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Abstract 

The first human-powered flight was achieved by a canard-configured air

craft (Wright Brothers). Although other canard concepts were flown with 

varying degrees of success over the years, the tail-aft configuration has 

dominated the aircraft market for both military and civil use. This paper 

reviews the development of several canard aircraft with emphasis on stability 

and control, handling qualities, and operating problems. The results show 

that early canard concepts suffered adversely in flight behavior because of a 

lack of understanding of the sensitivities of these concepts to basic stabil

ity and control principles. Modern canard designs have been made competitive 

with tail-aft configurations by using appropriate handling qualities design 

criteria. 

Introduction 

A wide variety of canard designs have been proposed and flown over the 

years with varying degrees of success. 1 Recently, the canard arrangement has 

Presented at AIAA 12th Atmospheric Flight Mechanics Conference, 
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shown a sharp rise in popularity, starting in the horne-built (experimental 

category) and carrying on to military fighters and short-haul commuter 

designs. There may be several reasons for a change in popularity of a partic-

ular aerodynamic concept, including (1) the potential for increased perfor-

mance in terms of an expanded high/low speed operating range or increased 

maneuverability (tied in with mission requirements); (2) newly available 

structural materials that favor a specific design layout (use of aeroelasti-

cally tailored composites); and (3) potential improvements in handling quali-

ties for safer operating characteristics (better stall behavior). 

Recent articles in the popular press have extolled the virtues of 

canards, pointing out that because canards provide positive lift, a higher 

C results, the aircraft can be smaller with less drag, and safety is 
Lmax 

improved because of natural aerodynamic angle of attack (AOA) limiting. Other' 

more technical papers2 which have examined optimization of canard designs 

based primarily on performance have indicated no advantage of foreplanes when 

normal stability and structural weight considerations are accounted for. 

Although a canard-configured aircraft was the first recognized successful 

example of human-controlled powered flight (Wright Brothers), tail-aft designs 

have dominated the aircraft market for both military and civil use for reasons 

which are not readily apparent. In recognition that many tradeoffs are 

involved in optimizing a given concept, this paper concentrates on handling 

qualities of the canards since this factor strongly influences pilot accep-

tance. By examining the handling qualities of canard configurations, a 

clearer understanding of the relative merits could evolve along with some 

feeling for future trends. 

The scope of the paper includes an initial discussion of the basic sta-

bility and control requirements needed for both canard and aft tail designs 
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with particular concern for the interrelationship with performance. After 

guidelines are established for desired handling qualities, a review is made of 

selected canard aircraft to reflect on reasons for the success or failure of 

some types. 

Discussion 

In the first part of the discussion, factors that influence stability and 

control are reviewed in a general sense to show how various levels of stabil

ity and control relate to pilot opinion of aircraft response. In discussing 

the effects of fore or aft tail location, primary emphasis is placed upon 

longitudinal (pitch) characteristics, recognizing that lateral/directional 

behavior can be influenced also by tail placement. 

Stability and Control Considerations 

Stability can be obtained for any planform configuration by locating the 

center of gravity (c.g.) ahead of the aerodynamic center (a.c.). The c.g. 

range available is configuration-dependent and is affected by tail size (area) 

and location. In a stable conventional aircraft, the forward c.g. limit is 

determined primarily by the ability of the tail to raise the nose wheel for 

lift-off. The aft c.g. location is determined by stability considerations 

usually slightly ahead of the neutral pOint. The adverse consequences of a 

c.g. location too far aft can arise insidiously; the aircraft may diverge 

(slow up) from the trim speed to the stall where in some cases full nose-down 

pitch control will not increase airspeed (lower AOA) and provide a safe recov

ery, particularly at low altitude. For a canard configuration, the forward 

c.g. location could remain the same provided similar tail area and moment arm 
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are used. However, since the canard effectively moves the center of lift 

forward, the c.g. range for stability is considerably reduced. Increasing 

canard area moves c.g. limits forward and increases the available c.g. 

range. Geometric considerations result in the practical c.g. range being 

located ahead of the wing leading edge with the canard carrying a greater unit 

load than the wing and demanding a relatively high CL . To reduce its 
max 

destabilizing effect, a low lift curve slope would be desired with due consid-

eration to induced drag of this heavily loaded surface. Historically, it has 

not been feasible to provide sufficient trim capability to use wing flaps on a 

canard aircraft, and flatter approach angles are common. 

Dynamic longitudinal stability characteristics also depend upon config-

uration layout and c.g. location. They are important to the pilot because of 

concern for possible oscillatory divergences in AOA or airspeed when the 

aircraft is disturbed. Many studies have examined the effect of variations in 

dynamic stability and damping on precision of flight path control. The data 

in Fig. 1 summarize pilots' comments3 of the effects of variations in stabil-

ity with damping. The results indicate that an aircraft is most pleasant to 

fly when stability levels are neither too high nor too low and sufficient 

damping is available. 

Although it is generally agreed that positive stability is desirable, 

neutral or negative stability is not categorically disastrous. The amount of 

pilot attention required for control increases as static stability decreases 

and the pilot must add "lead" to the control inputs, thereby increasing 

workload. The degree of instability permissible for safe operation depends 

upon several interrelated factors, including the type of aircraft, mission, 

task, amount of turbulence, pitch damping, etc. Pilot opinion4 relating to 

control of an unstable aircraft in landing approach is shown in Fig. 2 in 
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terms of the variation in pilot rating with time to double amplitude (T2 ). A 

rapid deterioration in pilot rating occurs as stability is decreased because 

the pilot must constantly devote his or her attention to attitude control. 

Note that in these tests periods greater than approximately 6 sec showed no 

significant improvement in pilot rating nor was a satisfactory rating ever 

obtained for the basic aircraft (no artificial pitch damping provided). 

Tail-plane location can significantly affect stall characteristics, from 

the standpoint of providing satisfactory stall recovery control and adequate 

stall warning. Specifications governing stall behavior require the aircraft 

to have mild roll, pitch, and yaw motions (less than 20°) in stalled flight. 

In addition, it is desired that no pitch-up tendencies occur, and it should be 

possible to prevent and recover from the stall by moderate use of the pitch 

control alone. The stall approach should be accompanied by an easily percep-

tible warning (shaking of the cockpit controls, buffeting or shaking of the 

airplane, or a combination of both). 

Although stall usually corresponds to maximum lift coefficient, low-

aspect-ratio planforms may have extremely nonlinear lift curve slopes where 

buffet, wing rock, directional divergence, and Dutch roll oscillations may 

precede the AOA for C by over 20° to 30°. When a control limit sets 
Lmax 

minimum permissible speed, some indication or warning of the impending lack of 

flight path control may not occur. A problem may result when an aircraft 

encounters a second stable trim point at high AOA where reduced control effec-

tiveness may not provide recovery to unstalled flight. For most canard con-

figurations, the foreplane is designed to reach its maximum lift capability 

before the wing stalls to prevent pitch-up. Of course, dangerously high AOA 
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penetrations can occur even with good canard airfoil aerodynamics if the aft 

c.g. limit is violated. 

With the aformentioned stability and control (handling qualities) consid

erations in mind, it is of interest to briefly examine several canard aircraft 

and reflect on the reasons for success or failure of some types. 

Historical Overview 

The popularity of canard concepts has fluctuated over the years. At the 

start of powered flight, most new aircraft copied the Wright Brothers canard 

design; however, only tail aft configurations were produced during the WW I 

years, 1914-1918, and only a few copies of canard designs invaded the market 

for the next 50 years. In those early days of flight, most aircraft were 

designed and built without the benefit of wind tunnel tests, and documentation 

of stability and control characteristics did not exist. The first systematic 

stability and control flight test results were conducted by NACA5 in 1919 

using a Curtiss JN4H aircraft. Handling qualities measurements correlated 

with pilot opinion did not take place until the late 1930s. 6 

Although a great number of canard-equipped aircraft have flown throughout 

the years, it is only recently that stability and control data have become 

available to provide a clearer understanding of the relative merits of this 

concept. As a result, only a select few of the many canard concepts that have 

demonstrated successful flight are reviewed. 

In the early struggles to achieve powered flight, the canard concept 

proved to be popular. The Wright Brothers designed their 1903 canard "Flyer" 

by appropriately blending knowledge of structures, power plant, and aerodynam

ics to construct a machine that had enough power to offset the drag and 
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sufficient control to trim over a wide AOA range. They did not, however, 

understand or appreciate the need for stability and this was reflected in 

problems encountered in developing their concept. Not only was their aircraft 

unstable longitudinally and laterally, but also the elevator hinge moments 

were overbalanced, and large adverse yaw complicated turn entries. 

An examination of a two-view drawing of the 1905 aircraft (Fig. 3) 

reveals features which are of special interest from the stability and control 

(handling qualities) standpoint. Foremost is the use of the foreplane, which 

led to the configuration coined "canard," a French word for a hoax or tall 

story. In fact, their accomplishment of powered flight was not completely 

believed until Wilber Wright demonstrated their aircraft in many European 

countries in 1908. The reason for the choice of the canard control was not 

based upon measured data (the Wrights' wind tunnel tests did not include 

pitching moment), but more upon intuitive reasoning. Good control was upper

most in their minds. 7 Wilber had expressed a concern that an aft tail config

uration had an intrinsic danger that was associated with Lilienthal's loss of 

control and death while flying his glider in 1896. 

The stall behavior of their aircraft was never well documented. The 

relatively constant chord planform would normally provide good stall charac

teristics by virtue of center-section flow breakdown, except that downwash 

from the canard would unload the wing root area and tend to cause loss of 

lateral stability at stall. Stalls had been encountered in the 1901 glider 

(configured similarly to the 1903 powered vehicle), which was observed to 

"mush" to the ground with little damage. A more serious stall did occur with 

the 1903 Flyer when Wilber allowed the aircraft to pitch up to the stall in a 

moment of confusion when he inadvertently stopped the engine. The stall 

occurred at low altitude, resulting in a nose-down impact with considerable 
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damage, but Wilber was not hurt. The nose-down behavior is normally a desired 

stall recovery response, except when flying close to the ground. 

Pursuing the pitch characteristics further, recent data8 obtained on a 

one-eighth-scale model show that pitching moment characteristics were rela-

tively linear up to CL . In fact, a pitch down at the stall normally 
max 

associated with a canard control losing effectiveness (by stalling before the 

wing) is not evident. Flight stall behavior would be altered by the c.g. 

location used. In the Wrights' case, the c.g. was not far enough forward to 

highly load the canard and cause it to stall first. Although the Wrights may 

have wanted more stability, it was not possible to move the c.g. farther 

forward because of the inability to trim out the large nose-down pitching 

moment associated with the highly cambered airfoil. It should be noted that 

even though the flyer was highly unstable, a large upload on the canard was 

required to provide trim at a cruise CL of approximately 0.6. 

The Flyer's instability was a major handling qualities problem as evi-

denced from comments by Orville Wright in a letter to Wilber in 1909. "The 

difficulty in handling our machine is due to rudder (horizontal tailor 

canard) being in front, which makes it hard to keep on a level course. If you 

want to climb you must first give the front rudder a larger angle, but imme-

diately the machine begins to rise you must reverse the rudder and give a 

smaller angle. The machine is always in unstable equilibrium. I do not think 

it necessar~ to lengthen the machine but to simply put the rudder behind 

instead of before." From the recent wind tunnel data it was estimated that 

they were flying with a negative static margin of apprOXimately -20%. The 

derived pitch dynamic stability showed that the short period mode was aperi-

odic and doubled amplitude in about 0.5 sec. This calculated divergence rate 

is considerably greater than that judged acceptable from the data shown in 
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Fig. 2. In reality, the behavior would be subdued by apparent mass and iner-

tia effects. A skilled pilot could learn to cope with this behavior, but 

undoubtedly the pilot workload was high. 

As their flights progressed, the Wrights recognized the need for more 

stability. By reducing the wing camber and providing a more favorable hinge 

moment balance, they were able to add 70 lb of cast iron at the nose to 

improve stability. Eventually, one of the canard surfaces was moved to the 

rear and made movable, improving stability so that hands-off flight was 

possible. 

The lateral/directional stability and control of the Flyer were marginal 

and early attempts at turning flight were fraught with danger. In fact, it 

was not until September 1904 that a 3600 turn was accomplished. Part of the 

problem was lateral stability. Although dihedral invented by Cayley9 around 

1800 was known to produce positive lateral stability, the Wrights chose to use 

anhedral because their glIder experiments had shown adverse bank angle effects 

when flying in ground effect in cross wind operation with positive dihedral. 

Although anhedral tended to help the airplane turn by virtue of an unstable 

spiral mode, Wilbur noted in his diary, "Unable to stop turning." It was 

fortunate that directional stability (CN ) was neutral to low, since a large 
B 

CN would have aggravated the spiral instability. In part, the poor yaw 
B 

(turn) behavior was due to the interconnect system used to improve turn 

entry. The Wrights discovered early in their glider tests that wing warping 

provided good roll effectiveness, but it also produced adverse yaw. By inter-

connecting the rudder with wing warp, adverse yaw effects were reduced, but 

yaw control power was marginal. In 1905 they decided to operate the rudder 

control independently with improved turn capability. 
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Although the 1903 Flyer did achieve success in ushering in the era of 

powered flight, the canard concept did not appear to have enough merit to 

prevail beyond 1910. The 1911 model B aircraft had a conventional (aft) tail. 

One of the historically prominent canard designs was the XP-55 Curtiss 

fighter. The tail-first pusher, called "Ascender", was one of several novel 

designs that stemmed from a 1940 Army Air Corps request to generate new, high

performance, unorthodox fighters which would be superior to the best European 

designs. A three-view drawing of this concept (Fig. 4) and an in-flight view 

(Fig. 5) reveal several advanced aerodynamic features which were unproven from 

a handling qualities standpoint in the early 1940s. These included a low

aspect-ratio, all-moving canard pitch control, a moderately swept wing, and 

rudders mounted near the wing tips. The foreplane location was not selected 

primarily for good stall behavior (discussed later), but for pitch control, 

improved visibility, and more efficient gun installations. It should be 

appreciated that this aircraft was designed without the benefit of adequate 

handling qualities specifications to cover high AOA behavior. Wing sweep was 

incorporated, not for transonic flow benefits (drag reduction), but to provide 

an aft location for the vertical fins for directional stability and control. 

Of the many handling qualities deficiencies, the most infamous was its 

ominous stall behavior. The slow, steady approach to the stall was considered 

satisfactory in that the canard surface lost nose-up trim effectiveness with 

increasing AOA and the aircraft pitched down for stall recovery. In a dynamic 

pull up to the stall, however, the XP-55 pitched down abruptly to an inverted 

position which defied recovery. On this occasion, the engine stopped, and 

after losing 16,000 ft in a vertical free fall, the pilot safely escaped (no 

ejection seat available). The inverted highly stable "deep stall" trim point 

had been predicted by small-scale wind tunnel tests. The near-vertical (high 
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negative AOA) flight path is attested to by the nearly intact inverted air

craft wreckage (Fig. 6). 

To improve the poor high AOA behavior, a second Ascender was modified 

with extended wing tips, wing fences, and small "trailerons" outboard of the 

wing-mounted rudders. The stall behavior of the "improved" XP-55 is best 

described by the following comments made by pilot Brig. Gen. Benjamin S. 

Kelsey, USAF {Ret.).10 

"The slow, steady stall was quite satisfactory, and the plane 

behaved normally in the usual intentional maneuvers. Because some 

aircraft have different characteristics when a stall is initiated 

abruptly, I tried a sharp pullup. The nose came up rapidly to a 

very high angle, and forward nose-down control was ineffective in 

checking the pitch-up. What happened next was a series of com

pletely confusing out-of-control gyrations. Eventually a wobbly 

sort of spin developed from which recovery was possible. 

"After trying a few more violent stalls, all of which went 

through the same out-of-control contortions, I thought I knew what 

happend, but I am still not sure. Initially the plane, without the 

damping of a conventional tail to slow the rate of pitch, came up 

to such a steep angle that the forward elevator could not be moved 

enough to get any down force on the nose. What must have followed 

was a stall with the nose pointed nearly straight up. This much 

and the beginning of a rolling motion was fairly clear. 

"Assuming that with the swept wing, one side or the other 

stalled first, the plane did a kind of twisting cartwheel, first 

rotating about the fuselage and then pivoting on one wingtip. As 
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it went over the top in something like a hammerhead stall, the top 

advancing wing seemed to roll the plane partially onto its back. 

This rotation of the aircraft about its fuselage axis and in the 

plane of the wing was like an autorotation spin except that the 

axis of the spiral was falling through the horizontal so that it 

was probably more nearly a very wobbly snap roll. With the rudder 

surfaces located on the wingtips and the fin surface close to the 

center of gravity over the engine, these vertical surfaces weren't 

effective in slowing the spinning. 

"All of this occurred in very rapid sequence, and nothing was 

effective until a recognizable spin had developed. If one visual

izes the movements of outside references--the horizon, sky, and 

earth--it will be readily apparent that the pilot was in no posi

tion to provide a precise description of what went on." 

This aircraft has the potential for an unusual out-of-control dynamic 

pitch behavior, "tumbling," which has been identified by model tests 11 for 

some concepts during World War II (WW II). Tumbling, defined as a sustained 

autorotative pitching motion, has been found to more likely occur for tailless 

and tail-first (canard) configurations with low pitch inertia, low pitch 

static stability, and high-aspect-ratio wings. Conventional (tail-aft) con

figurations could not be made to tumble in model tests. Tumbling was ini

tiated from a nose-up attitude (AOA = -180 0
) to simulate a whip stall. Tests 

showed that the XP-55 model would pitch down and sustain an irregular tumbling 

motion regardless of pitch control position. Increasing the size of the 

canard surface had a detrimental effect on tumbling, suggesting that pitch 

damping was not the primary factor involved. Rather, the decrease in pitch 
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stability caused by adding area head of the c.g. appeared to dominate the 

tumbling tendency. It would be expected that lateral or directional control 

inputs causing asymmetry in the lateral/directional axes would induce motions 

similar to those described in stall recovery attempts. 

This aircraft configuration was even more amazing when one considers that 

swept-wing technology had not been "discovered" yet. It was 1945 before U.S. 

engineers visited Germany and noted that swept-wing planforms were being used 

to reduce transonic flow-separation problems (drag rise) on aircraft such as 

the ME163. Low directional stability, a lightly damped Dutc~ roll mode, and 

poor pitch dynamics all contributed to the demise of the XP-55 aircraft. In 

retrospect, it was unfortunate that the higher subsonic Mach number character

istics could not have been explored, allowing the U.S. to demonstrate the 

well-proven performance benefits of swept-wing technology. Although not a 

success, the XP-55 canard should be given credit for being the first fighter 

to identify the deep stall problem, an event not to be encountered by another 

fighter until some 15 years later. 

The next canard concept, the VariEze, designed in 1974, incorporated 

several advanced design features which shared in establishing a new wave of 

popularity for the canard concept. In addition to the use of composites for 

smooth (low-drag) contours, the canard and wing system was carefully designed 

to provide passive stall control by limiting the ability to trim above the AOA 

for wing stall. Notable features shown in a three-view drawing (Fig. 7) 

include a high-aspect-ratio canard mounted slightly above the wing chord 

plane, a considerable amount of wing sweep, and winglets for directional 

stability and control. This design, which is very compact (minimum wetted

area drag), has good performance and handling qualities. 
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The VariEze aircraft had few stability and control problems over its 

development history. An early version employed both pitch and roll control on 

the canard to simplify control layout. This elevon control system was dis

carded because of roll-control problems. Early flight experience showed that 

relatively minor rigging errors in setting wing incidence and inadvertent 

built-in twist could overpower the available roll control. 12 In two cases, 

full roll control and rudder assist was required to remain upright in first 

flights around the pattern. In another case, during landing approach in 

turbulence, the pilot required large simultaneous roll and pitch commands for 

flight path adjustments. Because of the inherent limitations in providing 

large rolling moments with full elevator control, the aircraft was damaged in 

touchdown. Incorporating roll control on the canard is basically less 

efficient because of an adverse downwash influence on the main wing opposing 

the canard rolling-moment input. Moving the ailerons to the main wing greatly 

improved roll control power even though an inboard aileron location was used. 

The potential danger of serious stall departure can occur when c.g. 

location is mismanaged for either tail aft or canard configurations. An aft 

c.g. position for early models of the VariEze allowed greater penetration into 

stalled flight than desired. In several cases divergent wing rocking or roll

off occurred as speed was reduced in the landing approach. As would be 

expected, if AOA is increased on the rear swept wing, outboard flow of the 

boundary layer would induce flow separation on the outboard wing area causing 

roll-off or pitch-up. A "fix" was obtained by protecting the outboard wing 

area by reenergizing the boundary layer by a leading edge droop (disconti

nuity) or a leading edge fence. 
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In general, the handling qualities. of the VariEze aircraft have been 

above average. The reasons for this have been documented by tests 13 in the 

Langley 30- by 60-ft tunnel discussed next. 

As noted previously, the placement of the canard, the airfoil section 

employed, and canard geometry are key factors in providing good low-speed 

behavior. The pitch stability characteristics of Fig. 8 show three areas in 

the AOA range where important flow effects occur. The first change occurred 

at a relatively low AOA of approximately 4° where outboard flow of the bound-

ary layer degraded the lift of the wing, slightly reducing stability. The 

second change in stability occurred near 14° AOA where a significant increase 

in stability resulted from canard stall and the associated reduction in down-

wash over the inboard wing area. This increase in nose-down pitching moment 
, 

provides the desired passive stall limiting. A third change in stability at 

22° AOA is destabilizing (nose up), resulting from outboard flow separation on 

the wing. 

Canard pitch effectiveness is primarily a function of geometry (aspect 

ratio) and airfoil section. A gradual (trailing edge) flow separation pattern 

occurs on the VariEze canard at an AOA sufficiently below wing stall. The 

effect of airfoil section on canard stall lift characteristics is important. 

For example, a more abrupt stall (and lower C ) would occur with a 
Lmax 

NACA 0012 airfoil section. The gradual increase in lift beyond for 

this airfoil could cause a post-stall pitch-up tendency. With a rearward c.g. 

position, a high AOA trim (deep stall) condition may occur from which recovery 

may be impossible. 

With the usual canard-wing planform geometry typified by the VariEze 

aircraft, one might expect reduced directional stability and damping because 

of the short moment arm to the vertical tail. Although increasing wing sweep 
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would improve directional characteristics, pitch stability and low-speed 

performance would suffer adversely. For the VariEze, a marked reduction in 

directional stability occurred in the AOA range of 10° to 20°. Dihedral 

effect, C
t 

' increased by a factor of 4 in the AOA range from 0 to 20°. The 
a 

combination of low CN and large C
t 

should result in a high roll to yaw, 
a a 

lightly damped Dutch Roll behavior. This has been manifested in wing rock 

control problems at low approach speeds for early models. 

Aileron effectiveness deteriorated markedly in the higher AOA range 

(above 10°); this would be expected with the inboard location of the ailerons 

as a result of the outboard boundary layer flow near the wing trailing edge 

inherent in swept planforms. Rudder control effectiveness is relatively low 

compared to a typical conventional configuration and also decreases markedly 

in the higher AOA range. This may compromise crosswind landing behavior both 

in terms of the ability to achieve large steady state sideslip angles and to 

decrab for touchdown. 

A fourth interesting canard configuration using a relatively large fore-

plane is shown in a three-view drawing (Fig. 9). This aircraft, the PAT-1 

"Pugmobile" was designed as a production airplane (not experimental) using 

composite structure providing a very smooth (low-drag) external surface. The 

aircraft employs an aft low wing, tapered, with some leading edge sweep. The 

foreplane, approximately one-third the wing area, has a full-span slotted 

elevator for pitch control. 

As will be shown, this layout inherently has a great challenge in meeting 

pitch trim and control requirements because the foreplane and elevator control 

is located to a large extent in the propeller slipstream. The majority of 

canard aircraft use rear-mounted engines for many reasons (performance, noise, 

etc.). Also, it is less difficult structurally to attach the foreplane to the 
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fuselage in an area away from the engine compartment, and pitch trim changes 

with power variations are reduced. Large trim changes occur for forward c.g. 

locations when the canard is more highly loaded as in landing approach where 

more power is used. The pitch trim change with power can be reduced by 

employing a high-aspect-ratio (large span) canard where the elevator captures 

a smaller percentage of slipstream area as evidenced in some tandem-wing 

designs. 

This aircraft configuration exemplifies potential stability and control 

problems at stall. Most canard concepts provide inherent stall-limiting such 

that the wing remains unstalled with satisfactory pitch behavior and con

trol. It should be noted, however, that these highly desirable stall

resistance characteristics depend upon the correct selection of certain design 

variables for the foreplane, including airfoil shape; geometry (aspect ratio, 

chord); relative location of the canard and wing; and, most important, c.g. 

location. 

In order to more clearly understand the aerodynamic stability and control 

characteristics of canard configurations like the PAT-1, a one-third scale 

model of a canard-configured general aviation aircraft was tested 14 in the 30-

by 60-ft Langley Research Center tunnel. Tests indicated satifactory stall 

behavior at the forward c.g. location. With power-off, the configuration was 

stall-resistant in that longitudinal stability increased strongly as the 

canard stalled (AOA = 12°) and reduced pitch control effectiveness occurred 

with increase in AOA. Although power-on tended to promote a pitch-up prior to 

canard stall, reduced control effectiveness limited the maximum obtainable 

AOA to 12° (less than wing stall). 

With a rear c.g. location, the inherent passive stall-limiting features 

of the canard essentially disappeared at high AOA, an~ pitch stability and 
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post-stall control recovery suffered adversely. Pitching moment data pre

sented in Fig. 10 for various elevator deflections with power-off show a 

marked reduction in nose-down pitch-control power at post-stall AOA, but 

sufficient nose-down control was still available for recovery for the power

off condition. Adding slipstream effects (power-on), however, further deteri

orated stall behavior and post-stall control recovery characteristics. As 

indicated in Fig. 11, a stable "deep stall" trim area existed in the AOA range 

from 40° to 60°. Full nose-down control (AOA = -20°) produced a small recov

ery moment near 60° AOA; however, as AOA decreased to about 50°, the recovery 

moment was essentially zero. As noted, power reductions would help promote 

recovery from the high AOA region. 

A clearer understanding of the adverse stability and control behavior due 

to power were obtained from flow visualization studies. For propeller wind

milling (power-off) conditions, flow separation began at the canard-fuselage 

juncture, starting at 6° AOA, and spread rapidly spanwise to an abrupt stall 

over the entire canard span at AOA of 12-14°. Wing flow separation started 

near the trailing edge at 14° AOA with an abrupt outer wing panel stall at 

18°. With power-on, the slipstream promoted attached flow at the canard

fuselage juncture and on the wing inboard areas; however, a more abrupt flow 

separation occurred for both surfaces at high AOA. These flow separation pat

terns are such that in the AOA range of wing stall, propeller slipstream 

increased canard lift at a given alpha and the resulting increased down wash on 

the wing tended to decrease overall stability. 

The lateral/directional characteristics of this configuration are also of 

interest because of canard-induced flow effects at high AOA with power-on. A 

relatively large directional trim change occurs in the AOA range for wing 

stall along with a marked reduction in rudder control effectiveness and 
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directional stability in the post-stall region. These poor directional 

characteristics result primarily from the low-energy stalled wing wake imping

ing on the vertical tail. Lateral control effectiveness was reduced at large 

AOA values because of flow separation in the area of the inboard ailerons. 

Power effects tended to produce asymmetric wing stall and reductions in lat

eral stability. The combined reductions in lateral and directional stability 

and control in the post-stall AOA range would adversely affect recovery in the 

deep-stall region. 

In summary, the example aircraft configuration clearly points out the 

potential problems lurking at rear c.g. locations where various design varia

bles can interact adversely to promote poor stall behavior. 

The MacCready Gossamer Albatross human-powered canard is of special 

interest because of unique stability and control characteristics. The air

craft geometry shown in a three-view drawing (Fig. 12) was chosen to maximum 

performance (low power required), and requirements for positive stability were 

ignored. Providing adequate controllability, which was a prerequisite from 

the onset, turned out to be difficult to achieve. 15 To quote one of the 

designers, " ... control of the large wing at these speeds proved to be an elu

sive, challenging, and frequently disheartening quest." Because flight speeds 

were low (3-5 m/sec), and calm air conditions were selected for flight tests, 

control which would be required for upsets caused by turbulence was essen

tially zero. The fact that the aircraft turned out to have neutral stability 

about all axes helped ease the controllability problem. 

Pitch control of the canard surface was adequate, but only over a narrow 

speed range between minimum power speed (3 to 5 m/sec) and that for maximum 

trim lift capability (6 to 8 m/sec). Canard incidence was set lower than the 

wing to reduce trim drag. This resulted in the wing stalling first without 

19 



warning at about 10 mph. Maximum power (hard pedaling) and forward pitch 

control produced a slow stall recovery with an altitude loss of about 10 ft. 

Penetrations to higher AOA (more dynamic stall) resulted in a higher sink rate 

(parachute-like) which could not be arrested sufficiently to prevent damage 

when performed near the ground. Pitch dynamics, although neutrally stable, 

presented no control problems primarily because of high pitch damping. 

Directional stability was essentially zero to slightly negative, which in 

effect was beneficial to improve turn entries. The addition of more vertical 

area, .increasing directional stability and yaw damping, did little to improve 

the lateral control (turn capability) problem, which essentially paced devel

opment of the vehicle. Bank angle control to correct for turbulence and for 

turn entry could not be obtained by conventional techniques. Spoiler deflec

tion at the wing tip momentarily caused a small yawing velocity, which was 

heavily damped, and the increased drag was unacceptable. Ailerons at the wing 

tips proved to be very ineffective in producing bank angle change, largely 

because of apparent mass effects which increased the apparent moment of iner

tia by a factor of five over the actual mass moment of inertia. In other 

words, the normal force produced by aileron deflection had to move (and accel

erate) a cylinder of air equal to the wingspan in rolling the vehicle about 

the longitudinal aXis--essentially very difficult at the low dynamic pressure 

available at cruise speeds. 

The method of obtaining turn entry by tilting (rolling) the canard had 

been used in the very early years of flight, and this method proved effective 

for the Gossamer Albatross in coordinated (yaw-roll) heading changes up to 

20°. Attempts to obtain larger heading changes by canard tilt alone were 

unsatisfactory because of adverse yaw-roll coupling, which increased sideslip 

and undesirable drag forces. Combining wing warp with canard tilt provide a 
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satisfactory means for large heading changes. Although nonlinear control 

techniques were required, the large "apparent" damping helped provide docile 

flight behavior. 

Recently, projected fighter aircraft designs such as the Saab JAS39 

Gripen, the U.K. ACA, the French ACX, and the IAI Lavi use a variation of the 

canard surface in a "close-coupled" arrangement. The foreplane is close-

coupled when it is placed a relatively short distance ahead and slightly above 

the main wing such that the wake (vortices) shed from the lifting canard 

reenergize the flow over the inner portions of the wing. This tends to sup-

press vortex bursting, thereby promoting more linear lift and pitching moments 

to high AOA beyond the nominal CL . In particular, the delta wing planform 
max 

which offers lower wave drag over a wide range of Mach numbers can benefit 

from the canard by providing better lift distributing (higher LID) in tran-

sonic flow conditions and increased usable lift in takeoff and landing. 

The delta planform for fighters originated in Germany during WW II on the 

ME 163. Other countries soon used this planform which offered good high-speed 

(supersonic) potential. The low-aspect delta planform has disadvantages in 

landing because of its low lift curve slope. Large pitch attitude is required 

to generate desirable values of lift for landing. On approach, pitch attitude 

is constrained by pilot visibility and ground geometry clearance, and unless 

very low wing loading is employed, high approach speeds are required. Camber-

ing the delta to increase lift at a given AOA by trailing edge flaps normally 

has a fundamental limitation in trimming the increased nose-down pitching 

moment. This can be overcome by using the canard (foreplane) as employed on 

the Viggin fighter. 

One of the first fighter delta configurations to use the close-coupled 

canard is the Saab Viggin,16 which made its first flight in February 1967. 
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This aircraft required high Mach number performance for its interceptor role 

combined with good low-speed capability to allow its use on short runways or 

roads in Sweden. A three-view drawing of the Viggin (Fig. 13) shows geometric 

features which have been carefully selected to accomplish these goals. The 

wing is low-aspect-ratio with the outer panels swept 60 0 for low wave drag at 

high supersonic speeds. The inner wing panels use less sweep to improve 

pitching moment characteristics in the downwash of the canard in the transonic 

range. Elevons are used on the wing for roll and pitch control. The elevons 

are deflected down for low-speed operation, their effectiveness is increased 

by using blowing boundary layer control. The canard is low-aspect-ratio also, 

carefully selected to provide high-maximum-lift and reliable flow behavior to 

high AOA as well as at large sideslip angles. The canard incidence is 

fixed. The rear surface or flap is movable to provide only a trim function 

and is therefore not a maneuvering (pitch) control. There are two positions 

of the canard flap, a mid position for takeoff and full-down for landing. 

These positions are actuated by the landing gear control level; thus the pilot 

work load is minimized--the flap is mechanically connected to the landing gear 

lever. 

An interesting design consideration of the canard was a requirement to 

remain unstalled over a larger AOA range than the main wing. Thus, instead of 

providing the usual passive stall limiting where the canard stalled before the 

wing, its primary function was to enhance overall lift to reduce touchdown 

speeds. This was achieved by wind tunnel testing to determine a suitable 

(trapezoidal) planform and placement (close-coupled and above) related to the 

main wing. Upwash from the main wing provided favorable (interference) flow 

conditions such that C of the canard was increased by 40% and the AOA 
Lmax 
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for C
Lmax 

for the aircraft extended well beyond that used in landing 

approach. 

The low-speed characteristics of this configuration are considered to be 

satisfactory. Initially, a reduction in stability occurred at AOA of 8°, 

which produced an unacceptable nose-up trim change. This was caused by flow 

separation at the outer wing panel. A sawtooth (notch) leading edge modifica-

tion cured the problem, and pitch stability is linear up to 30° AOA. 

occurs slightly above AOA of 30° after which a small pitch instability 

(pitch-up) takes place followed by a stable slope out to very large (90°) 

AOA. Both CN and C1 are unstable beyond 30° AOA. Vortices shed from the 
B B 

canard at high AOA strongly influenced flow at the vertical tail and lateral 

directional stability changed. Improvements in lateral/directional character-

istics were achieved by reducing dihedral of the canard from 10° to 0°. 

Touchdowns are made in the AOA range of 12° to 16°. Beyond 16° flight path 

control deteriorates because of low Dutch roll damping and power response 

problems associated with flying on the back side of the power required 

curve. Studies have been made for improving flight path control by using the 

canard flap in conjunction with the elevons for direct lift control. The 

aircraft can be flown comfortably to 25° AOA; departure tendencies occur 

beyond 38° AOA. 

The high-speed performance of this canard aircraft is strongly affected 

by the tradeoff between stability and performance. Subsonic trim drag is 

determined by the wing/fuselage pitching moment. Optimum subsonic trim drag 

therefore requires that the c.g. be located such that zero or low positive 

tail loads are needed. For an aft-tail fighter aircraft, the tail is sized to 

provide positive pitch stability, adequate control power for more wheel lift-

off, and for maneuvering at supersonic speeds. The same sized tail placed 
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forward at the same moment arm provides similar control power for more wheel 

lift-off; however, pitch stability has changed sign. Thus, the canard operat-

ing in the upwash of the wing is destabilizing and the c.g. must be moved for-

ward for a stable em' This obviously requires the canard to carry a 
a 

significant proportion of the total lift, roughly 15%, with a corresponding 

induced drag penalty. Going to supersonic speeds, the aerodynamic center 

moves aft approximately 15% mean aerodynamic chord for this wing planform. 

This increase in stability further increases the up-load requirement of the 

canard, with severe trim and maneuver drag penalties. If the c.g. is located 

for minimum supersonic trim drag (approximately ern = a), the aircraft 
a 

becomes highly unstable upon returning to subsonic flight. The obvious solu-

tion is to provide artificial pitch stability, a feature not provided in the 

Viggin control system. Thus the Viggin aircraft pays a high-speed performance 

penalty for the canard which would be unacceptable if the aircraft were used 

in an air superiority role. 

The most recent example of canard technology is the Grumman X-29A for-

ward-swept-wing aircraft (Fig. 14). This advanced aircraft features an aero-

elastically tailored wing, relaxed static stability (RSS), a digital fly-by-

wire (FBW) flight-control system, and a thin (5% thickness/chord) supercriti-

cal airfoil with discrete variable camber. Pitch control is obtained by an 

all-moving (variable incidence) close-coupled canard. Strakes added to the 

wing root trailing edge use flaps for pitch trim--helping to raise the nose 

wheel for takeoff and increase overall lift in approach. Full-span flaperons 

are used also. The forward-swept wing can be expected to provide signifi-

cantly higher L/D maneuvering performance at transonic speeds and improved 

low-speed handling. 17 
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Forward-swept wings on military aircraft originated in Germany in WW II 

on the Junkers JU-287 bomber and later in the 1960s on the HFB-300 Hansa 

business jet. Because of the natural inboard flow of the boundary layer at 

high AOA on a forward-swept wing, inboard lift suffers adversely. Fences, 

leading edge vanes, or large amounts of wing twist delay flow separation to 

some degree. A close-coupled canard can unload the inboard wing area by 

virtue of the downwash from the forward lifting surface. The current trend to 

maneuver fighter aircraft at very high AOA for good air-combat effectiveness 

places special demands on the canard pitch control as described for the X-29A 

in the following discussion. 

One design condition for the X-29A is Mach 0.9 at 30,000 ft, with the 

canard sized for maneuvering at this subsonic speed. To provide minimum trim 

drag at supersonic speeds, RSS is used; the c.g. is located for neutral (wing/ 

fuselage) pitch stability. Positive (lifting) loads are provided by the 

canard for supersonic maneuvering, thus improving flight efficiency. A 40~ 

forward shift of the aerodynamic center occurs for this planform in going from 

supersonic to subsonic flight, resulting in a 35~ negative static margin 

(pitch instability). The short period has a time to double amplitude of 

0.85 sec. This degree of instablllty would normally be unflyable because of 

the pilot's inherent limitations in frequency response and phase lags. Arti

ficial stability can be provided by a stability-augmentation system using AOA 

and pitch-rate feedbacks. A digital FBW flight-control system provides a 

desired pitch rate for maneuvering. Overshoots or divergences are prevented 

by the addition of pitch damping. The success of this system depends to a 

great extent upon good pitch control effectiveness over a large AOA range 

discussed next. 
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Wind tunnel tests 18 indicate that with canard off, initial wing stall 

occurs at the wing root at about 12° AOA. Pitching moment data show neutral 

to slightly unstable static stability in the AOA range of 15° to 40°. Addi

tion of the canard significantly increases the level of instability in the AOA 

range of 30° to 60°, depending upon canard incidence. Good pitch-control 

effectiveness is retained over a wide AOA range by virtue of the large (varia

ble incidence) travel of the canard (-60° to 30°), and the aircraft can be 

trimmed over the AOA range from 10° to 70°. The only deficiency noted was 

marginal nose-up pitch control below 20° AOA because of canard stall. ~ 

fixed-incidence canard would stall and lose trim capability over this large 

AOA range. Since the strake flaps provided constant pitching moments over the 

entire AOA range, they could be programmed to complement canard control. 

The canard, by virtue of its flow interaction with the wing, influences 

the lateral/directional stability and control characteristics. Wind tunnel 

tests show a degradation in both lateral and directional static stability at 

high canard deflections due to a blanketing of flow over the inboard portion 

of the wing. At lower canard deflections, the canard enhanced lateral and 

directional stability up to 30° AOA. Lateral control was influenced by 

canard-induced wing-flow changes. At low canard deflections aileron effec

tiveness was improved in the AOA range of 10° to 60° as a result of favorable 

flow effects from the canard over the inboard portion of the wing. At large 

negative (nose-down) deflections, lateral control effectiveness was reduced, 

presumably because of inboard wing stall resulting from adverse canard flow 

(decreased downwash). Directional stability and control effectiveness was 

influenced by canard deflection. Rudder-control effectiveness decreased 

markedly when inboard wing flow deteriorated when nose-down canard deflections 
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were used. Directional control above 40° AOA would be expected to be 

unsatisfactory. 

As previously discussed for the XP-55 aircraft, tumbling, a sustained 

autorotative pitching gyration, was identified as a potential problem for the 

X-29A aircraft. Tumbling susceptibility is accentuated by effects of RSS, 

canard control, and high pitch agility requirements. Tests were conducted on 

an X-29A mode1 19 in a high AOA condition with wing flaps down, strake flaps 

down, and canard deflected _60° (full nose-down) to simulate a stall recovery 

(see Ref. 10). When released from a nose-high (AOA = -180°) position, the 

model underwent a nose-down autorotative pitching motion. The model exhibited 

complex cyclic variations in linear and angular rates varying from 

20-2000/sec. Asymmetry in control settings caused unusual gyrations out of 

the pitch plane. Although this aircraft has large pitch-control power, 

variations in canard deflection did not alter the tumbling behavior or result 

in recovery. Deflection of the strake flaps to oppose the tumbling were 

effective in damping the motion, suggesting their use as a method of control

ling tumble. Although the model tests indicated a tumble tendency with con

trols fixed, it is unlikely that the highly augmented X-29A control system 

would allow pitch angular excursions to build up to the point where tumbling 

would occur. 

Concluding Remarks 

A review of stability and control characteristics of canard configura

tions showed the need for careful consideration to design details to ensure 

satisfactory handling qualities. The greatest challenge was the need to pro

vide good pitch stability characteristics and adequate pitch-control power in 
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the stall and post-stall regions. Compared to conventional designs, a more 

accurate control of c.g. position is required to provide the beneficial pas

sive stall AOA limiting inherent in the canard layout. Modern control tech

nology should benefit future canard designs to a greater advantage by allowing 

the use of relaxed static stability (RSS) without compromising handling 

qualities. 
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Figure Captions 

Fig. 1 Summary of pilot comments on dynamic stability. 

Fig. 2 Pilot rating vs time to double amplitude. 

Fig. 3 Two views of Wright 1903 Flyer. 

Fig. 4 Three views of Curtiss XP-55. 

Fig. 5 Curtiss XP-55 in flight. 

Fig. 6 Inverted crash landing of Curtiss XP-55. 

Fig. 7 Three views of VariEze model. 

Fig. 8 Pitching-moment characteristics of VariEze model. 

Fig. 9 Three views of PAT-l model. 

Fig. 10 Pitching moment characteristics of PAT-1 model for aft c.g. location, 

power off. 

Fig. 11 Effect of elevator deflection on deep-stall trim condition with aft 

c.g. location. 

Fig. 12 Three views of Gossamer Albatross. 
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Fig. 13 Three views of Saab Viggen canard fighter. 

Fig. 14 Three views of Grumman X-29A fighter. 
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