two o f  the most 
widely-used modal methods are the mode-displacement method (MDM) and the 
mode-acceleration method (MAM). Comparisons o f  the MDM and MAM methods ( r e f .  6 )  
i n d i c a t e  t h a t  the MAM converges t o  an accurate so lut ion w i th  fewer modes than 
the MDM. One reason f o r  t h i s  improved convergence i s  t h a t  the MAM incorporates 
a pseudo-static response ( the inverse o f  the s t i f f n e s s  matr ix mu1 t i p 1  i e d  by the 
appl ied f o r c i n g  funct ion) which approximates, t o  some degree, the f l e x i b i l i t y  o f  
the higher modes which are neglected i n  the modal summation. The work o f  
reference 7 reveals t h a t  the MAM method can be derived by integrat ing-by-parts 
w i t h  respect t o  time the convolut ion-integral form o f  the o r ig ina l  MDM method. 
It i s  a lso shown i n  reference 7 t h a t  higher-order modal methods may be obtained 
by f u r t h e r  integration-by-parts. Thus, i n teg ra t i ng  the convolut ion i n t e g r a l  two 
more times produces a higher-order modal method ( re f .  7 )  than the MAM which i s  
c a l l e d  here the force-derivative method (FDM). It i t  called the 
force-der ivat ive method because, analogous t o  the MAM, the FDM produces a term 
which i s  a funct ion o f  the fo rc ing  funct ion and addi t ional  terms which are 
funct ions o f  the t ime-derivatives o f  the fo rc ing  function. These addi t ional  
terms produce successively h i  gher-order approximations t o  the higher, neglected 
modes. It i s  shown t h a t  f o r  the case o f  zero damping the MAM i s  a higher-order 
method than the MDM, and can be derived by i n teg ra t i ng  the convolut ion i n t e g r a l  
by pa r t s  two times. The purpose o f  the present study i s  t o  evaluate the use o f  
higher-order modal methods which have the a b i l i t y  t o  s i g n i f i c a n t l y  reduce the 
number o f  degrees-of-freedom (modes) necessary t o  accurately represent the 
t r a n s i e n t  s t ruc tu ra l  response. The present study extends the work o f  reference 
7 t o  inc lude modal damping and c l a r i f i e s  the r e l a t i o n  o f  the MDM and M A M  t o  the 
FDM. 

The r a t e  o f  convergence or  accuracy o f  each o f  the modal summation methods 
(MDM, MAM, and FDM) i s  invest igated w i th  respect t o  the d i f f e r e n t i a b i l i t y  o f  the 
f o r c i n g  function, the l eve l  o f  damping, and the time a t  which the response i s  
calculated. A re la t i ve ,  spat ia l  er ror  norm i s  used t o  measure accuracy and con- 
vergence o f  the t rans ient  response. The fo rc ing  functions were chosen t o  i l l u s -  
t r a t e  the e f f e c t  o f  a continuous forc ing funct ion (wi th respect t o  time) which 
has continuous higher der ivat ives and a discontinuous forc ing funct ion ( a  u n i t  
step funct ion)  on the solut ion. A qu in t i c  funct ion of time was selected t o  
i l l u s t r a t e  what happens when the force o r  one o f  i t s  der ivat ives vanish a t  some 
p o i n t  i n  time. The convergence f o r  a sinusoidal f o rc ing  funct ion i s  also 
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studied. A series o f  numerical examples has been selected t o  i l l u s t r a t e  the 
adequacy and/or inadequacy of each method: (1) a uniform cant i levered beam sub- 
j e c t  t o  a t i p  loading condi t ion of (a)  a u n i t  step load input, and (b) a q u i n t i c  
funct ion o f  t ime ;  and ( 2 )  a simply-supported multispan beam (10 equal length 
spans) subjected t o  (a) a uniformly d i s t r i b u t e d  load varying as a q u i n t i c  
f unc t i on  o f  t i m e  and b) two concentrated loads located about the center o f  the 
f i r s t  span and varying as a q u i n t i c  funct ion o f  time. 

UNIFIED DERIVATION OF MODAL METHODS 
* 

The equations o f  motion, i n  matr ix  form, of an n-degree o f  freedom system, 
together with the i n i t i a l  conditions, are given by 

where [MI ,  [C], and [K] are the mass, damping, and s t i f f n e s s  matrices o f  the 
structure;  U( t) and Q(t) are the displacement and force vectors, respect ively,  
and a dot represents d i f f e r e n t i a t i o n  w i t h  respect t o  time. For c e r t a i n  forms o f  
[C], equation (1) can be transformed i n t o  a se t  o f  uncoupled equations o f  motion 
using the undamped normal modes, 
theorem, namely, by 

o f  the s t ructure and the expansion 

where the natural v ib ra t i on  modes (+}i are obtained from the so lu t i on  o f  the 

f o l  1 owi ng e i  genval ue probl em 

[ K l {  +)  i= ":[MI{ +) 

The modes { + }  i may be normal i t e d  such t h a t  

T 2 = 1. and then {+}i[KI{4}i= wi 

Using the modal matr ix [@I which contains a l l  n mod,, equ 
w r i t t e n  as 

[ o l T I M l [ o l  = [I] and [o lT IK I [o l  = Cn21 

( 3 )  

t i ons  4(a) can be 

(4b) 

I n  modal coordinates, equation (1) can be expressed 



where the i t h  modal force F i ( t ) *  i s  defined by 

Fi( t )  = {+}; {Q( t ) )  

and s i  i s  the ith modal viscous damping factor.  

The mode-di spl acement method (MDM) calculates m-Val ues o f  Y i  ( t) by sol v- 
i n g  the f i r s t  m-equations (eq. 5 )  and subs t i t u t i ng  t h i s  i n t o  a truncated form o f  
equation (2 1. 

m 

i = l  
where m < n { u ( t ) )  = 1 { + } i Y i ( t )  - 

where 

S u b s t i t u t i n g  equation ( 8 )  i n t o  equation (7 )  gives 

Equation (9) i s  an equivalent representation o f  the MDM. I n teg ra t i ng  the convo- 
l u t i o n  i n t e g r a l  o f  equation (9) by par ts  twice w i t h  respect t o  time and assuming 
the  f o r c i n g  funct ion and i t s  f i r s t  de r i va t i ve  are continuous over the i n t e r v a l  
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gives 

T .. 

I f  the fo rc ing  funct ion o r  i t s  f i r s t  de r i va t i ve  were discontinuous a t  some p o i n t  
i n  t ime the appropriate jump condi t ions would have t o  be included i n  
equation (10). 

I f  a l l  the modes are used i n  ca l cu la t i ng  the l a s t  two terms o f  equation 
(10) these terms can be represented as 

(11) 
and simi 1 a r l y  

where [a] i s  the complete (nxn) matr ix  o f  eigenvectors and [ Q - ~ ]  i s  the 
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diagonal mat r ix  ET, 1 1  7, 1 and c- 2Ciwi] i s  the diagonal mat r ix  

w2 "'n ui 

The term, [K]-'{ Q( t)) , i s  ca l l ed  the pseudo-static response i n  reference 6. 
Hence, i f  a l l  the modes are used i n  the l a s t  term o f  equation (10) i t  i s  
expressed as 

* .. 

+ [K]'l{Q( t)) - [K]"CCl[KI-1{6(t)} 

For the undamped case, equation (12) can be eas i l y  shown t o  be equivalent t o  the 
MAM given as 

As shown by equation (13) the MAM uses the modal expansion t o  approximate the 
dev ia t ion  from a pseudo steady-state response. It can be expected t o  perform 
b e t t e r  than the  MDM f o r  low frequency exc i ta t ion,  where the response can t rack  
the load we l l .  The pseudo-static term, by making use o f  the inverse o f  the 
s t i f fness mat r ix  of the structure,  i s  a f i r s t - o r d e r  approximation t o  the f lex3 
b i l  i ty o f  the higher, neglected modes. 
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The force der ivat ive method makes use Of the fac t  t h a t  successive integra- 
t i ons  by par ts  o f  the convolut ion i n teg ra l  produces terms which are functions of 
the natura l  frequency t o  successively higher negative powers and terms which, i f  
a l l  the modes are used i n  the summation, can be represented by the system mass, 
s t i f f ness ,  and damping matrices and the forc ing funct ion and i t s  der ivat ives.  
Hence, h i  gher-order methods can be devel oped by successively i n teg ra t i ng  the 
convol u t i o n  in tegra l  by parts. 

obtains 
In tegra t ing  the convolut ion i n teg ra l  Of equation (10) two more times, one 

*i 
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where 
(3 1 (3 1 

= {(Io} {Q(o)) = {(Io}, {&)I  = {io). {6)} = ti:}, and {Q(o)) 

if a l l  the modes are used i n  the modal summation o f  the l a s t  f ou r  terms they can 
be represented as 

1 

i 

n c I+I~[~II+I: = ['I-' 
i =1 w 
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Hence, analogous t o  the MAM f o r  zero damping which re ta ins  a f i r s t  order approx- 
imat ion t o  he e f f e c t  o f  the neglected modes by the [K]'' Q ( t )  o r  
[ o ] [ ~ - ~ ] [ o ]  {Q(t)} term, the FDM o f f e r s  a second-order approximation t o  the 

neglected modes by including the [K I - l LMI IK I  { Q ( t ) }  o r  [ol[n'41~olT{ 4 '  ( t)) 
term. Results o f  reference 7 i nd i ca te  t h a t  t h i s  higher-order-approximation can 
s i g n i f i c a n t l y  reduce the number o f  modes required f o r  convergence, depending on 
the nature o f  the forc ing function. 
sented f o r  the FDM (using four  in tegrat ions by par ts)  can be developed by suc- 
ces i  ve ly  i ntegrat i  ng the convol u t i o n  i n teg ra l  by par ts  several more times. 

4 
-1 * *  

Higher-order approximations than those pre- 

I MP L E ME NT AT I ON 

The above equations were programed f o r  beam examples using ana ly t i ca l  
expressions f o r  the mode shapes {I)} 
vatives. Modal vectors assume 51 equally-spaced points  along the l e n  t h  o f  
beam. Moment and shear forces were calculated from 
S(t)=EIa3U(t)/ax3 . For most cases a converged so lut ion was assumed t o  
occur using 30 modes and, hence, a t o t a l  o f  30 modes were used t o  approximate 
expressions such as 

and modal displacements and t h e i r  der i -  

M( t)=EIa2U( t ) / a x  B and 

Whenever necessary a t o t a l  of 50 modes i s  used i n  the above expressions t o  
represent a converged solut ion. 

The fol lowing section invest igates the e f f e c t  o f  various fo rc ing  functions, 
load d is t r ibut ions,  and damping l e v e l s  on the t rans ient  response o f  a uniform 
cross-section cant i  levered beam, and a uniform simply-supported mu1 t ispan beam. 
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Canti 1 evered Beam W i  t h  T i  p Loadi ng 

The f i r s t  problem studied i s  a uniform cant i levered beam under t i p  loading. 
The f i r s t  30 natural  frequencies o f  the beam are l i s t e d  i n  tab le 1. The beam i s  
subjected t o  various l eve l s  of modal damping (same f o r  a l l  modes) and a va r ie t y  
of 1 oadi ng condi t S  ons which are described bel  ow. 

Case 1: Q(T)=1000(T4-T5).- This problem was presented i n  reference 7 f o r  the 
case o f  zero damping (c i=O) .  The function or  one o f  i t s  der ivat ives vanishes 

a ar ious times: Q(T)=O w t t y  T=1.0, Q(T)=O when T=0.8, Q (T)=O when T=0.6 
Qt3r(T)=0 when T=0.4, and Q (T)=O when T=0.2 and t h i s  f a c t  a f fec ts  the 
convergence o f  the method as w i l l  be shown subsequently. As shown i n  f i g u r e  2 
f o r  ~; i=0.05 and T ~ 1 . 2 ,  the FDM o f fe rs  an improvement i n  accuracy o f  several 
orders o f  magnitude i n  the e r ro r  norm over e i t h e r  the MDM o r  the MAM methods. 
The advantage i n  using higher-order modal methods ( e i t h e r  the MAM o r  the FDM) 
l i e s  i n  the a b i l i t y  o f  those methods t o  approximate the f l e x i b i l i t y  o f  the 
higher, bu t  neglected, modes w i t h  terms which are functions o f  the s t i f f n e s s ,  
mass, and damping matrices and the forc ing funct ion and, i n  the case o f  FDM, i t s  
de r i va t i ves  (see f o r  example eqns. 14 and 16). The FDM o f f e r s  a higher-order 
approximation t o  the neglected modes by the use o f  addi t ional  terms i n  addi t ion 
t o  the pseudo-static response ( [K] ' l {Q(t)}  1. Figure 3 i s  a p l o t  o f  the moment 
e r r o r  norm (using 5 modes) as a function o f  time; a t  T=1.0, the moment e r ro r  
norm associated w i th  the MDM i s  equivalent t o  the MAM value because a t  t ime 
T=1.0, Q(T)=O and there i s  no dif ference between MDM and MAM (see eq. 12). A 
s i m i l a r  d i p  i n  the MAM e r ro r  occurs a t  t ime T=0.8 which corresponds t o  a t i m e  

when Q(T)=O. These narrow regions where there i s  a sharp increase i n  so lut ion 
accuracy can be ant ic ipated a p r i o r i  from the zeroes o f  the forc ing funct ion and 
i t s  d e r i  v a t i  ves. 

a e .  

A comparison o f  displacement, moment, and shear er rors  for  ci=O. and 
times T=0.6 and 1.0 are shown i n  f igures 4a and 4b, respectively. The e r r o r  
associated with the displacements i s  lowest, the moment er rors  are greater and 
the shear e r ro rs  are the largest.  Thio ~ e e i i r o  because the mneiiio ai16 shears 
are functions o f  success4 vely higher spa t ia l  der3 v a t i  ves of the d i  spl  acements 
( r e f .  6). 

because Q (T)=O. When T=1.0 the MDM and MAM methods coincide ( f i g .  4b). From 
f i g u r e  4b, when T=l. and Ci=O the only d i f ference between the MDM and MAM 

When T~0.6 and Ci=O.,  the MAM and FDM methods coincide ( f i g .  4a) .. 

1 T * *  

wi 

methods and the FDM l i e s  i n  the term{+}i[-4]{+}i{Q(T)} (eq. 16). 

The d i f ference i n  er rors  between the methods i s  less a t  T=1.0 (Q(T)=O) than a t  
T=0.6 ( f i g  4a) where the d i f ference between the methods l i e s  i n  the 

1 T 
{+}  i[-2]{+} i{ Q(T)} term. The higher-order terms are functions o f  the 

frequencies t o  successively higher negative exponents and, hence, should have a 
n e g l i g i b l e  e f f e c t  as higher modes are used providing the t ime-function term does 
n o t  grow propor t ional ly .  
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RESULTS AND DISCUSSION 

The convergence o f  each method (number of modes versus accuracy o f  the 
t r a n s i e n t  response) i s  measured by using a re la t i ve ,  spat ia l  e r r o r  norm. The 
e r r o r  norm, e, o f  an approximation t o  the displacement vector based on the f i r s t  
m modes { U)m i s  given as 

= d e  C 
(17) 

where 

{ U), and { U } c  represents a converged so lut ion ( f o r  most o f  t h i s  study 
the f i r s t  30 modes are assumed t o  provide a converged solut ion).  
moment and shear e r ro r  norms are calculated by subs t i t u t i ng  the moment or shear 
response vectors i n  equation 17. 

S im i la r l y ,  

The effect iveness o f  the e r ro r  norm, e, as a measure o f  accuracy and con- 
vergence i n  quant i fy ing the global e r ro r  associated w i th  each o f  the modal 
methods i s  demonstrated f o r  a can t i l eve r  beam problem. 
w 0  = JEI/pAL4 and time t i s  normalized such t h a t  T = wet. Figures l a  and 
l b  demonstrate the use o f  the e r ro r  norm i n  describing the accuracy o f  
displacement and moment d i s t r i b u t i o n s  f o r  a t i p  load (Q(T) = lOOO(T4-Ts)) a t  a 
normalized t i m e  T = 0.4 and f o r  s i  = 0.05. I n  f i g u r e  l a  only one mode i s  
used, and f o r  the MDM e = 0.045 and displacement er rors  are noticeable, and MAM 
and FDM r e s u l t s  having e r ro r  norms o f  e = 0.00627 and e = 0.0000317, 
respect ively,  are ind is t inguishable f r o m  the converged so lut ion (MDM(30)). 
S im i la r l y ,  f o r  the normalized moment d i s t r i b u t i o n  ( f i g .  l b )  the MDM (using the 
f i r s t  two modes) has an e r r o r  e = .128, the MAM and FDM (both using only the 
f i r s t  mode) have errors  o f  e = .0379 and e = .00019 respectively. There i s  a 
qual i t a t i v e  improvement i n  the so lut ion (response d i s t r i b u t i o n )  as the e r r o r  
norm e decreases i n  magnitude. 

The r a t e  o f  convergence o f  each o f  the methods (MDM, MAM, and FDM) i s  
expected t o  depend on the nature o f  the forc ing function, the l e v e l  o f  damping 
and the time a t  which the response i s  calculated. The fo rc ing  fuc t i ons  were 
selected t o  invest igate the ef fects  o f  continuous forc ing funct ions wi th vanish- 
i n g  higher der ivat ives a t  various times ( Q(T) = 1000(T'+-T5) ), the e f f e c t  o f  a 
discontinuous forcing function, a u n i t  step a t  t = 0 (Q(T) = v (T ) ) ,  and the 
e f f e c t s  o f  a sinusoidal f o rc ing  function (Q(T)=sin yT). It i s  assumed t h a t  f o r  
a l l  f o r c i n g  functions Q(T) = 0 f o r  TcO. Several example problems, described 
below, were selected t o  evaluate the accuracy o f  each method. 

For t h i s  problem 
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The e f f e c t  o f  damping on the accuracy of the response i s  shown i n  f i gu res  
Increasing the modal damping c i  does not always increase the 5a and 5b. 

accuracy of the MAM as suggested i n  reference 6. For the case studied i n  refer-  
ence 6, a uniformly loaded canti levered beam subjected to a step loadingsthe 
accuracy of the MAM i s  enhanced i n  the presence o f  damping as can be seen from 
equation (16). Since a l l  the der ivat ives o f  the forc ing funct ion vanish, the 
only  terms remaining are the pseudo-static response and a term which i s  a func- 
t i o n  o f  -'?it. Hence, as s i  increases, the r e l a t i v e  i m  ortance 

therefore the accuracy o f  the MAM increases. 
o f  t h i s  term as compared t o  the pseudo-static term ([K]' P { Q ( t ) } )  decreases and 

2s i o  i T '  For o ther  forc ing functions, terms such as {+}  i[---63 { Q }  t)) increase 

i n  importance as 
more complex. 
Q (  t) = t, the damped system response can be represented, assuming zero i n i t i a l  
condi t ions,  as (see eq. (16)): 

increases and so the e f f e c t  o f  5 i  on accuracy i s  
For example, the case o f  a l i n e a r l y  varying fo rc ing  function, 

i = l  

i w 

From t h i s  equation, the MAM assumes a l l  the modes are used i n  the second t o  l a s t  
term and i t  i s  represented as the pseudo-static response [ K ] ' l { Q ( t ) ) .  The 
remaining terms are represented by a truncated modal summation. The f i r s t  term 
decreases exponential ly as damping ( C j )  increases but the l a s t  term increas- 
es p ropor t i ona l l y  t o  Z i .  I f  the magnitude o f  t h i s  l a s t  term does not  
decrease with respect t o  the pseudo-static term the increase i n  damping w i l l  no t  
necessar i ly  r e s u l t  i n  an increase i n  accuracy as i n  the u n i t  step funct ion case. 

Case 2: Q ( T )  = v(T).- This fo rc ing  funct ion i s  discontinuous a t  t ime T=O and 
hence the i n teg ra t i on  by par ts  o f  the convolut ion i n teg ra l  must begin a t  a t ime 
T=O+. The MAM and the FDM produce the same resu l t s  f o r  a step f o r c i n g  func- 
t i o n  because f o r  T>O, Q(T )  i s  constant and a l l  i t s  der ivat ives vanish (see f o r  
example eq. (16)). As shown i n  f igure 6, the FDM and MAM methods are more accu- 
r a t e  than the MDM and require several fewer modes than the MOM f o r  the same 
degree o f  accuracy. Figure 7 i s  a p l o t  o f  moment error, using the f i r s t  25 
modes, as a funct ion o f  time. Over the time range considered (T=0.001 t o  0.01) 
the moment e r ro rs  o f  FDM and MAM methods are about one-half the magnitude o the 
e r r o r  using the MDM method. Also, as t ime increases the e r r o r  associated w t h  
each method f o r  a given number o f  modes used tends t o  decrease. 

For a discontinuous forc ing function, such as a u n i t  step, p ( T )  a t  T=O 
modal method exact ly predic ts  a zero response a t  time T=O. The MAM and FDM 
methods, however, require a summation o f  a l l  the modes to exact ly p r e d i c t  a 
response. Therefore, the MDM w i l l  produce q u a l i t a t i v e l y  b e t t e r  r e s u l t s  f o r  

the 

zero 
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times near T=O or close t o  d iscont inu i t ies.  
a t  very small times a large number o f  modes i s  necessary. The MDM using two 
modes, qual i t a t i v e l y  approximates t h e  displacement d i s t r i b u t i o n  w i th  the same 
accuracy as the MAM and FDM methods using 17 modes f o r  a u n i t  step loading a t  
T=.0002 and <i = .05 (see f i g .  8) .  
ated w i t h  the MAM and FDM methods i s  exceedingly large when fewer than about 
f i v e  modes are used t o  approximate the response. I f  a s u f f i c i e n t  number o f  
modes are used t o  predic t  the displacement d i s t r i b u t i o n  accurately (m > 20) the 
FDM and MAM methods appear t o  give be t te r  resul  ts. 

some p o i n t  other than T=O, the appropriate jump condi t ions must be included t o  
use the FDM correct ly .  The jump condit ions are necessary because the i n teg ra t -  
i o n  by par ts  requires the funct ions and t h e i r  der ivat ives t o  be continuous. 
This complicates the implementation o f  the FDM ( integrat ing-by-parts fou r  times) 
f o r  cases where the forc ing funct ion i s  not continuous a t  l e a s t  up t o  i t s  t h i r d  
der ivat ive.  
re -s ta r ted  using the proper i n i t i a l  conditions. 

To ca lcu late the t rans ien t  response 

Figure 9 shows t h a t  the e r ro r  norm associ- 

For cases where the forc ing funct ion o r  i t s  der ivat ives are discontinuous a t  

The FDM can be appl ied up t o  the po in t  o f  d i scon t inu i t y  and then 

Simply-Supported Mu1 ti span Beam (10 Spans) 

The second problem studied i s  a uniform multispan beam (10 equal length 
spans) subject  t o  two l oad in  d i s t r i b u t i o n s  and one fo rc ing  function. The beam 
has a nominal frequency w0- P-- EI/pAL4 and time, t, i s  normalized such t h a t  
T = wet. 
l i s t e d  i n  tab le  2. 
o f  mult ispan beams was obtained using equations from reference 8. This problem 
was selected because the frequencies are c losely spaced ( i n  groups equal t o  the 
number o f  spans (10 i n  t h i s  example)) and the chances o f  a neglected higher mode 
having a considerable e f f e c t  on the response i s  increased. 

The f i r s t  30 natural frequencies o f  the beam are normalized and 
An analy t ica l  so lu t ion f o r  the mode shapes and frequencies 

Case 1: Uniformly d i s t r i b u t e d  load w i t h  Q(T)=lOOO(P-T5).- Figure 10 i s  a p l o t  
of the moment d i s t r i bu t i on .  normalized t o  the maximum value o f  M, o f  the m u l t i -  
span beam a t  T=1.2 and <i=0.05. The FDM converges using only one mode whereas 
the MDM and MAM methods require 30 and 10 modes, respect ively f o r  e<.01 . The 
moment e r r o r  norm as a funct ion o f  the number o f  modes f o r  T=1.2 i s  shown i n  
f i g u r e  11. The f i r s t  nine modes are nearly orthogonal t o  the uniform load 

d i s t r i b u t i o n ,  hence, the modal load {+ } i {Q( t ) }  i s  n e g l i g i b l e  and has a 
n e g l i g i b l e  e f f e c t  on the response ( f i g .  11). The loth and 30th modes, how- 
ever, have an e f f e c t  on the so lu t i on  as shown i n  the f igure.  The e f f e c t  o f  
these higher modes, however, i s  taken i n t o  account t o  some degree, by the 
pseudo-static response (note the MAM curve f o r  m<10) and t o  a greater degree by 
the higher-order approximation o f  these neglected modes used i n  the FDM. Hence, 
the FDM using only one mode gives a more accurate response than the MDM using 49 
modes o r  the MAM using 9 modes. The moment e r r o r  norm as a funct ion o f  time f o r  
each method (using 10 modes) i s  shown i n  f i g u r e  12. The accuracy o f  the FDM i s  
a t  l e a s t  two orders o f  magnitude greater than the MDM and one order o f  magnitude 
greater than the MAM. The MAM and MOM methods are i d e n t i c a l  a t  T=1.0 as expect- 
ed because Q=O. A t  T=1.0, the e r r o r  associated w i th  the MDM decreases an order 
o f  magnitude and tha t  associated w i th  the MAM increases an order o f  magnitude as 
shown. 

Case 2: 

not  converge i n  a step l i k e  manner as i n  f i g u r e  11 but does so gradually as 
shown i n  f i g u r e  13. 

T 

Two concentrated loads equal ly spaced about the center o f  the f i r s t  ; 
This occurs because the loading d i s t r i b u t i o n  i s  not nearly 
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. 

orthogonal to many mode shapes and hence the associated modal load ( { + } i { Q ( T ) } )  
i s  no t  n e g l i g i b l e  as i n  the previous case and these modes contr ibute to the 
response. Once again, the FDM converges more rap id ly  than e i t h e r  o f  the other  
methods and i s  a t  l e a s t  an order o f  magnitude more accurate. The accuracy o f  
the FDM tends to increase as T increases ( f i g .  14). 

Comparison o f  Convergence for a Sinusoidal Forcing Function 

I n  t h i s  section i t  i s  shown that, f o r  the case o f  a sinusoidal f o rc ing  
function, the higher-order modal methods such as FDM converge faster  than the  
lower-order methods provided that the modal summation encompasses the fo rc ing  
func t i on  frequency. For a sinusoidal f o rc ing  funct ion ({  Qo} s iny t )  wi th  zero 
i n i  ti a1 condi ti ons and no damping, the response us i  ng the mode-di spl acement 
method (MDM) i s :  

where r i y /u i .  The mode-acceleration method (MAM) form o f  the response can 
be w r i t t e n  as: 

Comparing the two equations, the l a s t  term i n  the modal summation i s  exactly the 
same, the f i r s t  term i n  the modal summation i s  d i f f e r e n t  and w i l l  converge 
f a s t e r  !proport!anal t o  r;*) using the PAM provided t h a t  r;<l o r  q > ~ .  
This  i s  not  unreasonable since the frequencies used i n  the modal summation must 
usual l y  encompass the f o r c i  ng frequency t o  prov i  de an accurate t rans ient  
response. The FDM method, using four i n teg ra t i on  by parts (eq. 161, r e s u l t s  i n  
the fo l l ow ing  expression: 

4 r, 

(1 - riL) 

The f i r s t  term i n  the modal expansion o f  the FDM converges proport ional t o  
ri4 o r  (y/oi) '+ and so f o r  ri<l t h i s  term converges much fas te r  than the 
MDM o r  MAM methods. The l a s t  term, however, i n  the modal expansion remains 
the same f o r  a l l  o f  the methods. 
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CONCLUSIONS 

The present study evaluates an improved modal method proposed by Leung for 
t rans ien t  s t ructura l  analysis and generalizes i t  t o  damped systems. The improv- 
ed method, e n t i t l e d  the force-der ivat ive method, i s  a higher-order method re la-  
ti ve t o  the mode-di spl acement o r  mode-accel e r a t i  on methods and i s  based on 
repeated integrat ions by par ts  o f  the convol u t i on - in teg ra l  form o f  the response. 
The repeated i n t e g r a t i  on-by-parts produces terms which give successively b e t t e r  
approximations t o  the contr ibut ion o f  the higher modes which are neglected i n  
the modal summation. It i s  shown t h a t  the procedure used f o r  de r i v ing  force- 
de r i va t i ve  method can be used t o  derive even higher-order methods and t o  expla in  
the 1 ower-order mehtods such as the mode-di spl acement and mode-accel e r a t i  on 
methods. Comparisons are made o f  the force-derivative, mode-acceleration and 
mode-di spl acement methods f o r  several numerical example problems f o r  various 
times, l eve l s  of  damping, and fo rc ing  functions. The fo rc ing  funct ions were 
chosen t o  study the e f fec ts  o f  both continuous and discontinuous fo rc ing  func- 
t i o n s  ( w i t h  respect t o  time) and t o  study what happens when the force o r  one o f  
i t s  der ivat ives vanishes a t  some po in t  i n  time. 
t ip- loaded canti levered beam and a simply-supported mu1 t ispan beam (10 equal- 
1 ength spans). 

The example problems include a 

I n  general, the force-der ivat ive method was found t o  be more accurate than 
e i t h e r  the mode-di splacement o r  mode-accel e ra t i on  methods and resul  t s  i n  a con- 
verged so lut ion i n  fewer modes. I n  addi t ion,  f o r  problems i n  which there are a 
1 arge number o f  c l  osely-spaced frequencies (e. g . , 1 arge truss- type space struc- 
tures and multispan beams) the force de r i va t i ve  method i s  very e f f e c t i v e  i n  rep- 
resent ing the e f f e c t  o f  the important, bu t  otherwise neglected, higher modes. 
Results o f  a sinusoidal f o rc ing  funct ion i nd i ca te  t h a t  the higher-order modal 
methods w i l l  generally converge fas te r  (proport ional  t o  the r a t i o  o f  the fo rc ing  
frequency t o  the natural frequency ra ised t o  some power) providing the natural  
frequencies are higher than the fo rc ing  frequency. This i s  t o  be expected since 
accuracy suggests t h a t  the modal sumnati on i ncl  ude frequencies which encompass 
the dominant forc ing funct ion frequency components. Convergence o f  the moments 
and shears was found t o  be slower than convergence o f  displacements, as expect- 
ed, since the former quan t i t i es  are functions o f  the spat ia l  der ivat ives o f  the 
displacements. A t  response times close t o  d i scon t inu i t i es  i n  the fo rc ing  func- 
ti on and/or i t s  deri  v a t i  ves, the mode-di spl  acement method qual i t a t i  vely g i  ves 
b e t t e r  r e s u l t s  using fewer modes than the mode-acceleration o r  force-der ivat ive 
methods. 
requires the inclusion o f  the necessary jump condit ions. It was also found t h a t  
increasing modal damping l e v e l s  does not always increase the convergence r a t e  o f  
the mode-acceleration method. The re1 a t i v e  importance o f  damping on the conver- 
gence r a t e  o f  the modal so lu t ion i s  shown t o  be complex and dependent upon sev- 
e r a l  factors including the existence o f  the der ivat ives o f  the f o r c i n g  function. 

Implementation o f  the force-der ivat ive method a t  the d i scon t inu i t y  
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TABLE 1 - NATURAL FREQUENCIES OF A CANTILEVERED BEAM 

MODE 
NWBER 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21  
22 
23 
24 
25 
26 
27 
28 
29 
30 

ORMALIZED NATURAL FREO. 
w loo 

3.51601 
22.0345 
61.6972 

120.902 
199.860 
298.556 
416.991 
555.165 
713.079 
890.7 32 

1088.12 
1305.26 
1542.13 
1798.74 
2075.08 
2371.17 
2687.00 
3022.57 
3377.87 
3752.92 
4147.70 
4562.22 
4996.49 
5450.49 
5924.23 
6417.71 
6930.93 
7463.89 
8016.59 
8589.02 

. 
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TABLE 2 - NATURAL FREQUENCIES OF A SIMPLY-SUPPORTED 

MULTISPAN BEAM (10 SPANS) 

MODE 
NlMBER 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

NORMALIZED NATURAL FREQ. 
w /uo 

9.86960 
10.1479 
10.9435 
12.1691 
13.6959 
15.4212 
17.2490 
19.0691 
20.7508 
21.9115 
39.4 784 
40.0728 
41.7202 
44.1072 
46.9043 
49.9649 
53.1222 
56.2347 
58.9525 
60.9470 
88.8264 
89.7765 
92.2339 
95.7363 
99.8682 

104.248 
108.879 
113.289 
117.133 
119.972 

\ 
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a )  Displacement d is t r ibut ion  

Figure 1.- Representation of displacement and moment errors i n  a cant i levered 
beam with t i p  loading using error  norm e (Q(T) - 1000(T4-TS), 
T = 0.4 and g i  - 0.05). 
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Figure 1.- Concluded. 
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Figure 2.- Comparison of moment errors o f  a canti levered beam subject t o  a t i p  
load Q(T)  = 1 0 0 0 ( ~ - T S )  (T=1.2 and c i  = 0.05) using three 
d i f fe rent  modal methods. 
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Figure 3.- Variation o f  moment errors as a function o f  time, using 5 modes i n  
the modal summation. Cantilevered beam with a t i p  load 
Q ( T )  = 1 0 0 0 ( ~ 4 - ~ 5 )  (ri = 0.05). 
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- M - moment 

Figure 4.- Comparison of displacement, moment, and shear errors of a 
canti levered beam using three di f ferent  modal methods (ti = 0. 
and t i p  load Q(T) = lOOO(T"-T5)). 
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Figure 5.- Conparison o f  shear errors of a canti levered beam f o r  various 
damping levels ( t i p  load Q(T) = 1000 (T4-TS). 
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Figure 6.- Conparison o f  moment errors of canti levered beam subject t o  a u n i t  

step t i p  load Q(T)  = u ( T )  (T = 0.01) and c i  = 0.05) using t h e  
d i f ferent  modal methods. 
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Figure 7.- Variation o f  moment errors as a function o f  time , assuming 25 modes 

are used i n  the modal summation,for a cantilevered beam wi th  a u n i t  
step t i p  load Q(T) = p(T)  ( c i  = 0.05). 
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Figure 8.- Displacement d ist r ibut ion i n  a uniform canti levered beam with a u n i t  

step t i p  loading a t  time T = 0.0002 (Q(T)  = v ( T )  and 
t i  = 0.05). 
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Figure 9.- Comparison o f  displacement errors o f  uniform canti levered beam 
subject t o  a u n i t  step t i p  load a t  time T = 0.0002 (Q(T) = u(T)  and 
t i  = 0.05). 
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Figure 10.- Comparison o f  normalized moment d ist r ibut ions along a 
simply-supported nu1 tispan beam (ten equally-spaced spans) and a 
uniformly d ist r ibuted load Q(T)  = 1000 (T4-T5) (T = 1.2 and = 
0.05) . 
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Figure 11.- Comparison of  moment errors of  a simply-supported mil t ispan beam 
(ten equally-s aced spans) subject t o  a uniformly d ist r ibuted load 
Q(T) = 1000 (J-T5) (T. = 1.2 and c i  = 0.05). 
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Figure 12.- Variations of  moment errors as a function of time, using ten modes 
i n  t h e  modal summation, f o r  a simply-supported m l t i s p a n  beam ( ten  
equal ly-spaced s ans) subject t o  a uniformly-distr i  buted load 
Q ( T )  = 1000(T4-T ) ( t i  = 0.05). t 
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Figure 13.- Comparison o f  moment errors of a simply-supported multispan beam 

(ten equal ly-spaced spans) subject t o  two concentrated loads spaced 
about the center of the f i r s t  span and varying as 
Q(T) 1000(T4-T5) ( T  = 0.4 and t i  = 0.05). 
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Figure 14.- Variation of moment errors as a function o f  time, using 10 modes i n  

the modal sunmation, f o r  simply-supported multispan beam (ten 
equal ly-spaced spans) subject t o  two concentrated loads spaced 
about the  center of the f i r s t  span and varying as 
Q(T) = 1000(T4-~~)  (ci = 0.05). 
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