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CHAPTER I

INTRODUCTION

One of the major advances in the technology of communications has
been the use of satellites in geostationary orbit as broadcast and
relay stations for various types of commmications signals. Arthur C.
Clarke [1945] suggested using a chain of satellites in order to
broadcast television programs over the entire earth; the orbit he
suggested for these satellites has since come to be known as the
geostationary orbit.

The geostationary orbit is located in the equatorial plane at a

distance of 42000 lm from the center of the Earth. The orbital period

of a satellite in such an orbit is 24 hours; therefore, for a

terrestrial observer the satellite appears to be fixed in the sky.
When transmitting signals in the microwave spectrum, a transmitting
station on the surface of the Earth has an effective broadcast range of
perhaps 50 to 100 km, depending on the tower height and the terrain.
On the other hand, a satellite in geostationary orbit can broadcast a
signal beam that will cover up to one third of the globe.

In the past two decades, a number of nations, private companies,
and multinational consortia of private companies have placed satellites

in the geostationary orbit in order to improve their commmication
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capabilities. Quite soon it was realised that the unique geostationary
orbit and the usuable frequency spectrum are limited resources. Hence,
by international agreement, it was decided that a series of World and
Regional Administrative Radio Conferences (e.g., WARC-77, RARC-83,
WARC-85, WARC-88), facilitated by the International Telecommunications
Union (ITU), would generate allotments which would specify how these
resources are to be distributed among the nations of the world.

Problems in resource allocation are frequently solved by applying
optimization techniques to appropriate mathematical programming models.
The resource allocation problems associated with satellite deployment
in the geostationary orbit can be modelled as mathematical programs.
Consequently, the application of optimization techniques in the field
of satellite system planning has aroused considerable interest in the
international communications commumnity.

The optimization problems associated with the distribution of the
orbit/frequency spectrum resource are considered to be extremely
difficult to solve. The complex interactions between the system
geometry, the size, shape, and location of the areas (nations, portions
of nations, or combinations of nations) being serviced, and the nature
of electronic transmissions make developing and solving an optimization
model of the entire system difficult. The system geometry, the service
areas, and the equipment used for transmission and reception determine
the strength of the signals from transmitting satellites that are
received at earth station receivers in the service areas. Hence, these

factors also determine the "adequacy" of the system.
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For the Broadcasting Satellite Service (BSS), a scenario is
defined as adequate if the resulting overall equivalent protection
margins, calculated in decibels (dB) at suitable receiver locations,
are all positive numbers. These margins are a complicated function of
the desired signal strength, the strengths of the interfering signals,
and the frequency separations between the carrier of the desired signal
and those of the interfering signals (WARC ORB-85 [1985]). Wa.ng
{i586] has shown that this requirement is the same as requiring the
ratio of the desired carrier signal to an equivalent interfering signal
to exceed a threshold value. In the case of all satellites
transmitting at the same frequency (only co-channel interference), the
equivalent interfering signal power is the same as the aggregate
interference power, i.e., the sum of the powers (in Watts) of all the
interfering signals. In this case, the requirement for positive
equivalent protection margins is satisfied if the ratio of the desired
signal power C to the aggregate interference power 1 (aggregate C/I
ratio) exceeds the required protection ratio.

No international agreement has been reached on the procedure to be
adopted for the Fixed Satellite Service (FSS), but the same type of
requirement appears applicable for the down-link calculation. The
problem addressed here is the optimization of FSS orbital allotments on
the basis of only down-link considerations.

In Figure 1 a simplified system is shown. There are two service
areas A and B with their boundaries indicated by continuous curves.
Each has its own satellite, denoted by Sa and Ss, respectively. A

signal broadcast from Sa to service area A has some desired strength at




Sa Ss Geostationary

){////—-—— orbit

desired signal path

- - - interfering signal path

A , B - service areas
Sa , Ss - satellites broadcasting to service areas A and B
respectively

Figure 1. A Simplified Satellite System and Interference Geometry
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all points on the dotted ellipse surrounding A. The strength of the
signal intensifies as one moves toward the center of the ellipse.
Since a portion of the ellipse covers parts of service area B, if
satellite Sp were transmitting to country B at the same frequency and
polarization as Sa, then there would be considerable interference from
Sa in country B.

The reduction of such spillover interference to as low a level as
possible, or at least to a level that satisfies some desired protection
ratio, is an essential part of the optimization problems associated
with satellite commmications in the geostationary orbit.
Simul taneously, requests for satellite orbit locations and frequency
channel assignments that are made by the administrations of service
areas have to be satisfied to the greatest extent possible.

The positioning of satellites, the allocation of frequencies, and
the assignment of polarizations, have a major economic impact on most
nations of the world. It is surprising that, although the installation
of a system of broadcast satellites can cost upward of a billion
dollars, there have been only a few efforts to optimize the orbit
locations of these satellites and the frequency assignments.

In this research, the focus is on one of the optimization problems
agsociated with the allotment of communications satellites, namely, the
satellite location problem. This problem is defined here as the
minimization of the deviation of assigned satellite locations from
given desired locations, subject to meeting the required protection
ratio. Four methods for solving this problem are presented : mixed

integer programming, Benders’' decomposition, a restricted basis entry
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procedure, and a switching heuristic. Solutions are obtained for some
real problems using the four methods, and the performance of the four
solution techniques is evaluated. A parallel is drawn between the
formulation of the satellite location problem and some classes of
scheduling problems.

In Chapter 2, the satellite location problem is formulated as a
nonlinear mathematical programming problem. The concept of minimun‘
required satellite separation, which is essential to the development of
the formulations and solution methods described in this manuscript, is
presented in Chapter 2. A review of other satellite allotment problems
and associated solution methods which have appeared in the literature
is provided in Chapter 2.

The four solution methods are discussed in detail in Chapter 3,
along with a review of past work with similar techniques. In the same
chapter, other mathematical programming formulations for the satellite
location problem are presented. These formulations avoid the
nonlinearities in the formulation given in Chapter 2 through the use of
variables restricted to integer values or through the implementation of
complementary variables (pairs of variables, one of which always has to
be zero).

The specific details of the implementation of the four solution
methods in computer codes are presented in Chapter 4. Experimental
results obtained using the solution methods on a set of test problems
are also discussed in the fourth chapter.

In Chapter 5, the versatile nature of the fourth solution method,

the switching heuristic, is explored. Its application to alternate
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formulations of the satellite location problem with different objective
functions or with feasible arc limitations is considered. The ability
of the heuristic to allow for minimum required orbital separations that
vary with satellite location is also discussed in the fifth chapter.
Experimental results for these variations are presented.

Chapter 6 consists of a summary of the research and its
contributions to the area of satellite system synthesis and the field
of Operations Research. Recommendations for future work in the
application of the switching heuristic to problems related to the

satellite location problem are also presented in the same chapter.




CHAPTER 1I

PROBLEM DESCRIPTION AND BACKGROUND

In Broadcasting Satellite Service (BSS) and Fixed Satellite
Service (FSS) system synthesis, a common objective is to provide every
user with signals that are adequately protected from interference by
other users (Christensen [1981], WARC [1985]). There are two basic
ways that a system can be designed to accomplish this. The first way
adequate protection can be achieved is by providing sufficient physical
separation in orbit between the satellites that interfere with one
another. The second option is to provide sufficient frequency
discrimination through the allocation of adequately separated channels
to possible interferers. The allotment procedure, therefore, has to
specify orbit locations and frequency channel assignments for
satellites so as to achieve the goal that every desired signal is
adequately protected from interference. Constraints, such as the
satellite locations having to be within the arc visible from the
corresponding earth stations and the channel assignments having to be
made from a given frequency spectrum, are also part of the satellite
system synthesis. In addition to meeting the above criteria the system
design will have to satisfy, to the greatest extent possible, various

requirements that might be requested by the governments of the
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countries involved. Otherwise, there would be little hope of reaching
international agreement on any allotment scheme.

The amount of separation that is required between satellites and
between frequency channel assignments to provide the required
protection from interference is a function of the design parameters of
the satellite and the receiving earth station. Since various nations
have vastly differing economic and technological capebilities,
technical design parameters are largely left to the discretion of the
individual administrations, subject to meeting certain standards agreed
to by all the participating nations. At present, the technical design
parameters for individual administrations are not available as
variables that can be adjusted to optimize the system design. For the
purposes of this research, a fixed and known level of technology for
all satellites and earth stations is assumed.

The problem under consideration is the satellite location problem.
In essence, this problem involves the assignment of satellite locations
to administrations so as to meet signal adequacy criteria, subject to
visible arc and elevation angle requirements. Frequency allocation is
not treated as part of the problem -- the assumption is either that the
full frequency bandwidth is assigned to all administrations or that the
frequency assigmments are pre-specified.

If the system synthesis problem can be solved through the
assignment of satellite locations only, then that solution is
preferable to one which assigns both satellite locations and
frequencies. WARC ORB-85 [1985] tentatively recommended to the second

session of the conference that each ITU member should receive at least



10
one allotment consisting of an orbital position with which a bandwidth
of 800 MHz is associated in certain up-link and down-link bands
totalling 1600 MHz of bandwidth. This. would appear to imply full
spectrum use in the case of at least these allotments. Hence the
assumption about full bandwidth frequency assignments is reasonable.

There has been a considerable amount of work done in the area of
frequency allocation, mostly in the area of ground based radio '
communication. The satellite location problem is the focus of this
research, partly because it has not been studied as extensively as the
frequency allocation problem and partly because of the computational
advantages associated with the solution strategies which can be used to

solve it.

2.1 Mathematical Programming Formulation of the Satellite Location

Problem

In the course of this research, several mathematical programming
techniques are applied in order to solve the satellite location
problem. In Figure 2, a basic mathematical formulation of the problem
is presented. Variables and parameters are defined along with the
formulation in Figure 2. Later, this formulation is modified and built
upon. The nature of the problem, the assignment of satellite locations
satisfying the signal adequacy criteria, will remain the same

throughout this manuscript.
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T +
MINIMIZE Z (X +X ) (2.1)
J= J J
subject to
R _ .
x. + X_ - x. = d. J'=1,.--n (202)
J J J J
: x. - X. : 2 AS.‘ i=1’ooon‘-1 (203)
i J ij
j=i+l,...n
E <X <W le.m (2.4
J J J
+ - ,
X,X,X >0 J=1,...n (2.5)
J J J
where
X = actual location of satellite j
J

+
X , X = distance between assigned and desired locations of
satellite j to the east and west, respectively

desired location for satellite j

=1
1}

/\S. = minimm orbital separation required between
satellites i and j

E , W = eastern and western limits, respectively,

on feasible locations for satellite j

n = number of satellites

! a | = absolute value of a

Figure 2. Mathematical Formulation of the Satellite Location Problem
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The objective function (2.1) used here and for most of the
research described herein is the minimization of the sum of the
deviations of the assigned locations of satellites from given desired
locations. From now on, this objective will be referred to as
minimizing the total deviation.

Constraints (2.2) measure the deviations of the assigned
locations from the corresponding desired locations. Constraints (2.3)'
enforce the required minimum satellite separations ( /\S) between pairs
of satellites. Constraints (2.4) require a satellite to be located
within a given feasible orbital arc. Constraints (2.5) are non-
negativity constraints on the decision variables.

The absolute value of the difference between two decision
variables appears in constraints (2.3). As a result the program is
nonlinear. The measurement of this absolute value in terms of the
decision variables is what makes the problem difficult to solve in the
context of mathematical programming. In Chapter 3, alternate
nonlinear and mixed integer programming models for the same problem are
presented.

This model also uses the concept of the minimm required orbital
separation between pairs of satellites (/\S). This concept simplifies
mathematical programming formulations for the satellite location
problem considerably, since without it all the complex calculations to
determine interferences would have to be included in the formulation.
In a sense, the calculation of /\S acts like a preprocessor allowing
the mathematical programming techniques to focus on the optimization

rather than on the demanding interference computations. Levis et al.
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[1983a] provide a formulation that includes the interference
calculations, and the extreme complexity of that formulation as
compared to the simplicity of formulations wusing /\S is easily
observable. In the next section, the satellite separation concept is
discussed in more detail.

Finally, it should be noted that all satellite locations are
required to be non-negative. This implies a rescaling of parameters
from the conventional negative and positive longitude system (-180° to
+1809). Here, the easternmost boundary among all the feasible arcs is
designated as 0 degrees, and all other longitudes are correspondingly
adjusted.

2.2 The concept of minimm required satellite separation (/\S)

The minimm separation required between a pair of satellites i and
J; in order to provide adequate co-channel signal interference
protection to each from the other at ground stations on the boundaries
of their respective service areas, is denoted by /\Si;. By using these
separation values for all pairs of satellites, the nonlinearities and
trigonometric functions arising from the system geometry and the
antenna and frequency discrimination functions can be avoided in the
mathematical programming formulations.

Christensen [1981] and Ito et al. [1979] have devised solution
methods for satellite synthesis problems which use the concept of

minimum orbital separation matrices. In this research, the separation
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concept as developed by Wang [1986] is used. Wang defines the minimum

required orbital separation between two satellites i and j as

\Sisy =max { N\disx } (2.6)
k6K

where K corresponds to a set of locations equally spaced in the common

feasible arc of satellites i and j, /\dijx is the required separation

between satellites i and j when the separation is centered at location.

k, and this separation is such that the signals of both satellites are
sufficiently protected from a single entry co-channel interference
level which has been selected as likely to result in meeting aggregate
interference protection ratio requirements. If the feasible arcs for
the two satellites do not overlap, the required separation is
calculated with the center of the separation being the midpoint between
the closest endpoints of the two feasible arcs. The iterative
procedure for calculating /\S is described in Wang [1986].

There are two issues that have to be considered with the
definition of the minimum required orbital separation given above.

1. As indicated earlier, /\Si; is the maximum of /\@g:;x over the
feasible arcs of satellites i and j. A functional relationship can be
established between /\@di;x and the Ilongitude in the center of the
separation between the satellites i and j, and for most pairs of
satellites the shape of the function is as shown in Figure 3.

It can be seen that the variation in /\¢ is not great when the
satellites move from a position directly over the service areas. The
increase in /\@ is more rapid at low elevation angles. Occasionally

the function is concave rather than convex - this occurs when the
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East of Directly over West of
service areas service areas service arecas

Location of longitude inbetween and equidistant from satellites

Figure 3. Variation in /\@ with Satellite Location
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service areas being served by the satellites are separated by latitude
but not by longitude ( Yamamura and Levis {1985]).

In the mathematical programming formulations developed for the
satellite location problem, the maximum required separation value /\S
is used. As a result, the solutions obtained will always satisfy
single entry interference requirements, but might be conservative in
that the actual separations between satellites may exceed t.he’
separation required to meet the signal protection ratio criterion for
the assigned satellite locations. The case might also arise that while
the actual problem has a feasible solution our formulations might be
unable to find it, owing to the usage of the conservative maximum
separation /\S. In Chapter 5, some comparison studies in the use of
/\#ijsk’s in place of /\Si;’s are discussed.

2. The calculation of /\S values considers only single entry co-
channel interference, and, therefore, any solution found may not meet
the equivalent margin requirements for aggregate multi-channel
protection. This problem can be alleviated to some extent by increasing
the single entry protection ratios so as to make it likely that the

required aggregate multi-channel protection will be achieved.

2.3 Literature Review

In this section, previous work done on the problems of satellite

location and frequency allocation is reviewed.
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At the preparatory seminar for the 1983 RARC (Regional
Administrative Radio Conference) in Ottawa, Canada, in 1981, the
Canadian delegation presented a method for generating BSS allotments.
The overall objective was to assign orbital locations, frequencies and
polarizations to service areas so that the capacity of the
spectrum/orbit resource was optimally used, subject to protection ratio
and technical constraints. The method was a combination of manual
synthesis and automated heuristic procedures. Christensen [1981]
provides a comprehensive review of the entire system and its
deveiopnent. The system was based on the ideas of Chouinard and Vachon
[1981] and Nedzela and Sidney [1981]. It involved an initial
generation of service area clusters by the user from which transmission
discrimination and minimum required orbital separation matrices were
generated. Channels and polarizations were manually assigned and the
plan was checked for satisfaction of protection ratio requirements. At
this point, the user had several choices - a neighbourhood search,
manual assignment changes, generation of new cluster configurations, or
termination. The system was tested on some BSS problems with limited
success. No results of applications to actual problems are available.
Levis et al. [1983a] formulated a nonlinear programming model for
BSS synthesis and developed a gradient search procedure that was
applied to some small problems. They attempted to assign orbit
locations and frequencies so as to minimize the worst protection ratio
violation. Reilly et al. [1986] implemented a cyclic coordinate method
for the same model, and performed an experiment to assess the

performance of the two methods on synthesis problems. They found that
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the cyclic coordinate method outperformed the gradient search technique
for the set of BSS test problems used in the experiment.

Ito et al. [1979] proposed two methods for the optimization of
satellite locations in the geostationary orbit. These methods have
been applied to small problems with some success and led to the

development of ORBIT-II, an orbit spacing minimization program [1984].

They formulate the problem as a nonlinear programming problem which

attempts to minimize the length of the orbital arc occupied by the
satellites to be positioned, subject to meeting single entry and
aggregate interference criteria. The first solution method uses a
penalty function algorithm which is commonly used in nonlinear
programming, and the second uses successive linear approximation of
non-linear constraints.

In the literature on satellite system synthesis, the approaches
presented by Christensen and Ito et al. are the anly methods that have
actually been applied to the satellite location and frequency
allocation problems. No computational experience is reported for
problems involving more than 10 satellites with any of these methods.

Ottey et al. [1986] have proposed the use of several optimization
techniques on a set of variations of the satellite location and
frequency allocation problems - the variations mainly being in the
objective function. They do not indicate whether any attempt at actual
implementation of the methods they propose has been made.

In actual scenario generation, there has been considerable use of
interactive synthesis methods. These methods essentially consist of an

experienced system designer generating a scenario which is then
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evaluated using an analysis program. The designer can vary the
scenario based on the results of the analysis. This method was used in
generating the BSS scenario for Region 2 (North, South and Central
America) at RARC ’'83.

The frequency allocation portion of the problem has received
considerable attention in the literature, since it is similar to the

fréquency allocation problems of land-based radio broadcasting.

PRSpR P prenpres | dola o wnanaleT A
LIS AUCL T 1< ivuicu

of assisning
channel to each service area so as to minimize the number of channels
required, subject to restrictions on co-channel assignments to
interfering service areas. He observed that the problem could be
formulated as a graph colouring problem, and proposed solving it by
solving a sequence of minimm cardinality set covering problems.
Baybars [1582] formulated the same problem as a 0-1 programming problem
and added additional constraints to restrict adjacent channel
assignments. He used graph theoretic results to establish bounds on
the solution and presented empirical results for some small problems.

Zoellner [1973] investigated frequency assignment strategies
under the condition that the assigner does not possess prior
information about successive cases that will require assignment.
Zoellner and Beall [1977] assume complete knowledge of all the
assignment cases that must be accommodated. In both studies node
colouring order based assignment procedures are used.

Levis et al. [1983b] indicate alternate set covering formulations
for the frequency assigrnment problem. They also provide a formulation

for multiple channel assignments.
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Mathur et al. [1985] develop integer programming models for the
frequency assignment problem with the constraints that intermodulation
interference is maintained within desirable limits. They also consider
the incremental problem of adding to an existing network. The context
of their work is ship-to-ship transmissions, but the models can be

applied to satellite transmissions.

Mizuiki et al. [1984] propose a method of evaluating co-channel

interference in terms of the margin with respect to the minimum
required carrier-to-interference protection ratio. They generate an
interference matrix and use it to allocate frequencies with an
assignment problem approach.

For analysis purposes, a program such as SOUP [1983] (Spectrum
Orbit Utilization Program) can be used to evaluate scenarios. The
program’s features make it extremely useful in analysing a solution
generated by a synthesis procedure. SOUP is also capable of measuring
the impact of using satellite separations based on single entry co-
channel interference, e.g. /\S, to find solutions to synthesis problems

where aggregate interference levels have to be below threshold values.




CHAPTER III

THE FOUR SOLUTION TECHNIQUES

In this chapter, four solution techniques for the satellite
location problem are presented. These techniques are mixed intéger
linear programming, Benders’' decomposition, linear programming with
restricted basis entry, and a switching heuristic. In each case, the
corresponding mathematical programming formulations are discussed, and
past applications of the technique, and variations thereof, that have
appeared in the literature are reviewed. The specific implementations
and modifications that are used in this research are also mentioned.
The minimization of total deviation is the objective function used for

the satellite location problem throughout this chapter.

3.1 Mixed Integer Linear Programming

Mixed integer linear programming, hereafter referred to as mixed
integer programming or MIP, is a widely used technique in the field of
mathematical programming. Garfinkel and Nemhauser [1972] provide a
comprehensive summary of most of the common classes of problems that
can be solved using this method and an in-depth review of several

implementation strategies. The most common strategy used for problems
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with no special structure is that of enumeration, which is usually
implemented using some version of a branch and bound technique.

The satellite location problem, as formulated in Figure 2, is not
an MIP formulation since it is not linear and none of the decision
variables are restricted to integer wvalues. To convert that
formulation into a mixed integer program the non-linear constraints are
replaced with a combination of integer variables and linear
constraints. This MIP formulation is given in Figure 4. The non-
linear constraints (2.3) of the formulation in Figure 2 are replaced by
the constraints (3.3) and (3.4) and the binary variables denoted by
Yij.

The objective function in the MIP (3.1) is identical to that in
the first formulation (2.1). Constraints (3.2), (3.5), and (3.6) are
identical to constraints (2.2), (2.4), and (2.5), respectively, in
Figure 2. Together, constraints (3.3), (3.4), and (3.7) enforce the
minimm required orbital separation between pairs of satellites.

An advantage of using an MIP model is that the optimum solution is
always found if the given problem is feasible. The drawback is that
the computational requirements for solving the problem tend to grow
exponentially as the problem size (in terms of the number of integer
variables) increases. By applying this technique to small problems a
standard, the optimum solution, is obtained against which the
performance of heuristic methods can be compared.

The model shown in Figure 4 can be reformulated into a more
elegant model by rescaling. The advantage of this reformulation

(Figure 5) lies in the fact that the constraint matrix consists of
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Figure 4. g;gbrixed Integer Formulation of the Satellite Location
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(3.1)

(3.2)

(3.3)

{3.4)

(3.5)

(3.6)

(3.7)

+ -
X ,X ,X ,d ,/\8  L,E ,W , n are as defined in Figure 2.
J J J 1) J J

1 if satellite i is located to the west of satellite j




+ -
MINIMIZE (X + X )
J= J J
subject to
+ -
X +X -X =4d, Jj=1,...n
J J J J
X -X +Y < 1 -8 . i=1,...n-1
i J ij ij Jj=i+l,...n
X -X + Y 2 /\S i=1,...n-1
i J ij ij J=i+l,...n
E £ X £ W, Jj=1,...n
J J J
+ -
X ,X ,X >0 j=1,...n
J J J
Y =0or1l i=1,...n-1
ij J=i+l,,,,n
where '
X ,X ,X ,d ,/\8  ,E ,W ,n are as defined
J J J J 1) J J

in Figure 2 and scaled by {(w - e) + max /\S}
e=min{E} ; w=max (W} ; j=1,...n

(e and w age computed beforg scaling)
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(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Y . =1{1if satellite i is located to the east of satellite j
ij { 0 otherwise
Figure 5 . 0-1 Mixed Integer Formulation of the Satellite

Location Problem.
Constraint matrix contains only +1,-1 or 0)
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elements that are either +1,-1 or O. This permits the constraint
matrix (often called the "A" matrix) to be compactly stored, and thus
allows for a more efficient handling of the basis. In mathematical

terms, the two models are equivalent.

3.2 Benders' Decomposition

Benders [1962] developed a method for decomposing large scale
mathematical programming problems into "master” and "sub” problems,
which, when solved in an iterative fashion, yield the optimal solution
to the original problem. The advantages over solving the original
problem as a whole are that both the master problem and subproblem are
smaller and easier to solve ard may posess some special structure which
facilitates their economical solution.

Benders’ decomposition can be summarized as follows : A master
problem and a subproblem are derived from the original problem. A
master problem is solved, yielding a solution which defines a
subproblem, Next, a subproblem is solved or determined to be
infeasible. Dual solutions or extreme rays then define one or more
constraints or "cuts" for the master problem. These cuts are added to
the master problem. The new master problem is solved and the iterative
process continues. Finite convergence of the algorithm follows from
the finite number of possible constraints. The algorithm must

terminate, either with the information that the original problem is
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infeasible or unbounded, or with the optimal solution, in a finite
number of iterations.

The concepts involved will become clearer as the development of
the Benders’ decomposition model for the satellite location problem
progresses. An attractive feature of this method is the availability

of upper and lower bounds on the optimal objective function wvalue. At

each iteration in the solution of a minimization problem, the upper

bound is the best solution found among all the subproblem solutions in
the current and previous iterations. The lower bound is the optimal
solution to the current master problem. A test for optimality is the
condition that these bounds are equal.

In solving mixed integer programs with Benders’ decomposition, it
is often the case that the best decomposition strategy occurs with the
master problem being a pure integer program containing the integer
variables and the pure integer constraints. The subproblem is then a
linear program in the continuous variables and the remaining
constraints, the integer variables being held fixed at the values
assigned to them in the optimal solution Qf the preceding mastér
problem.

Benders’' decomposition has often been used in practice. In most
cases, some special structure in the master problem or subproblem is
exploited and problems that were computationally intractable with
respect to implicit enumeration techniques are solved quite
efficiently.

Sherali and Adams [1984] apply Benders’ decomposition to a set of

discrete location allocation problems. They consider a master problem
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in which they relax some of the integrality constraints and then solve
it using a partial enumeration scheme. The subproblem reduces to a
transportation problem. Geoffrion and Graves [1974] designed a multi-
commodity distribution system using this approach. Their problem
serves as a classic example of Benders’ decomposition with the original
problem decomposing into a set of transportation problems when the
binary variables are held fixed. Federgruen and Zipkin [1984]
addressed a combined vehicle routing and inventory allocation problem
with a version of Benders’ decomposition.

Mount-Campbell et al. [1986] have formulated the satellite
location problem as a mixed integer program. Their formulation is
shown in Figure 6. The objective is the minimization of total
deviation. In this formulation, satellites are assigned to positions
in an ordering; the locations of the positions are simultanecusly
determined. Constraints (3.16) insure that there is only one satellite
assigned to each position, and constraints (3.17) insure that each
satellite is assigned to some position. If satellite i is assigned to
position j, then the distance of position j from the desired location
of satellite i is measured by constraint (3.18). The minimum required
orbital separations between pairs of satellites are enforced by
constraints (3.19). Constraints (3.19) also ensure that positions with
a high index are west of positions with a low index. This formulation
is a relaxation of the problems formulated in Figures 2 and 4 because
of the absence of boundaries on the feasible arc for each satellite

location.
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n
+ -
MINIMIZE Z (Y +Y ) (3.15)
J= J J
subject to
n
Z X =1 j=1,...n (3.16)
i=T ij
n
Z X =1 i=l,...n (3.17)
J=T ij
n
+ -
Y +Y -Y = Z dX j=1,...n (3.18)
J J J i=T i ij
Y -Y >AS (X - (1-X ) il (3.19)
- > - (1= =1,...n-j; .
jHk ih ij h, j+k i=1,...n;"
=i,...n
+ -
Y , Y ,Y > 0 j=1,...n (3.20)
J J J
X =0or1 i=1l,...n; j=1,...n (3.21)
1)
where

n = number of satellites and satellite orbit positions

Y = actual longitude of satellite orbit position j
J
+ -

Y (YY) = westward (eastwa.rd% distance of an orbit position from the
J J desired location of the satellite in that position.

X =1 if satellite i is assigned to position j, 0 else
1)

As.h = required separation between satellites i and h
i

d = desired location for satellite i
i

Figure 6. 0-1 Mixed Integer Program for the Satellite Location Problem
(Used in Benders’ Decomposition)
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Mount—Campbell et al. suggest using Benders’ decomposition to
solve the formulation given in Figure 6. The form of the master
problem and the subproblem are indicated in Figures 7 and 8,
respectively. The procedure used to decompose the problem (Figure 6)
is a classic illustration of Benders’ decomposition. The integer
variables and the corresponding constraints (3.16),(3.17) and (3.21)
are retained in the master problem while the continuous variables and
the constraints (3.18),(3.19) and (3.20) make up the linear subproblem.
There is an interesting physical interpretation of the decomposition in
this case - the master problem orders the satellites, and given the
ordering, the subproblem assigns locations to positions while enforcing
required orbital separation between pairs of satellites.

The dual of the subproblem is shown in Figure 9. The dual
variables are used in constructing the Benders’ constraint for the
master problem as indicated in equation (3.26). The constraint matrix
in the dual of the subproblem is unimodular. Even though the number of
variables in the dual can be large for actual problems, a majority of
them can be discarded because a large number of the corresponding
primal constraints are redundant, once an ordering is fixed. The dual
of the subproblem, therefore, is easily solvable using standard linear

programming methods.
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MINIMIZE z

subject to n n
Z)V_qu +q 1 S (3.22)
a c =1,... .
2 by s 25t =5
n
. X =1 j=1,...n (3.23)
i=T ij
%_
LI X =1 i=1l,...n (3.24)
J= 19
X =0or1 i=1,...n;j=1,...n (3.25)
19
where

S = number of Benders’ constraints generated so far
Z = "dummy" variable
X is as defined in Figure 6

ij
th
ail_ = coefficient of X  in the q  Benders’ constraint obtained by
ij i
collecting coeffigient terms from the expanded constraint 3.26
cq = collected constant terms for the @ Benders’ constraint

The Benders’ constraint before collection of coefficients is :
n n n-ln-j n n
v % oq TN T v a
Z > udX + S (X -(1-x w 3.26)
- ié[ jé"[ Jiij J= ké[ ié[ hé[ A ih 1ij ( h,j+k)) Jjkih (
d and Asih are as defined in Figure 6
i .
. [ q

W ={v
Jkih ik ij
{ agsignment y 0 else

ifX =1 and X = 1 in the previous (3.27)
ij h,j+k

q q th
u  and v are the dual variables from the q subproblem

J Jk .
(See Figure 9)

Figure 7. The Master Prc&lem in Benders’ Decomposition
(at the q- iteration)
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3 +
MINIMIZE Z (Y +Y ) (3.28)
J= J J
subject to . _
Y +Y -Y, = K i=1,...n (3.29)
J J J J
q A . ‘
Y‘ - Y. _)_ Q. J=1,noan-1;k=1’oo'n_‘] (3.30)
Jj+k J Jjk
+ -
Y , Y , Y > 0 j=1,...n (3.31)
J J J
where
Kc.l = Right hand side of (3.18) with X _ given by master problem
J 1)
Qc.lk= Right hand side of (3.19) with X given by master problem
J 1)
+ -
Y , Y ,Y are as defined in Figure 6
J J J

Figure 8. The Subproblegh (Primal) in Benders’ Decomposition
(at the q° iteration)
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n n-1 n-
q q
MAXTMIZE Z Ku + Z z;‘ Q v, (3.32)
=T jJ J=1 k=1 jk jk
subject to
n-1
u - v < 0 (3.33)
1 J= 1J
J-1 n-
u + v - z:v £ 0 j=2,...n-1 (3.34)
J k=T k,j-k k-T Jk
n-1
u + v < 0 (3.35)
n k=T k,n-k
-1 s u. S 1 j=1’ou'n (3:36)
J
V. _>_ 0 j=1,ooon—'1; k=1,ooon-j (3.37)

th
u_ = the dual variable corres ndut)g to the j~ constraint in the
J set of constraints (3.29§°in e primal subproblem (Figure 8)

th
v = the dual variable corres rmd.lgg to the jk  constraint in the
jk set of constraints (3.30§oin e primal subproblem (Figure 8)

K? ’ Q?k are as defined in Figure 8
J J

Figure 9. The Subproblel{lh (Dual) in Benders’ Decomposition
(at the @ iteration)
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3.2.1 On Solving the master problem

The master problem (Figure 7) is a pure integer program except for
the single continuous variable z. At each iteration one constraint of
type (3.22), a Benders’ constraint, is added to the master problem.
This constraint is generated from the dual variable values of the
solution to the subproblem at the previous iteration. In the absence
of these constraints, the master problem reduces to an assignment
problem, to which a solution can be found extremely efficiently.
Therefore, in order to take advantage of this fact, the Benders’
constraints are taken into the objective function using Lagrangean
relaxation as shown in Figure 10. Fisher [1981] and Shapiro [1979]
discuss the concept of Lagrangean relaxation and present thorough
expositions of the subject.

The relaxed master problem has an additional set of variables-
the Lagrangean multipliers. The determination of these multipliers is
not easy; in Appendix A, a master problem for which optimal Lagrgngean
multipliers do not exist is shown.

Since a Lagrangean relaxation of the master problem is being
considered, for any feasible set of Lagrangean multipliers, the
objective function in the relaxation is a lower bound on the optimal
solution to the master problem. Therefore, determining Lagrangean
multipliers such that the Lagrangean objective function is maximised
ensures the tightest possible lower bound on the solution to the master
problem, and perhaps even the optimal solution. Since the optimal

solution to the master problem is not obtained in most cases, the lower
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S n n

MINIMIZE ~ Z - Z L (z —.Z Z al X -cb) (3.38)
q= i=T =T ij 1iJ

subject to
n

X = 1 j=1,...n (3.39)

i=T ij .
f‘l_
L[ X =1 i=1,...n (3.40)
J= 1)
X =0or1 i=1,...nj;j=1,...n (3.41)
ij

where

S = number of Benders’ constraints generated so far

q
Z, a, , cq, X . are as defined in the master problem (Figure 7)
ij ij

th
Lq = Lagrangean multiplier for the q Benders’ constraint

(The Lagrangean multipliers are non-negative and sum to unity)

Figure 10. The Lagrangean Relaxag.lon Formulation of the Master Problem
(at the @ iteration)
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bound obtained is substituted in place of the master problem optimal
solution, as the lower bound on the optimm solution to the original
problem.

In the following sections, the different methods that are used in
trying to determine the Lagrangean multipliers are presented. All the
methods are heuristic methods in the sense that none of them can
guarantee finding the multipliers that yield the optimum solution to
the master problem. In section 3.2.2, a method of computing upper and
lower bounds on the optimum solution to a master problem is introduced.
The upper bound corresponds to a feasible solution to the master
problem and can be used if the heuristics cannot find a better

solution.

3.2.1.1 The fixed interval line search (FILS)

In this method, a line search is performed at fixed intervals over
the range [0,1] for the Lagrangean multiplier value corresponding to
the latest Benders’ constraint. All the previous Benders' constraints
are combined into a single constraint. In creating this combined
constraint, it is assumed that the Lagrangean multipliers of the
previous constraints remain in the same proportion to one another in
this Benders’ iteration as they were at the end of the last Benders'’
iteration. This assumption is made with the expectation that
relationships between Lagrangean multipliers remain reasonably

constant, allowing the search procedure to concentrate on the
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determination of the value of the newest multiplier and to avoid a
search for all the multipliers at each iteration.
The fixed interval line search is performed as follows :
STEP 1 : Combine all the previous Benders’ constraints into a single
constraint. In combining these constraints the coefficients in a

constraint are weighted by the value of the Lagrangean multiplier

corresponding to that constraint at the previous Benders’ iteration,

i.e., the contribution of each previous constraint to the "combined
constraint” is proportional to its Lagrangean multiplier value at the
previous iteration.

STEP 2 : Construct a Lagrangean relaxation of the master problem with
the new Benders’ constraint and the combined constraint. All the
previous constraints are discarded in this relaxation except for their
contributions to the combined constraint. Assign a multiplier "L" to
the new constraint and a multiplier "1-L" to the combined constraint.
STEP 3 : Solve this Lagrangean relaxation of the master problem as an
assignment problem, for values of L going from 1.0 to 0.0 in equal
steps, to find that value of L which provides the tightest lower bound
on the optimum solution to the master problem.

STEP 4 : Determine the actual master problem objective function value
for each of the assignments generated in step 3.

STEP 5 : If any of the objective function values calculated in step 4
is between the bounds on the optimal solution to the master problem ,
then return to the Benders’ procedure with the solution to the
relaxation whose value in the master problem is closest to the lower

bound on the master problem. Update the lower bound on the original
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problem with the largest Lagrangean objective function value found if
the lower bound is thereby improved. If no solution within the bounds
is found and the best assignment solution found has already been used
to generate a Benders’ cut, terminate the Benders’ procedure or use

another method to find a solution to the master problem.

3.2.1.2 The Golden Section Search Method (GSLS)

A golden section search .is a sequential search strategy for
problems where the objective is to determine the maximum (or minimum)
of a unimodal function of one variable over a given range. When these
conditions are met, it is an optimal search strategy.

The procedure in this method is as follows :

STEP 1 : Same as STEP 1 in FILS.

STEP 2 : Same as STEP 2 in FILS.

STEP 3 : Perform a Golden section search to determine that value of
"L" which maximizes the solution of the Lagrangean relaxation. Simmons
[1975] describes the implementation of the standard Golden section
search technique used here.

STEP 4 : Same as STEP 4 in FILS.

STEP 5 : Same as STEP 5 in FILS
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3.2.1.3 The Rounded Linear Programming Solution (RLPS)

This method does not use Lagrangean multipliers - instead the
master problem is solved as a linear program, i.e., with the
integrality constraints relaxed. The solution is rounded to give an
integer assignment which is taken as the solution to the master
problem.
STEP 1 : Set up the master problem with all the Benders’ constraints
explicitly stated. Relax the integrality constraints.
STEP 2 : Solve the linear program created in step 1.
STEP 3 : Round the continuous solution obtained in step 2 to an integer
assignment as follows:
a. Determine the largest variable value and identify
the corresponding row and column.

b. Set the value of this variable to 1.

c. Set all other variables in this row and in this
colum to 0.

d. Remove this row and column from further consideration.

Repeat a, b, ¢, and d until an assignment is generated. If all non-
zero values are zeroed out before an assignment is obtained, complete
the assignment based on the order of increasing desired locations.

STEP 4 : Return to the Benders’ procedure with this assignment as the
solution tb the master problem.

The solution to the linear programming relaxation of the master

problem is a lower bound on the optimum solution to the master problem,
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and hence, it is also a lower bound on the optimm solution to the

original problem and is used as such.

3.2.1.4 The Subgradient Method (SGRD)

Subgradient optimization is frequently used as a method of solﬁng
problems involving Lagrangean relaxation. Held et al. [1974] describe
the technique which had been disgussed by Held and Karp [1971] in the
context of the traveling salesman problem. Held et al. showed that
subgradient optimization is effective in approximating the maximum of
piecewise linear concave functions. Poljak [1967] discusses the
theoretical aspects of the algorithm and presents results on the rates
of convergence. Shapiro [1979] and Fisher [1981] provide excellent
reviews of subgradient optimization in the context of Lagrangean
relaxation.

In this method all the Lagrangean multipliers are considered
explicitly -~ no proportionality assumptions about the multipliers of
previous constraints are made.

Let Z be the optimal solution to the master problem (Figure 7),
and let Zp(L) be the optimal solution of the Lagrangean relaxation of
the master problem (Figure 10), where L is the vector of Lagrangean
multipliers. As mentioned earlier, Zp(L) < Z (Fisher [1981]) and
maximizing Zp(L) with an appropriate choice of L yields the tightest
lower bound on Z.

Let Zp = max Zp(L) (3.42)
L
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The set of feasible solutions to the relaxation can be represented as

{xt*, t=1,...T}. The value of T is finite, but it can be extremely

large. Then
Zp =max w (3.43)
subject to
—_ n n_
\ gq \ \ q t q
w < y- L L (y- L [ a x -c) t=1,...T (3.44)
q6s i=1 j=1 ij 1ij
\ q q
/_L =1 3 L >0 g6s ; (3.45)
ges

The function Zp(L) is continuous and concave and is the lower envelope
of a finite family of linear functions. The function Z»(L) is non-
differentiable at any L’ where the Lagrangean problem has multiple
optima. A vector g is a subgradient of Z»(L) at L' if

Zp(L) < Zp(L’) + g(L - L') forall L (3.46)
The function Zp(L) is subdifferentiable everywhere. The vector whose
components are indicated in (3.47) is a subgradient of Zp(L) at any L

for which xt solves the Lagrangean relaxation.

q t q
a x +c q=1,...,:8} (3.47)

ij ij

...y+

,l_l.[\/lb
.'_':[\/I’

J

Convex combinations of these subgradients are also subgradients. A
solution L* is optimal (i.e. it is the vector of Lagrangean multipliers
for the solution Zp) if and only if 0 is a subgradient of Zp(L) at L=*.

The subgradient method can be stated as follows : Given an
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initial set of Lagrangean multipliers Lo, generate a sequence { Lk }
with

Lxk+1 = Lix + tx (~yx + Axx + C) (3.48)
where
Xk = the optimal solution to the Lagrangean
relaxation with multipliers Lx ,
dx (Z* - Zp(Lx))

tx = scalar step size = R (3.49)
Il-yx + Axx + c || 2

dx = scalar such that 0 ( dx € 2 , do = 2 , and

Z%* = upper bound an Zp(L) generated using heuristics

In practice, dx is halved whenever Zp(L) fails to increase in a
given number of iterations. Even though the algorithm theoretically
converges to the optimum value of L, practical limitations necessitate
termination on a prespecified iteration limit. The values for ty and dx
given above, and the use of an iteration 1limit, are suggested by both

Fisher [1981] and Shapiro [1979].

3.2.1.5 The Adjustment Method

In this section, a method of finding Lagrangean multipliers based
on a weighted adjustment technique is introduced. The aim here is to
find a solution that 1lies within the bounds on the optimal solution
value to the master problem, and thereby, avoid premature termination

of the Benders’ procedure.



STEP 1 :

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6 :

STEP 7
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Set k = 0 and initialize the Lagrangean multipliers Lix for
all i6S where S is the set of indices for Benders’
constraints.

Solve the Lagrangean relaxation, an assignment problem, with
the multipliers L.
Evaluate each Benders’ constraint with the optimal assignment
as ZBi, i=1,...,i8}
Compute the "mean constraint value" (ZM) and the "range'' (ZR)
as follows :
™M= (ZBy +7ZB2 + ... + ZBs) / S (3.50)
ZR = max (ZB;) - min (ZB;) . (3.51)
Update Lagrangean multipliers as follows :
Li,x+1 = Lix ¥ (1-WF) + ((ZB; - ZM) / ZR) % WF (3.52)
where WF = given weighting factor. (WF = 0.1 in experiments).

Normalize the multipliers L;,x+1 80 that the multipliers sum

to 1'

Set k =k +1 . If k < maximm iterations go to step 2,
otherwise return to Benders’ procedure with best solution
found. (There is no guarantee that this solution will lie
between the bounds on the optimal solution to the master

problem).

This method is designed principally for finding a solution to the

master problem that lies within the bounds on the optimal solution,

rather than for yielding an extremely tight lower bound. An attempt to

achieve this is made by weighting the Lagrangean multipliers in such a

manner that the contribution of each Benders’ constraint whem taken
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into the Lagrangean objective function is approximately equal. There
is no guarantee that the method will find a solution to the master

problem which lies within the bounds on the optimal solution.

3.2.2 Generation of bounds on the optimal solution to the master

problem

In this section, a method to determine upper and lower bounds on
the optimum solution to the master problem at any iteration in the
Benders’ procedure is developed.‘

For the ease of exposition, consider the case where the master
problem (Figure 7) has two Benders’ constraints. Suppose two
assignment problems are solved, the first with objective function alx
+ c! and the second with objective function a2x + c¢2? (i.e. the right
hand sides of the first and second Benders’ constraints respectively).
Let the optimal assignments to the two problems be x! and x2,
respectively. Let

Al1

alx! + c! y A2l = alx? + c! ,

A22 = a?x2 + c? , and Al?2 = ax! + c2 (3.53)
By optimality A1! < A2! and A22  A12 , Without loss of generality
assume Al! < A22 , Then the three possible cases can be plotted on a

line diagram as follows :

Case 1 : ALl % ; A2

A2 % ! A21

Case 2 : All % ' AL2

P LI r— ¢ |
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Case 3 : All % ) A2

A2 !

x A22

increasing function value >

These are the only three possible cases when All < A22, The lower

bound on the ocbjective function value of the master problem in all

three cases is A22, If A2?2 ig not the lower bound then there exists

some assignment which yields an objective function value for the second
problem that is less than A22, But this violates the fact that A2% is
the optimal solution value to the assignment problem with the second
objective function.

The upper bound is given by the minimum of the two right endpoints
in each case, i.e., A2 in case 1, A?! in case 2, and A22 in case 3.
These are obviously upper bounds because in each case there is an
assignment that satisfies all the Benders’ constraints. If the upper
and lower bounds are equal, as in case 3, then we have the optimum
solution to the master problem.

This result can be extended to the general situation with |8]

Benders’ constraints.

n_ n
kg \ \ qQ k q
Define A = / [ a x +c¢ q,k6ES (3.54)
i=1 j=1 ij 1ij
k
where x is the optimal solution to the assignment problem with
1)

objective function given by

n_ n_

\ \ k k
[l [/_ a x +c
i=1 j=1 ij ij
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A lower bound on the master problem is given by
qq
IB =max { A } (3.55)
z qges
An upper bound on the optimal solution to the master problem is
given by
{ m | mq mn }
UB =min { A tA <A for all g68 , g#n } (3,56)
z { 1 rq mn }
m,n6S { : }

A >A for some g6S and for all re€S

Proof : Let the lower bound as defined by equation 3.55 be Arp., If
AP? is not a lower bound on the optimal solution to the master problem,
then there is some optimal solution to the master problem, say, xk such
that the right hand side of constraint p evaluated with this vector is
Axp, and Ake? < Arp, But, by definition, APP is the optimum sclution to
the assignment problem with the right hand side of constraint p as its
objective function. Therefore, no solution xk such that Ake < App
exists, and APP is a valid lower bound on the optimal solution to the
master problem.

Evaluated at x®, the right hand side of every Benders’ constraint
has a value less than or equal to UBz as defined in equation 3.56. By
definition, x® is an assignment. Therefore, a feasible solution vector
(x®) which yields a master problem objective function value equal to
UBz exists. Hence, UBz is an upper bound on the optimal solution to
the master problem.

Calculation of these bounds involves solving one assignment
problem at each iteration q (assuming one Benders’ constraint added per

iteration) and making 2(q-1) functional evaluations. It also involves
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storing the indices of the variables in the assignment at each

iteration.

3.3 Linear Programming with Restricted Basis Entry

In this section, the initial non-linear mathematical progra.mming‘

model (Figure 2) is reformulated as an "almost" linear program with a
set of complementarity constraints. These constraints are non-linear,
but through some modifications in the simplex method for linear
programing they can be enforced. However, there is now no guarantee
of optimality, or even of feasibility, upon termination of the
algorithm. Ignizio [1984] has used complementarity constraints in goal
programming approaches to minimal interference scheduling problems. He
claims that the method is an extremely efficient heuristic. He does
not indicate how the method was implemented, other than saying that a
restricted basis entry rule was used.

In Figure 11, a formulation of the satellite location problem as
an "almost” linear program with complementarity constraints is shown.
The objective function (3.57) is the same as that in Figure 2, i.e.,
minimization of the total deviation. Constraints (3.58) evaluate the
deviation of assigned locations froﬁ\ desired locations. Constraints
(3.59),(3.60),(3.63), and (3.64) together enforce the minimum required
separation between pairs of satellites, constraints (3.64) being the

complementarity constraints. Constraints (3.61) establish the
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i\ +
MINIMIZE Z (X +X ) (3.57)
J= J J
subject to
+ -
X +X -X =d, j=1,...n (3.58)
J J J J
X -X -P _+N =0 i=l,...n-1 (3.59)
i J ij iJj J=i+l,...n ,
P + N‘ R 2 AS. ]:::]..,oscn"l (3160)
ij ij ij j=i+l,...n
E <X <W, j=1,...n (3.61)
J J J
+ -
X , X ,X 20 Jj=1,...n (3.62)
J J J
P ,N > 0 i=l,...n-1 (3.63)
ij ij j=i+1,...n
P . N = o iil,...ﬁ-l (3.64)
ij ij j=i+l,...n
where

+ -
X,X,X,E,w,d, /\S ,n areasdefined in Figure 2.
J J J J I 3 1)

P (N ) = degrees west (east) of satellite j that
i i
J J satellite i is located.

Figure 11. "Almost" Linear Programming Formulation of the Satellite
Location Problem wgth Complementarity Constraints
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boundaries on the feasible arc for each satellite. Constraints (3.62)
are the non-negativity constraints.

The satellite location problems that are formulated in Figures 2,

4, and 11 are equivalent - the differences lie in the mathematical

programming formulations. The absolute value constraints (2.3) in

Figure 2 are expressed as a combination of integer variables and linear

constraints in Figure 4, and are now expressed as a combination of .

continuous variables and linear and complementarity constraints in
Figure 11.

In the implementation of the formulation in Figure 11, constraints
(3.64) are not explicitly specified. Rather they are enforced through
a restricted basis entry procedure within the simplex method. At each
iteration, only those variables whose complements would be nonbasic
after a change of basis are considered for entry into the set of basic
variables. Pivots in which the entering non-basic variable is the
complement of the leaving basic variable are permitted. Through the
application of these rules, the complementarity constraints are
implicitly enforced. Non-basic variables always have value =zero, and

one variable of a complementary pair is always forced to be non-basic.

3.4 The Switching Method

In this section, a heuristic switching method for the solution of

the satellite location problem is introduced. This technique has been

developed because it is 1likely that in most optimal solutions to
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problems of this type, the prescribed location of a satellite will not
be far from its desired location. Therefore, if one starts with the
satellites ordered by their desired 1locations and consider
perturbations in this order, there is a reasonably good chance of
finding the ordering that yields the optimum solution or at least an
ordering that yields a very good solution.

To apply this method, a systematic determination of ozderingé to
be considered is required. In the interests of efficiency, the
examination of previously considered orderings should be avoided. A
further requirement is a procedure for efficiently determining the
solution to the satellite location problem for a given ordering. A
switching technique which permutes small subsets of adjacent
satellites, combined with a linear programming procedure which solves
the satellite location problem for any given permutation of the
satellites, fits these requirements.

A basic outline of the method is as follows :

1. Determine an ordering of the satellites.

2. Solve a linear program with the ordering from step 1 to obtain

a solution to the satellite location problem. (The LP minimizes
total deviation while ensuring that minimum separation
requirements are met.)

3. Repeat steps 1 & 2 for a different ordering.

If there are n satellites there are n! possible orderings and it
is obvious that all possible orderings cannot be evaluated for large
values of n, for example, n > 10, in reasonable amounts of computer

time. This method considers orderings in which the satellites are
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likely to remain in the vicinity of their desired locations. The total
number of orderings considered is but a tiny fraction of all possible
orderings.

A linear programming formulation for the satellite location
problem with a specified ordering of the satellites is shown in Figure

12. The objective function is the minimization of total deviation.

Constraints (3.66) measure the deviation of each assigned location from ‘

the corresponding desired location. Constraints (3.67) ensure that the
minimum required orbital separation between all pairs of satellites is
met. Since index k is always greater than index j, position k and the
corresponding satellite S(k) is to the west of position j and the
satellite in position j, S(Jj). Since an ordering is specified,
absolute values, nonlinear constraints, or integer variables are not
needed to enforce the minimum required separation.

In Figure 13, the dual of the linear program presented in Figure
12 is shown. The constraints in the dual formulation refer only to
orbit positions. All references to satellites occupying specific
positions occur only in the objective function. = Therefore, a feasible
solution to the dual problem is feasible irrespective of the satellite
ordering; it may not be optimal, but it will be feasible. It is this
property that is exploited to efficiently examine orderings.

From duality theory in linear programming, it is known that at
optimality the ‘primal and dual objective function values are identical,
and that if the primal is solved, the dual solution can also be
obtained and vice-versa (Bazaraa and Jarvis [1977]). Therefore, no

information is lost by solving the dual problem. Instead, a great deal
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n
+
MINIMIZE Z = Z (Y +Y ) (3.65)
J= J J
subject to
+ -
Y. + Y. - Y. = d. i.:S(J.); j=1'ooon (3.66)
J J J i
Y - Y > S —1 PIRORY ¢ S (3-67)
k- Ty 2 DSy R L TR R
+ -
Y , Y , Y 2> 0 j=1,...n (3.68)
J J J
where
n = number of satellites and orbit positions
Y = the actual location of orbit position j
j ,
+ -
Y ;Y the deviation to the east and west respectively, of
J J grescrlbed location of position j from the desired
on of the satellite in position J

S(j) = the satellite currently occupying position j

d = desired location of satellite i
i

[_\S_h = required orbital separation between satellites i and h
i

Figure 12. Primal Linear Programming Formulation for the Satellite
Location Problem with Satellltes in a Given Ordering
(Used in the Switching Heuristic)
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n n-1 n
MAXIMIZE 2Z = Zdu+g ZAS v (3.69)
J=T i § J=T k=j*1 ih jk
subject to
J=1 n
u + Zv - Z v £ 0 j=1,...n (3.70)
J k=T kj k=j*¥1 Jjk
-1 _<_U_ _<. 1 j=1,...n (3-71)
J
v. 2 0 Jj=1,...n-1;k=j+1,...n (3.72)
jk
where
th .
u_ = dual variable corresponding to j constraint in set (3.66)
in the primal formulation (Figure 12)
th
v = dual variable corresponding to jk constraint in set (3.67)

jk
J in the primal formulation (Figure 12)

n, d, AS_h are as defined in the primal formulation (Figure 12)
i i
Figure 13. Dual Linear Programming Formulation for the Satellite

Location Problem with Satellites in a Given Ordering.
(Used in the Switching Heuristic)
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is gained in this case. In the dual, there are only n explicit
constraints as opposed to the primal where there could be as many as
0.5n? + n constraints. On the other hand, in the dual, there are many
more variables than in the primal, but in general, many variables are
easier to handle than many constraints in linear programming.

The switching heuristic can be summarized as follows :

STEP 1 : Create an initial ordering O; by ordering satellites in
increasing order of desired locations.

STEP 2 : Solve the dual linear program to optimality with this ordering
O:.

STEP 3 : Specify a starting subgroup size, say k, and a maximum
subgroup size, say k=u.

STEP 4 : If k > k™ ,stop. Otherwise evaluate all k! permutations of
the satellites in positions 1 to k, with the satellites in
positions k+l1 to n not changing position. The locations of
all satellites may be changed. Each evaluation involves
reoptimizing the dual after making the necessary changes in
the objective function. Update the ordering to the best one
found so far - the one which minimizes the objective function
value.

STEP 5 : Repeat step 4 with subgroups 2 to k+l1, 3 to k+2,...., and n-
k+l to n, updating the ordering at the end of the examination
of each subgroup.

STEP 6 : If no improved solution is found, increase k by 1 and go to
step 4. If an improved solution is found, go to step 4 with k
unchanged.
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The performance of this procedure can be considerably improved by
introducing a type of fathoming procedure in the reoptimization of the
dual. Initially, the dual is optimized with the ordering by desired
location. The optimal solution is the initial incumbent solution.
Once a switch is made, since the basis for the dual is still feasible,
the new objective function value for this feasible solution can be

determined. (The objective function coefficients are the only

.parameters changed in making a switch). If the value of the new

objective function is greater than the current incumbent solution
value, the switch is discarded since it cannot yield a better solution
on reoptimization. If the new objective function value is less than
the current incumbent, solution value, reoptimization is required to
determine whether a better solution can be reached. After each primal
jteration in the reoptimization of the dual problem, an updated
objective function value is obtained since the dual solution is primal
feasible. If, after any iteration, this updated objective function
value exceeds that of the current incumbent solution value, the
reoptimization is terminated and the switch discarded from
consideration. If the reoptimization is completed, a new incumbent
solution has been found.

By using the fathoming procedure described above, the dual (or
primal) does not have to be solved from scratch for each permutation.
At most, a few primal pivots with the dual problem have to be performed
for the majority of switches, since a large portion of the solution
vector is unchanged when the switches made are on satellites in the

vicinity of one another.
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The implementation issues are discussed in the following chapter.

Extensions of this method to include feasible arcs are presented in

Chapter 5. Feasible arcs can introduce unboundedness in the dual, and

correspondingly, infeasibility in the primal for some or all orderings.

In the absence of feasible arcs, the primal and the dual are always
feasible and bounded.

Switching or interchange techniques have been widely used in 'the

past as heuristics for a large variety of problems. A seminal paper in

the area is the one by Reiter and Sherman [1965]. They propose the use

of an intelligent search based on the nature of the problem combined

-with a random search to improve the probability of escaping from being

trapped at local optima. Lin and Kernighan [1973] use an interchange

heuristic in an effective procedure for gZenerating near optimum

(7]

clutions to traveling salesman problems. Their work 1is an extension
of an earlier paper by Lin [1965]. Eilon et al. [1971], Cassidy and
Bennett [1972], and Wren and Holliday [1972] all use variations of
interchange heuristics in their work on vehicle routing problems.
Federgruen and Zipkin [1984] use an interchange heuristic as one
approach to solving combined vehicle routing and inventory allocation

problems.




CHAPTER IV

EMPIRICAL STUDY OF THE FOUR SOLUTION TECHNIQUES

In the last chapter, four solution techniques for the satellite

location problem were presented. In this chapter, the computer

Aimplementation of these methods is discussed. The methods are tested
on a set of problems generated from real data and the performance of
each method is evaluated in terms of final solution value and the CPU
time required to reach that solution. Some of the difficulties
involved in the implementation of these methods and the steps taken to

overcome them are also mentioned.

4.1 Implementation of the Mixed Integer Programming Method.

General purpose mixed integer programming packages are available
commercially. The mixed integer programs formulated in Figures 4 and 5
can be solved by any such code. Since no commercial code was
available, a package developed by Martin and Gonsalvez [1981] is used
in the implementation of this method. The package solves mixed integer
programs using the branch and bound technique of implicit enumeration.
Branching directions are chosen through the evaluation of pseudo-costs,
which estimate the improvement or degradation in the objective function

value involved in following a particular path. The concept of pseudo-

56
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costs was introduced by Benichou et al. [1971]. Gonsalvez [1983]
provides a brief description of the code and some of its features.

In trying to solve the satellite location problem as formulated in
Figure 4 with this computer code, there were several instances of
premature termination due to accuracy check problems. The accuracy
check problems appear to be caused by the large disparity between the
values of the constraint matrix coefficients (the differences ranging
to four orders of magnitude). These accuracy problems provided the
motivation for the reformulation of the model in Figure 4 which appears

in Figure 5.

4.2 Implementation of the Benders’ Decomposition Method

A flow chart of the Benders’ decomposition procedure, as applied
to the satellite location problem, is shown in Figure 14. The diagram
highlights the major modules of the computer program and the
relationships between them.

The initialization portion of the code consists of the input of
the problem data : the service areas, the minimum required separation
matrix, and the desired locations for the satellites. An initial
assignment, in which the satellites are ordered by increasing desired
location, is generated.

Once an assignment (i.e., an ordering) is specified there are a
large number of redundant separation constraints in the subproblem
(i.e., constraints of type (3.30) in Figure 8). These redundant

constraints are identified by the procedure described in Appendix B.
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Redundant constraints in the primal formulation of the subproblem
appear as variables in the subproblem’s dual and these variables can be
discarded without affecting the optimum solution.

After identifying and discarding the variables corresponding to
redundant primal constraints, the subproblem’s dual is set up in a form
acceptable to the linear programming code used by means of a matrix
generator. The subproblem dual is then solved. The linear programﬁing
code used is PROFOR developed by Martin [1979].

The Benders’ constraint is constructed from the dual variables in
the optimum solution to the subproblem as indicated in equation (3.26).
A general description of the generation of Benders’ cuts is presented
in Lasdon [1970].

The constraints are stored using a variation of gparse storage
techniques. The assignment from which the current subproblem was
generated is stored (this requires n storage elements where n is the
number of satellites in the problem under consideration). The solution
vector for the "u" variables in the dual formulation (Figure 9) is
stored (n storage elements). The ujd; portion of the coefficient for
Xi; in the Benders’ constraint (3.26) can be easily obtained from the
above two sets of stored values - di being the desired location of the
satellite in position j (given by the assignment) and u; being directly
obtained from the solution vector. Finally, only those Xi; that were
equal to 1 in the previous assignment have /\Sin wjkin coefficients
(see equation 3.27) in the current master problem. These are computed
and stored (n storage elements). The coefficients of the variables in

each Benders’' constraint are thus compactly stored using 3n storage
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elements, even though there are n2 variables in each constraint and
most of these variables have non-zero coefficients. Without such a
storage technique for the Benders’ constraints, the storage
requirements for large problems would be so great as to necessitate
storing the majority of constraints in external memory.

The new Benders’ constraint is added to the master problem. Upper

and lower bounds on the optimum solution to the master problem are.

generated using the procedure described in section 3.2.2. An
‘ assignment which yields an objective function value within these bounds
is termed an "acceptable" solution to the master problem.

The master problem is now solved using one of the five heuristic
methods described in sections 3.2.1.1 to 3.2.1.5. In the experiments
presented in this chapter, the particular method used at each iteration
is selected at random. If the selected method fails to find an
acceptable solution to the master problem, then the next method in the
sequence {FILS, GSLS, RLPS, SGRD, ADJ1} is used. If all five methods
fail to find a solution within the bounds on the optimum solution to
the current master problem, the procedure terminates. The procedure
also terminates if the lower bound (lower bound on the current master
problem) and the upper bound (best subproblem solution obtained so far)
on the original problem are equal, in which case the solution obtained
is the optimal solution. If an acceptable solution to the master
problem is found, the subproblem corresponding to this assignment is
generated and a new iteration started.

Four of the heuristics for solving the master problem are based on

Lagrangean relaxation. They repeatedly solve assignment problems in
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the process of finding a solution to the master problem. The code used
to solve these assignment problems is an adaptation of a code developed
by Burkhard and Derigs [1980], and is based on the shortest augmenting
path method.

The rounded linear program solution heuristic does not perform
well, in terms of computation time, on larger problems and hence was
not used in the set of experiments described in this chapter. 'The
constraint matrix for the master problem is extremely dense_(i.e. few
coefficients are zero) and hence even solving it as a linear program,
with the integrality constraints relaxed, can be extremely time
consuming. As the number of Benders’ constraints increases with
successive iterations, the situation becomes worse. For example, in a
problem with 12 satellites, 76 iterations were performed in 1 minute of
CFU time with the other four heuristics but only 14 iterations could be
performed in 1 minute when RLPS was included.

It was intended to first solve the master problem as a linear
program, relaxing the integrality constraints, and then use the shadow
prices on the Benders’ constraints as starting values for the
Lagrangean multipliers in the subgradient method and in the adjustment
method. Since solving the linear program has proved impractical in
terms of computation time, these multipliers are initialized to the
values they had at the termination of the previous iteration. These
values are then multiplied by a factor of 0.9 and the multiplier of the
added constraint is arbitrarily set to 0.1 in order to obtain a

feasible set of initial multiplier values for the current iteration.
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4.3 _Implementation of the Restricted Basis Entry Method

Enforcing restricted basis entry in a simple form requires only
minor modifications to any standard linear programming code. In the

implementation described in this section, a linear programming package

(PROFOR) developed by Martin [1979] is  used. The following .

modifications are made to the linear programming package. At each
‘iteration, after the selection of the non-basic variable to enter the
basis, a check is made to ensure that the complement of the selected
variable will not be in the basis at the completion of the pivot. This
check is performed only if the entering non-basic variable posesses a
complement (i.e., the check is performed only for the Pi; and Nij
variables as defined in Figure 11). If a pivot will result in both
complements being in the basis simultaneously, thus allowing a
complementarity constraint to be violated, then a new entering variable
is selected from the list of candidate non-basic variables. If none of
the non-basic variables in the set of candidates can enter the basis,
then the procedure terminates.

The above procedure may terminate at infeasible or non-optimal
solutions. No attempt is made to influence the choice of pivot
elements, other than the step described above which prevents
complements from being in the basis at the same time. Standard
selection procedures for the entering non-basic variable and the
leaving basic variable are used. For a discussion of pivot procedures

and selection of the row and column for a pivot in the simplex method
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for linear programming, the reader is referred to Bazaraa and Jarvis

[1977].

4.4 Implementation of the Switching Technique

The steps involved in generating an efficient domputer program’ for
the switching heuristic are described in this section. The heuristic
is described in section 3.4. There are two distinct parts of the
program : generation of an ordefing and the solution of the linear
program that provides the optimal locations for satellites given an
ordering. A flow chart of the modules in the program and their inter-
relationships is given in Figure 15.

The linear program can solved by any available linear programming
code. It is preferable to use one that stores the inverse of the basis
in a product form, since this allows an efficient generation of
feasible starting baeses for the linear programs, as is described later
in this secf.ion. The linear programming code used is PROFOR which was
developed by Martin [1979]. This program is based on the. revised
simplex method and uses the product form of the inverse for basis
storage. Both the revised simplex method and the product form of the
inverse are discussed in Bazaraa and Jarvis [1977].

Even though the individual linear programs generated by the
switching heuristic are easily solved, solving each linear program from
the basis corresponding to the origin to the optimal solution is not

computationally practical, when the number of orderings to be




Figure 15. Flow Chart for the Switching Heuristic
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considered through the switching method is taken into account. Each
linear program is not solved starting from the origin, rather the
optimal basis for the linear program corresponding to the ordering
before the switch is used as a starting basis. This basis is still
feasible after the switch since only the objective function
coefficients are changed in the dual formulation (Figure 13). It is
unlikely that a major portion of the solution changes after a switch
since only the satellites in the current subgroup change positions in
the ordering. Hence, this choice of a starting basis is likely to be
very close to an optimal basis for the linear program corresponding to
the new ordering.

Suppose the initial ordering is R. The linear program for the
dual formulation (Figure 13) is generated for this ordering and it is

ved tc optimality. Let S be the optimal sclution vector, Z* the

O
Y]

optimal objective function value, and B* the optimal basis. Since Z*
is the optimal dual objective function value, by the theory of duality
the optimal objective function value for the primal problem with
satellite ordering R is identical. Though the dual linear program is
examined and solved, it is the primal objective function of minimizing
total deviation that is the actual goal and this corresponds to driving
Z* as low as possible.

A switch is made in the ordering R, resulting in a new ordering
Rl. The basis B* is unlikely to be optimal for the dual linear program
corresponding to the new ordering Rl, but it is still feasible.
Therefore, the solution vector S is also feasible and is used to

evaluate the new objective function (say Z»). If 2Zn» is greater than
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or equal to Z*, then ordering Rl cannot yield a better solution than
ordering R, since Z® can only increase when the linear program
corresponding to Rl is optimized. Reoptimization is not required and
ordering R1 can be discarded.

On the other hand, if 2Z» is less than Z*, then there is a

possibility that R1 might be a better ordering than R with respect to

the objective function. The linear program corresponding to Rl is

reoptimized using the basis B* as the initial basis. At each iteration
‘in the solution of the linear program, the current objective function
value (ZP) is computed. Since the dual formulation is a maximization
problem, ZP has to increase at each iteration. If Zr becomes greater
than or equal to Z* at any iteration, then the linear program can be
terminated and the ordering Rl discarded. The linear programming code
uses the product form of the inverse in which the inverse is stored as
a set of vectors called "eta vectors"; one eta vector for each pivot.
The inverse of the basis B* is regenerated by dropping the eta vectors
that were added to the inverse in the optimization of the linear
program corresponding to Rl.

The final possibility is that the reoptimization with ordering R1
is completed, and Zr at this point is .less than Z*. Therefore, the new
ordering R1 is an improvement on the old ordering R. The ordering R1
is now called R, the current basis is called B*, Z* is set equal to Z°,
and the new solution vector takes the place of S. A new switch is
selected and the procedure is repeated.

During the reoptimization, all reinversions of the basis are

suppressed. This is done to allow an easy regeneration of the basis B#
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by dropping eta vectors when a switch does not improve on the current
best solution.

Once an ordering is specified there are a large number of
constraints of type (3.67) in the primal linear program which are
implicitly satisfied through other separation constraints. These
constraints in the primal formulation are termed '"redundant"
constraints, and the corresponding variables in the dual formulation
are called "redundant" variables. In the context of the dual problem,
a basis, in which all redundant variables are nonbasic, exists for any
feasible solution and in pe.fticular for the optimal solution.
Therefore dropping redundant variables from the linear program dual
does not effect the solution obtained. The number of variables in each
of the linear programs generated by the switching heuristic is thus
reduced substantiaiiy; often this reduction is on the order of 90 %.
The procedure used for identifying the redundant variables is described
in Appendix B. For the solution of the dual 1linear program
corresponding to the initial ordering, all redundant variables among
the "v" variables are identified and removed. The "u" variables are
never redundant.

After a switch is made, a dual variable that was redundant before
the switch may no longer be redundant. A minimum required separation,
which was previously implicitly satisfied through the other enforced
separations, now has to be explicitly enforced after the switch. A new
variable has to be added to the linear program dual, and this is done
by adding a column to the constraint matrix. Since this variable was

previously redundant, it is nonbasic with respect to the existing
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basis. The existing basis still provides a feasible starting basis for
the linear program dual after the switch.

It is also possible that a nonredundant variable becomes redundant
after a switch, and can be removed from the problem. However, removing
a variable is not as straightforward as adding a variable. If the

variable to be removed is currently nonbasic, it can be deleted through

a rearrangement of column indices and corresponding changes in the -

basis pointers. If the variable is in the basis, then a pivot has to
be performed to make it nonbasic before it can be dropped. Neither
situation lends itself to an efficient implementation. In this
implementation, these redundant variables are left in the problem until
their number exceeds a given 1limit, at which point they are all
removed.

The switching heuristic as stated in section 3.4 specifies that
all permutations of satellites within a subgroup are explicitly
examined. This leads to repeated examination of some orderings as
successive subgroups are considered. By considering only permutations
of a subgroup in which the last satellite in the subgroup does not
occupy the last position, repeated examinations of the same ordering
are avoided. All orderings that would have been considered previously
are still examined. A proof of these statements is given in Appendix

C.
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4.5 Generation of the test Drobléms

A set of seven test problems was created in order to compare the
performances of the four techniques. These scenarios were selected to
represent actual satellite location problems. For each scenario,
nations which are in geographical proximity to one another constitute
the service areas. Most of the satellites in a scenario are unable to
occupy the same geostationary orbit location without causing
unacceptable interference to the neighbouring service areas.

Therefore, the nations included in each scenario have to arrive at some

- mutually satisfactory satellite location plan. The seven scenarios are

described in Appendix D, the names of the nations in a scenario, the
desired orbital location for the satellites, and the worst case minimum
required separation matrices {/\S matrices) being given.

Each service area in a scenario is specified by a set of test
points. These test points, denoted by geographical longitude and
latitude, are usually at the boundaries of the nation. The polygon
formed by Jjoining these test points should envelope the country,
thereby ensuring that, if interference levels at the test points are
acceptable, then interference levels are acceptable throughout the
service area. The test points for each country in the scenarios were
determined using an atlas, with the criterion that the polygon formed
by the test points covered the entire country.

In these experiments, elliptical satellite signal beams are
assumed throughout, while Earth station beams are circular in cross-

section. It is, therefore, necessary to compute the ellipse that will
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cover the polygon representing a service area most efficiently. This
ellipse is termed the minimum ellipse and is computed using the minimum
ellipse program developed by Akima [1983]. The minimum ellipse is
specified by the length of its major and minor axes, the beam center in
longitude and latitude coordinates, and an orientation angle. These

ellipse parameters and the corresponding minimum ellipse itself change

as the satellite location is shifted. Therefore, minimum ellipses are .

computed at 2° intervals over the entire feasible arc for each service
\area.

Once the test points have been specified and the minimum ellipses
determined, the minimum required orbital separation between each pair
of satellites is calculated. This required separation (/\¢), which is
required in order to satisfy the specified threshold C/I ratio, varies
as the satellite locations change. The separation is computed at 4°
intervals over the entire common feasible arc for each pair of
satellites. The largest value among these separations is denoted as
the /\S value (worst case minimum required separation) for that pair of
satellites. A complete /\S matrix which contains /\S values for all
pairs of satellites is computed for each scena.rib.

All the input that is required to define a scenario for any of the
four solution techniques is now available :

1. the service area names

2. the number of satellites for each service area

3. the desired location for each satellite

4. the /\S matrix
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4.6 Discussion of experimental results

The four solution techniques, mixed integer programming (MIP),
Benders’ decomposition, the restricted basis entry method (RBE), and
the switching heuristic were applied to each of the seven test
problems. In every case, the objective was to minimize the total
deviation. Feasible arc restrictions were not imposed for any of the
runs. The final solution obtained and the total CPU time taken for
each of the twenty-eight runs are presented in Table 1.

Some restrictions on the lengths of individual runs were imposed.
Maximum time 1limits of 300 seconds and 60 seconds were set for the
Benders’ procedure and the RBE method, respectively. The Benders’
procedure also had a maximm iteration limit of 150 iterations.

Cverall, the switching heuristic outperforms the other three
techniques both in terms of final solution value and in terms of total
time taken. The switching heuristic finds the best solution for six
out of seven scenarios and in the seventh case arrives at a solution
that is within 10% of the best solution. Wi_th regard to solution time,
the switching heuristic is again the best alternative in six out of
seven scenarios.

The MIP method is guaranteed to find an optimal solution if one
exists. However, with the satellite location problem, the method runs
into considerable difficulties with accuracy checks, often resulting in
premature termination. This may be due to the sensitivity of the code
used, or due to the structure of MIP model of the satellite location

problem. For only two of the seven scenarios does the method find the
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TABLE 1. COMPARISON OF THE PERFORMANCE OF THE FOUR SOLUTION METHODS

Objective Function : Minimize total deviation
( without feasible arc limitations )

SCENARIO ! H METHODS :
1 ] )

1 ] )

(# Sat.) | ' M.I.P ! BENDERS' | RES. BASIS | SWITCHING |

] [] ] ) [} ]

' 1 [} ] 1 ]

H ' o} c } '

S.AMERICA {SOLN. ! 21.92 ! 44,39 : 52.84 ! 21.92 H
(13) ITIME | 83 ' 109 H 8 ! 9 !

] ] (] ] 1 ]

P a ! c ! : E

E.EUROPE {SOLN. | 53.46 : 51.63 H 110.01 H 41.48 H
(12) 'TIME ; 13 ! 95 ' 9 : 5 !

] ] | 1 1 _

T . . s s

W.EUROPE {SOLN. | 31.40 H 47.13 ! 81.25 H 34.21 '
(12) ‘TIME | 161 : 95 ' 8 ' 1 !

] [} ] ] 1 ]

i [] ] ) ] ]

. H a | c . : H

S.E.ASIA {SOLN. | 24.25 ' 29.84 ! 80.85 : 23.29 .
(10) {TIME 20 : 68 H 3 : 2 i

1 L ] 1 ] ]

] ] ] 1 1 )

: ' a | c | ‘ '

N.AFRICA {SOLN. ! 38.72 H 24.49 ! XXX ! 24.49 !
(10) {TIME 110 : 66 H 60 : 2 !

[] 1 (] ] 1 ]

P a ! b | : i

EUROPE {SOLN. ;| 212.56 : 230.18 H XXX ! 150.69 |
(26) TIME | 301 ! 300 : 60 : 71 H

] ] ] ] 1 ]

] ] ] ] 1 1

: : a | b | : :

NCS AMERICA |SOLN. ! X% H 106.30 H b3 2 9 ! 40.56 :
(26) \TIME | 125 : 300 : 60 h 87 :

All times measured in CPU seconds on an IBM 3081-D

o - optimum solution

a - termination due to accuracy checks

b - termination due to time limit

c - termination due to iteration limit

XXX - no feasible solution found at termination
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optimum solution. In the remaining five scenarios, the program is
terminated by excessive accuracy checks with nonoptimal solutions.

The Benders’ procedure did not perform as well as the switching
heuristic or the MIP method. Only in one case does it provide the best
solution, and in this case the switching heuristic reached the same
solution in 2.4 seconds compared to the 66 seconds taken by the
Benders’ procedure. It was hoped that the Benders’ procedure wéuld
converge to near optimal solutions quickly. The procedure converges,
but only slowly when compared to the switching heuristic. The solution
times for Benders’ procedure are of the same order of magnitude as
those taken by the MIP method.

Among the four techniques, the restricted basis entry method
converges to the worst solutions. Though it quickly arrives at
solutions for four of the smaller probl ; it fails to converge for
two of the larger problems with 26 service areas and one smaller
problem with 10 service areas.

From the results of these experiments, it is clear that the
switching heuristic is an excellent method - for solving the satellite
location problem in terms of the "goodness" of the solution, the

solution time, and in reliability.




CHAPTER V

SWITCHING HEURISTICS FOR VARIATIONS IN THE SATELLITE LOCATION PROBLEM

The switching heuristic, for solving the satellite location

problem where the objective function is the minimization of the total

deviation, was introduced in Chapter 3. The comparison study in
bhapter 4 showed that the switching heuristic outperformed the other
three solution methods that were applied to the set of seven test
problems, both in terms of the quality of the solution obtained and in
the time needed to reach that solution.

Variations in the switching heuristic are introduced in this
chapter. These variations extend the applicability of the switching
heuristic to different satellite location models. A new objective
function, the minimization of maximum deviation of the prescribed
location of a satellite from its desired location, is discussed. The
addition of feasible arc constraints to the satellite location problem
is considered. Even though these constraints .were specified in the
initial formulations in Figures 2,4, and 5, they were not enforced in
the experiment discussed in Chapter 4.

In the discussion of the minimum required separation matrices in
Chapter 2, it was mentioned that solutions obtained using /\S values
(worst case minimum required separation) might be conservative. The

use of /\g (the minimum required separation for the current location of
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the satellites) in place of /\S 1is investigated in this chapter.
Application of the switching heuristic to a set of test problems first
with /\S, and then with /\g , shows that this change improves the
objective function value significantly. The switching heuristic can
easily accomodate /\@ in place of /\S, but the other three solution
methods have to undergo extensive modification and significant growth
in the number of decision variables in order to implement the change.

In the final section of this chapter, the application of the
switching heuristic to a "real world" scenario consisting of 28 service
areas and 59 satellites is described. The results obtained confirm the
initial conclusions made about the effectiveness of the heuristic.

Although the variations on the satellite 1location problem
discussed in this chapter can theoretically be solved using any of the
other three sclution methods, with some reformulation of the models,
only the switching heuristic is wused in the experiments with these
problems. This decision is made based on the excellent performance of
the heuristic as evidenced by the experimental results presented in

Chapter 4.

5.1 Minimization of the maximum deviation of prescribed locations from

the corresponding desired locations.

Until now, the objective function for the satellite location
problem has been the minimization of total deviation. Other objective

functions for the satellite location problem might be appropriate, and
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one such objective function is the minimization of the maximum
deviation between an assigned location and the corresponding desired
location (hereafter referred to as the minimization of maximum
deviation). Since this objective function ensures that the largest
deviation is minimized, it tries to prevent any one satellite from

having a large deviation so that the other satellites may have small

deviations, a situation which may occur when the objective function is

‘the minimization of total deviation.

Although the other solution methods can also be applied to the
satellite location problem with this objective function, only the
switching heuristic is used in this case. The switching heuristic that
is applied is the same as the one used with the objective function of
minimization of the total deviation. Changing the objective function
to the minimization of maximum deviation affects only the linear
programming formulations associated with the switching heuristic and
does not require any changes in the implementation of the heuristic
itself.

The new primal linear programming formulation is shown in Figure
16. The objective function (5.1), the minimization of the maximm
deviation, is acheived through the minimization of a single "dummy"
variable which represents the maximum deviation of an assigned location
from the corresponding desired location. Constraints (5.2) and (5.3)
together ensure that Z is the maximum deviation over all satellites.
For any satellite to the east of its desired location, constraint (5.2)
ensures that Z is at least as large as the deviation between prescribed

and desired locations. Constraints (5.3) perform the same task for




MINIMIZE Z
subject to
Y + Z > 4, i=8(j);j=1,...n
J i
Y - Z ¢ 4, i=8(j);j=1,...n
J 1 ‘
Y - Y > S i=s i) ‘=1 ve on"'l
kT Yy 2 B8y, nS(R) IS4 A
Y 20 j=1,...n
J
Z 2> 0
where
n = number of satellites and orbit positions
Y = the prescribed location for orbit position j

J
Z = the maximum deviation from any desired location
S(j) = the satellite currently in orbit position j
d, = the given desired location for satellite i
i
AS_h = the required separation between satellites i and h
i

77

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

Figure 16. The Primal Formulation for the Satellite Location Problem
with the Objective of Minimizing the Maximum Deviation and

for a Given Ordering.
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satellites located to the west of their desired locations. Constraints
(5.4) ensure that the minimum required separations are met for all
pairs of satellites. Constraints (5.5) and (5.6) are non-negativity
constraints on the decision variables.

The dual linear programming formulation corresponding to the

primal formulation in Figure 16, is shown in Figure 17. Constraints

(5.8) correspond to the "y" variables in the primal and constraint .

(5.9) corresponds to the "Z" variable in the primal. The constraint
ﬁatrix is still defined solely by orbit positions, all satellite
dependent parameters appearing only in the objective function.
Therefore, the implementation of the switching heuristic is exactly the
same as it was when the objective function was the minimization of
total deviation. The presentation of experimental results with this

objective function is deferred until Section 5.3.

5.2 Feasible arc constraints for the satellite location problem

The portion of the geostationary orbit thaf is visible from every
test point in a service area is called the visible arc for that service
area. A satellite can be located only in the visible arc corresponding
to its service area. Further, satellite locations usually have to be
assigned so that a satellite is at least some specified minimum angle
of elevation above the horizon for all the test points in its service
area. The portion of the geostationary orbit within which the

satellite(s) of a service area can be positioned taking into account
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VA Y d + Y d + Y Z /\S (5.7)
= u w v .
jé' i J=T i j J=T k=j+1 ih jk
Jj=1 n
u +w + v - Z "2 < 0 Jj=1,...n (5.8)

n n .
.Z“. - Z w1 (5.9)
S SRS B £ S

where

n, d

[
1]

w :
J

v

Jk

Figure 17.

u > 0 (5.10)
J
w <0 (5.11)
J
v. 2> 0 (5.12)
jk

1 As'h are as defined in Figure 16
i i

th
the dual variable correspgndin% to the j~ constraint in
the set of primal constraints (5.2)

th .
the dual variable correspondi to the j~ constraint in
the set of primal constraints (5.3)

th
= the dual variable corresponding to the jk  constraint in
the set of primal constraints (5.4)

The Dual Formulation for the Satellite Location Problem
with the Objective of Minimizing the Maximum Deviation
for a Given Ordering
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these limitations and other requirements (if any) is called the
feasible arc for that service area. These constraints on the
assignment of satellite locations were specified as simple upper and
lower bounds on the decision variables corresponding to assigned
satellite locations in the formulations given in Figures 2,4 and 5.

In the experiment comparing the four solution methods,
constraints that would force satellites to be located within their |
respective feasible arcs were not enforced. The objective function
considered in that experiment, the minimization of total deviation,
tends to place satellites within their feasible arcs, since the
specified desired location for each satellite is at or very near to the
center of the feasible arc for each satellite. The same is true when
the objective function is the minimization of maximm deviation.
However, with either objective, there is no guarantee that =all
satellites will be placed in their respective feasible arcs in any
solution obtained. Constraints that explicitly force satellites to be
placed in their specified feasible arcs are included in all the
experiments described in this chapter.

In the primal formulations (Figures 12 and 16), irrespective of
the objective function, the feasible arc constraints are imposed
through simple lower and upper bound constraints on the decision
variables corresponding to satellite locations. The constraints to be
added to the primal linear programming formulations are indicated
below.

yi 2 Li i=S(j);j=1,...n (5.13)

yi £ Hi i=8(Jj);Jj=1,...n (5.14)
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where

y; = the assigned location of orbit position j

S(j) = the satellite in position j in the given ordering

n = the number of satellites

Li = the lower limit on the feasible arc for satellite i

Hi = the upper limit on the feasible arc for satellite i

The corresponding dual formulations after the addition of ‘the
feasible arc constraints are given in Figures 18 and 19. The dual
formulation in Figure 18 corresponds to the objective function of
minimizing the total deviation, and the formulation in Figure 19 to the
objective function of minimizing the maximum deviation. The changes in
these two formulations, from their counterparts in which feasible arc
limits were not imposed (Figures 13 and 17 respectively), amount to the

P - 2 - ~d
L%

142 + o
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A

s of wvariables. These and variables
correspond to the lower and upper bound constraints, respectively, that
are placed on the decision variables in the primal formulations.

The effect that the addition of feasible arc 1limits has on the
switching heuristic is that feasible solutions to the problem may not
exist for any given ordering, while feasible solutions for any possible
ordering always exist for the formulations without feasible arc
constraints. Infeasibility in the primal linear program corresponds to
unboundedness in the dual linear program. To allow for dual
unboundedness, the implementation of the switching heuristic has to be
modified.

The most direct implementation of feasible arc limits would be to

terminate the optimization of the dual problem when an indication of
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n n-1 n n n
MAXTMIZE Z:'ZK'u_+.Z Z Q Vv, +'ZL_p.+'ZH_q. (5.15)
=T 33 J=1 k=5+1 jk jk j=I j g3 J=1 JJ
subject to
j=1 n
u + v - Zv +p +q < O j=1,...n (5.186)
Jj k-z:l kj k=j¥l jk § 3 ’
-1 ¢ u <1 j=1,...n (5.17)
J
V. 2 0 ' j=1,...n—1;k=j+1,...n (5018)
Jk
p_ ’ _q_ 2 o .j:lyooon (5.19)
Jd J
where

n, K ,Q ,u , v are as defined in Figure 13.
J Jk J Jk

L = lower limit of feasible arc for the satellite in position j
J
H_ = upper limit of feasible arc for the satellite in position j
J
p = dual variable corresponding to constraint (5.13) i.e. the

J constraint on the lower limit of feasible arc in the primal

. = dual variable corresponding to constraint (5.14) i.e. the
J constraint on the upper limit of feasible arc in the primal

e}
]

Figure 18. The Dual Formulation for the Satellite Location Problem
with Feasible Arcs - The Objective Function is the
Minimization of Total Deviation
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J=T k=j+1 ih jk
subject to
j=-1 n
+ + + + Yy Z 0 j=1
u w v - v j= oo
J AR R kj k=Jj¥1 jk ’
n n
\ \~ <1
u - W <
jél' J .J'éT J
u y w2 0 j=1,...n
J J
v > 0 j=1,...n-1;k=j+1,...n
Jk
P y 9. > 0 Jj=1,...n
J J
where
n,d ,/\S_ ,u ,w ,v, are as defined in Figure 17
i ih J J Jk
L ,H , p , q are asdefined in Figure 18
J J J J
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(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

Figure 19. The Dual Formulation for the Satellite Location Problem

with Feasible Arcs - The Objective Function is the
Minimization of Maximum Deviation
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unboundedness is obtained, and discard the ordering corresponding to
the dual problem under consideration. This would be similar to the
termination of reoptimization based on the objective function value
which is described in Section 4.4.

In the linear programming code wused, termination due to

unboundedness leaves the basis in an undefined state. As a result,

the basis corresponding to the previous feasible solution cannot be

regenerated. This difficulty is avoided by introducing artificial
‘upper and lower bounds on the "p" and "q" variables, respectively,
which were previously unbounded. Restricting the values that the "p"
and "q" variables can assume eliminates the possibility of the dual
problem being unbounded for any ordering of satellites. If the
artificial bounds on the "p" and "q" variables allow the variables a
range much larger than the entire feasible arc, then no feasible
solutions to the primal problem are eliminated from consideration.
This method of avoiding unboundedness in the dual is used in the
experiments described in this chapter. All orderings are dual feasible
and bounded, but some have very high objective function values (those
corresponding to infeasible primal solutions), and these are quickly
fathomed once a solution corresponding to a primal feasible solution is

found.
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5.3 Experimental results for the satellite location problem with

different objective functions and feagible arc constraints.

For the seven scenarios described in Appendix C, the associated
satellite location problems with limits on the feasible arcs are solved
using the switching heuristic, first with the objective of minimizing
the total deviation and then with the objective of minimizing the
maximum deviation.

The effect of the subgroup size on the performance of the
switching heuristic is examined. As mentioned in Chapter 3, the
subgroup size is the number of satellites that are permuted at a time.
Subgroup sizes of 2,3,4, and 5 are considered as is increasing the
subgroup size by one, from 2 to 5, during the execution of the
algorithm. When the subgroup size is limited to a single value, the
switching heuristic only considers subgroups of that size and
terminates when no improved solutions can be found. With the
increasing subgroup size option, if the bheuristic cannot find an
improved solution with the current subgroup size, it increases the
subgroup size by one and continues. Termination occurs when the given
maximum subgroup size is reached and no improved solution can be found.

The results for the computer runs made with the objective function
of minimizing total deviation and with 1limits on feasible arcs are
presented in Table 2. The results for the runs with the objective
function of minimizing maximum deviation and with limits on feasible
arcs are presented in Table 3. The layouts for the two tables are

identical. The name of the scenario and the number of satellites in it
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SWITCHING HEURISTIC RUNS ON THE SEVEN SCENARIOS WITH THE
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SWITCHING HEURISTIC RUNS ON THE SEVEN SCENARIOS WITH THE
OBJECTIVE OF MINIMIZING TOTAL DEVIATION AND WITH LIMITS
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7
0
1
5
7
9
8
9
0
0

ON FEASIBLE ARCS.

FINAL
SOLUTION
VALUE
59.
50.
55.
63.
46.
All times are in CPU seconds on an IBM 3081-D
t - termination due to run time limit of 2 minutes

(contd.)

TABLE 2.
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WITH LIMITS ON FEASIBLE ARCS.

TABLE 3
SCENARIO
S.AMERICA
C(13)
E.EUROPE
(12)
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(26)
AMER
(26)

8
7
7
5
6
All times are in CPU seconds on an IBM 3081-D
t - termination due to run time limit of 2 minutes

(contd.)

TABLE 3.
EUROPE
NCS
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are stated in the first column. The subgroup size 1is given in the
second column. The final solution obtained, the time taken +to reach
termination, and the number of major iterations performed, appear in
the third, fourth, and fifth columns, respectively. The number of
feasible solutions found and the time tha.t elapsed before the first
feasible solution was found are shown in the sixth and seventh columns.

From Tables 2 and 3, it is clear that the switching heuristic with .

increasing subgroup size and the heuristic with a fixed subgroup size

of 5, consistently outperform the alternatives with regard to solution
value. Out of the fourteen problems (seven each with minimization of
total deviation and minimization of maximum deviation), the switching
heuristic with increasing subgroup size found the best solution in ten
cases. The heuristic with fixed subgroup size of 5 found the best
solution in nine cases. The other three alternatives together could
find the best solution only three times. In some problems, two or more
of the five strategies found the best solution. The heuristic with
increasing subgroup size performs better than the heuristic with
subgroup size equal to 5 in terms of computation time, requiring less
CPU time for eleven of the fourteen problems.

In order to determine how close the solutions found by the
switching heuristic are to the optimal solution, an attempt was made to
solve all fourteen problems using the mixed integer programming method
(MIP). The results are presented in Tables 4 and 5. The MIP finds the
optimum solution for five out of the fourteen problems, the remaining
nine being terminated due to accuracy checks or limits on run time.

For nine problgns', the MIP provided feasible solutions. A comparison
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TABLE 4. COMPARISON OF SWITCHING SOLUTIONS TO MIP SOLUTIONS
MINIMIZE TOTAL DEVIATION (WITH FEASIBLE ARCS)

t | 1 :
i | M.I.P ] SWITCHING !
fPROBLEMI i i : ! § i : x
! {OPTIMUM| TIME| # OF | BEST [(METHOD |TIME !SOL. W/ TIME !
[ (# SAT) |SOLN. i | NODES: SOLN. | (K=) ! INCR. K; !
iS.AMER | 27.01 | 121 | 442 |} 27.01! INCR. | 11 | 27.01 11

P (13) | i | ’ | :

! @] ! ! | ! P
'E.EUR | 43.87 | 160 | 500 | 41.48: 2 | 1 | 41.48 7!
L (12) | l % i | !
| | t| ! ‘ :
IW.EUR | 41.77 | 300 | 1500 | 41.77! 5 | 18 | 43.26 | 7 ¢
boo(12) | i | | | | |
i ! | ! | % | !
iSE.ASTA| 41.61 | 207 | 1827 | 42.61] 4 | 4 | 42.61 | 12 !
P (10) | | | | l 1
| ! I | i | | |
IN.AFRIC! 41.42 | 197 | 1460 | 41.42! INCR. | 13 | 41.42 | 13 |
I (10) | | I i i i ; i
i i t | | 1 | | |
EUROPE | --- | 600 | -- | 160.96! 5 | 90 | 204.6 . 82 :
. (26) | | | ! | | |
! t | z ! |
INCS AM.| ~--- | 600 | -~ | 50.44| INCR. | 55 | 50.44 ! 55 :
I (26) | ! | i ! | !
! | | i l f ! |
NOTES :

@ - not proven optimum, termination due to accuracy checks

All

not proven optimum,

termination due to

times in CPU seconds on an IBM 3081-D.

time limit

The MIP runs were made with REAL*16 (128 bits) arithmetic. All

switching runs were made with REAL*8 (64 bits) arithmetic. On

average REALX¥16 is 3 times slower than REAL%S8.
problems necessitated the use of REAL*¥16 for the MIP runs.)

(Accuracy check




92

TABLE 5. COMPARISON OF SWITCHING SOLUTIONS TO MIP SOLUTIONS
MINIMIZE MAXIMUM DEVIATION (WITH FEASIBLE ARCS)

1 M.I.P i SWITCHING i
'PROBLEM. ‘ ; ; 1 : 1

|OPTIMUM| TIME! NODES!| BEST ;METHOD ITIME iSOL. W/ iITIME |
I(# SAT)!SOLN. | | | SOLN. | (K=) | |]INCR. K| E

1 ) 1 1 L s i I

I 1 I { 1 ! | X 1
§S AMER | 4.68 | 252 | 1045 | 4.68 | INCR. | 9 | 4.68 | 9 |
[ (13) ! l I l ! ! | |
i t] I I ! I l i
IE.EUR ' 7.08 | 300 | 1200 | 17.23 | INCR. | 5 | T7.23 | 5 |
| (12) | t I | ' i % ! i
i | t] I | | | | ‘ ‘
iW.EUR ! 7.33 | 300 | 1300 | 7.41 | 5 ! 10 | 7.41 18 |
Po(12) | | i l | % i
| ! | l 1 | i | ;
|ISE.ASTA| 12.78 | 269 | 1793 ! 12.78 | 4 | 3 | 12.78 ! 7
i (10) | l ! | ' ! ! | l
i ‘ @ | ! ! | l ! ! ;
!N.AFRICI -——— 9 | -- ! 10.19 | 5 [ 10 | 11.07 | 8 |
I (10) | ! I I ! ! i i
| | @ | | x ! ! | ! i
|{EUROPE | --- | 325 | -- i 14.01 | INCR. | 110 | 14.01 | 110 !
I (26) | 5 ! ! ! | ! i i
! E @ | ! | i | i | !
INCS AM,| === | 62 | == i 5.70 ! 5 i 120 ' 6.00 52 |
Po(26) | ! ! | i | i | |
| | i | | | ! | ! 1
NOTES :

@ - not proven optimum, termination due to accuracy checks
t - not proven optimum, termination due to time limit
All times in CPU seconds on an IBM 3081-D.

The MIP runs were made with REAL*16 (128 bits) arithmetic. All
switching runs were made with REAL*8 (64 bits) arithmetic. On
average REALX¥16 is 3 times slower than REAL*8. (Accuracy check
problems necessitated the use of REAL%*16 for the MIP runs.)
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with the best solutions generated by the switching heuristic for these
nine problems shows that the switching solution is the same as the MIP
solution in five cases. The switching algorithm found an optimal
solution in four of these cases. In one case, the switching heuristic
finds a solution better than the prematurely terminated MIP solution.
For the remaining three cases, the solutions generated by the heuristic
are within 2.5% of those found by the MIP.

In Tables 4 and 5, the solutions obtained using the switching
heuristic with increasing subgroup size are indicated. For eight of
the nine problems for which feasible solutions have been found by MIP,
the switching solutions are the best solutions obtained by the
switching method.

These results indicate that the switching heuristic consistently
provides optimal or near optimal solutions for the satellite location
problems with limits on feasible arcs and for the objective functions

studied.

5.4 On using /\¢ in place of /\S

In all the experiments discussed so far, /\S (the worst case
minimum required separation) has been used as the separation that is
required between pairs of satellites. The effect of using /\@ (the
minimum required separation based on the current location of the

satellites) instead of /\S is now examined.
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In the implementation of this change with the switching heuristic,

/\¢ matrices, spaced at specified intervals from the easternmost limit

to the westernmost limit of the feasible arcs, are used. In the
experiments, an interval spacing of 10° is used.

The minimum required separations are redefined at the beginning of

each iteration using the /\¢ matrices. (An iteration consists of Steps

4 and 5 in the description of the heuristic in Section 3.4). The -

‘midpoint between the current prescribed satellite locations for each
pair of satellites is found. The maximum of the two /\¢ values for
this pair of satellites that are nearest to the calculated midpoint
becomes the current minimum required separation for the pair. For
example, if satellites i and j are currently located at 11° and 14°
respectively, the midpoint is at 12.5°. Matrices for /\¢ are available
at 10° and 209, since the matrices are available at 10° intervals. The
current minimum required separation is set to the maximum of the two
/\¢#¢ values for satellites i and j in these two matrices. As the
iteration progresses and a new subgroup of satellites is considered,
the minimum required separations for all satellite pairs within the
subgroup are reset using the above procedure.

At the initial ordering, no prescribed satellite locations are
available. The /\S values are used for the minimum required
separations, and the dual linear program is solved to optimality. With
the satellite locations obtained from the optimal solution, the minimum
required separation values are reset as described in the previous
paragraph. The linear program corresponding to the initial ordering is

solved again, this time with the revised separation values. The




95
optimal solution obtained is taken as the starting solution in the
switching heuristic.

This is only one possible implementation of /\@ matrices with the
switching heuristic. There are several other ways in which_ these
matrices could be used in place of /\S, for example, every time a
switch is made all minimum required separations could be reset. This
implementation offers the benefits of using the /\¢ matrices with only
a limited amount of time spent in resetting the minimum required
separations and in table lookups.

In the experiment to compare the effects of using /\@ in place of
/\S, seven test problems (see Appendix C) are used. These seven
scenarios are the same as those used in the previous experiments. Two
problems are solved for each scenario, one where the objective is the
minimization of the total deviation and the other with the objective of
minimizing of the maximum deviation. For all fourteen problems, limits
on feasible arcs are included. The switching heuristic with increasing
subgroup size as implemented in Chapter 4, together with the changes
described in this chapter, is applied to each of the fourteen problems
using /\¢ matrices to generate the minimum required separations. The
solutions for the same set of problems in which /\S is used, are
already available from the previous experiment (See Tables 4 and 5).

The results for the seven problems with the objective function of
minimizing total deviation are shown in Table 6. For the seven
problems with the objective function of minimizing maximm deviation,
the results are presented in Table 7. The final solution, the time to

termination, and the number of major iterations performed are given for
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]
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120
8
All times are in CPU seconds on an IBM 3081-D
ITER = number of major iterations in the Switching heuristic

o - proven optimum solution
t - terminated due to time limit

S.E.ASTA

TABLE 6
Objective
SCENARIO
S.AMERICA
E.EUROPE
N.AFRICA
PE
AMER

w.
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WITH /\S
BEST
SOLN.
KNOWN
4.6
7.0
7.3
12.78
10.19
14.01
5.7

SWITCHING WITH /\S
(INCR. K 2 TO 5)

(INCR. K 2 TO 5)

( with feasible arc restrictions )
3.00
5.71
1

Minimize maximum deviation
SWITCHING WITH /\¢

11.35
10.98
8

COMPARISON BETWEEN SWITCHING WITH /\@ AND SWITCHING WITH /\S
SOLUTION ; TIME ; ITER.,; SOLUTION | TIME ; ITER.

3

]

]

]

!

]

]

'

104
8
All times are in CPU seconds on an IBM 3081—D
ITER = number of major iterations in the Switching heuristic

0 - proven optimum solution

TABLE 7
Objective
SCENARIO
S.AMERICA
E.EUROPE
N.AFRICA
EUROPE
.AMER

Ww.
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the computer runs made for both the /\¢ and /\S situations. The last
column contains the best solution known for the problem when /\S is
used. This solution was generated either through mixed integer
programming or with the switching heuristic.

Using /\¢ yields reductions of more than 16% in the objective

function value in every case, from the best solution with /\S, when the

objective is the minimization of total deviation. The smallest -

pementage reduction is 16% (the S.E.ASIA scenario), and the largest is
43% (the NCS. AMER. scenario). When the objective is the minimization
of maximum deviation, the percentage reductions in objective function
value range from 14% to 36% in the six cases where improvements are
obtained. In one instance, the best solution using /\S is 10% better
than the solution obtained using /\#.

There is a tendency for runs made with /\¢ to take more time and
more iterations than runs with /\S when the objective is the
minimization of maximum deviation. No obvious trend with regard to
time or number of iterations appears when the objective is minimization
of total deviation, although the two larger prpblems (26 satellites)
are more time consuming and require more iterations when /\@ is used.
The gains in the objective function values are significant enough when
/\# is used in place of /\S, that increases in solution time and number
of iterations are of minor importance.

The conclusion drawn from this experiment is that it is definitely
preferable to use /\¢@ in place of /\S in satellite location problems.
When /\¢ is used, the heuristic is more likely to find feasible

solutions. However, a feasible solution obtained using /\S values is
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likely to have larger C/I margins than a feasible solution to the same
problem obtained when /\¢ values are used. The use of /\d in place of
/\S does not appreciably degrade the performance of the switching

heuristic with regard to computation time.

5.5 Application of the Switching heuristic to the Region 2 scenario

The experiments described in Sections 4.6, 5.3, and 5.4 were
conducted using scenarios which ranged in size from 10 to 26 service
areas and satellites. In this section, the switching heuristic is
applied to a scenario which has 28 service areas and 59 satellites.
Several of the 28 service areas have more than one satellite. This
acenario was provided by NASA Lewis Research Center. It is
representative of satellite synthesis problems for Region 2, the
nations in the western hemisphere. Satellite allotments in the Fixed
Satellite Service (FSS) for Region 2 is one of the major goals of the
World Administrative Radio Conference scheduled for mid 1988 (WARC’88).

The scenario for Region 2 is described in Appendix E. The names
of the 28 service areas, the number of satellites associated with each
service area, the desired locations and the limits on the feasible arcs
for service areas are given. The /\S matrix is also shown.

In this experiment, two versions of this scenario are considered.
In the first version (VER.1), all 25 satellites belonging to service
area USA have the same desired 1location, 96°. The minimum required

separation between two satellites belonging to USA is 2°, irrespective
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of where the satellites are located. Hence, in any feasible solutian,
at best the 25 USA satellites could be spaced at 2° intervals about the
desired location 96°, ranging in position from 72° to 120°. Therefore,
in the second version of the scenario (VER.2), the desired locations
for the 25 USA satellites are given desired locations ranging from 72¢
to 120° at 2¢ intervals. The two versions of the scenario are the same
in all other respects.

In Table 8, the results of four computer runs made with this
scenario are presented. In each case, the switching heuristic with
increasing subgroup size (2 to 5) was used. The objective function
throughout the experiment was the minimization of total deviation.
Limits on the feasible arcs for service areas were enforced in all four
cages. Two runs were made with each version of the scenario - the
first run being made with /\S and the second with /\@.

The final solution values obtained in the runs made with VER.1 are
not directly comparable with the values obtained with VER.2, owing to
the differences in the desired locations for the satellites belonging
to the USA.

The only feasible solution that was found occurred when VER.2 was
used with /\d. The remaining three runs terminated with infeasible
solutions, although in every one of these three cases, only one or two
satellites were positioned outside their respective feasible arcs. The
combination of spacing the desired locations for satellites belonging
to the same service area and using /\¢ instead of /\S improves the

performance of the switching heuristic considerably over the case where
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FIRST
FEAS
SOLN.
430.32
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TER
26
44
27
34
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RESULTS OF RUNS WITH THE REGION 2 SCENARIO
TOTAL
TIME
TAKEN
1200
1200
710
1200

All times are in CPU secords on an IBM 3081-D
Runs taking 1200 seconds were terminated by limits on run time

TABLE 8.
VERSION
OF
SCENARIO
VER. 1
VER.1
VER. 2
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the same desired locations and /\S are used. Each of the factors by

itself does not dramatically change the solution obtained.




CHAPTER VI

RECOMMENDATIONS AND CONCLUSIONS

A major portion of this research has been focused on the
application of the switching heuristic to satellite location probl;ems.
The objective functions that were used were the minimization of total
deviation and the minimization of maximum deviation from given desired
locations. In an effort to indicate directions for future research
with the switching heuristic, other problems to which the switching
heuristic can be applied, with appropriate changes in its
implementation, are discussed in this chapter. Two applications are
related to satellite gystem synthesis, while a third is associated with
the more general area of job sequencing and scheduling. This
manuscript concludes with a summary of the research performed and the

contribution it makes to the fields of satellite system synthesis and

Operations Research.

6.1 The allocation of arc segments to service areas

The problem concentrated on throughout this manuscript has been
the assignment of orbit locations to individual satellites. These

assigned locations can be said to be point assignments in the

103
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geostationary orbit. An alternate synthesis strategy is the allocation
of a portion of the geostationary orbit, i.e. an arc segment, to every
service area in a given scenario. In this case, the administration of
each service area is at liberty to place as many satellites in as many
locations as it wishes, as long as all the satellites are located

within the arc segment allocated to that service area. It is up to

each individual administration to resolve interference problems between'

its own satellites.

The allocation of arc segments differs from the assignment of

satellite locations in that arc segménts are assigned to service areas

in the former case, while specific orbit locations are assigned to
satellites in the latter. In the allocation of arc segments the system
design has to allow for an administration placing a satellite anywhere
in its assigned arc. Hence, in the allocation procedure, interference
calculations have to be made based on the worst possible situation.
This corresponds to separating the nearest edges of two arc segments
allocated to two service areas by the minimum separation required
between satellites that belong to those service areas.

If, in the scenario to be examined, a large proportion of the
service areas have multiple satellites, then the number of decision
variables in the arc segment approach is likely to be less than the
number of decision variables in the point location approach. The term
"decision variables" is used here in a generic sense and not with
regard to any actual implementation. Another advantage of the arc
segmentation approach over the point location approach is that the

former gives much more freedom to the individual administrations in the
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actual location of satellites, and in the addition of satellites at a
future date. The assignment of specific locations to satellites is a
more rigid strategy in that satellites cannot be added at a later date
without the re-evaluation of the entire initial plan.

It is possible that in real problems, involving all the national
administrations in one or more continents, solutions with the arc
segment allocation approach will contain a large numberl of
infinitesimal arc lengths. If arc segment allocation problems are hard
to solve, the point location strategy might be used to determine the
feasiblity of a particular scenario.

A possible objective function for the arc segment allocation
problem is the maximization of the smallest arc segment assigned to any
service area. One set of constraints in the problem consists of the
limits on feasible arcs, which constrain the arc segment assigned to a
service area to be within the feasible arc for that service area. The
other constraints that have to be satisfied are the minimum required
separations bétween satellites.

A primal formulation for the linear program corresponding to the
arc segment allocation problem described above is shown in Figure 20.
The formulation is for the situation when the ordering among the arc
segments is given (i.e., a formulation that can be used with the
switching heuristic). This formulation corresponds to the primal
formulation used when the ordering of the satellites was given (Figure
12). In this formulation, arc segments are ordered by their respective

midpoints.



MINIMIZE - Z (6.1)
subject to

Y -Y -2 > S\S j=1,...,n-1;k=j+1,...n (6.2)

Kk 2 OS, Y TE L Rl S} o

Y - 0.5Z > L i=8(j); Jj=l,...n (6.3)

J . 1

Y + 0.5Z < H i=8(j); j=1,...n (6.4)

J i

Z > 0 (6.5)

where

Y = the midpoint of the arc segment in position j in the
Jj ordering of arc segments

Z = the minimm arc segment length that is assigned
L, = the lower limit of the feasible arc for the arc segment

i for service area i
H = the upper limit of the feasible arc for the arc segment
i for service area i
S(Jj) = the service area whose arc segment is currently in
position j
n = the number of service areas

/\S_, = the minimum required separation between satellites of
ih service area i and service area h

Figure 20. The Primal Formulation of the Linear Program for the
Arc Segment Allocation Problem with a Given Ordering
of the Arc Segments.
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The objective function (6.1) is the minimization of "-Z", thereby

maximizing "Z", the minimum arc segment. The primal is set up as a

minimization problem so that the dual is a maximization problem,

thereby retaining a similar structure to that of previously considered
dual formulations used with the switching heuristic.

Constraints (6.2) ensure that minimum required separations are
met. In the formulation in Figure 20, a satellite is assumed to exist
at the mid-point of every arc segment. Satellites in the arc segments
i and h, in positions j and k respectively, are separated by a distance

equal to the sum of /\Si» and 2Z. Therefore, if satellites were

- positioned at locations (Y; + 0.5Z) and (Yx - 0.5Z) in the arc segments

corresponding to i and h respectively, the minimum required separation
would still be satisfied. Appropriate /\@’s can be used in place of
/\S’'s. Constraints (6.3) and {6.4) ensure that assigned arc segments
do not fall outside the limits on corresponding feasible arcs. If
/\Sin is equal to 0 in any constraint of type (6.2), the variable Z is
dropped from fha.t constraint, the constraint then being defined by the
inequality (6.6).
Y« - Y; > O (6.6)

The solution obtained by solving this formulation assigns arc segments
of equal length (i.e. equal to Z) to all service areas.

The dual formulation for the problem is shown in Figure 21. The
constraint matrix refers only to the positions in an ordering. All
references to a particular arc segment and its satellite appear only in

the objective function. Therefore, the switching heuristic can be
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n-1 n n n
MAXIMIZE Y Z NS v+ Z L + Z H (6.7)
RS ITE A S S SRR © '
subject to
j=1 n
v .
v - V' + p. + q. S 0 le,...n (6.8)
k=T kj k=j¥1 jk J J
n-1 n n n
Yy oy 0.5 Y + 0.5 )} < 1 (6.9)
-, v, - 9, P, 9, Q, L - .
J= k=éTl Jk Jéf J Jé J
v. >0 j=1,...,n-1; k=j+l1,...,n (6.10)
Jk
p. 1 -q.. _>_ o j=1,.-.n (6011)
J J

where

n, As_h y L. , H are as defined in Figure 20
i i i

th
. the dual variable corresponding to the jk~ constraint in
jk  the constraint set (6.2) in the primal

v

th
p = the dual variable corresponding to the j= constraint in
Jj the constraint set (6.3) in the primal
q = the dual variable corresponding to the j~ constraint in

J the constraint set (6.4) in the primal

Figure 21. The Dual Formulation of the Linear Program for the
Arc Segment Allocation Problem with a Given Ordering
of the Arc Segments.
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implemented, with some modification, as described in Sections 3.4, 4.4,
and 5.2.

In making a switch in the ordering of arc segments, it might be
necessary to drop a v;k variable in constraint (6.9), if a constraint
of type (6.2) in the primal becomes one of type (6.6) after the switch.
If a constraint of type (6.6) in the primal becomes one of type (6.2)
after the switch, then a v;x variable has to be added in constraint
(6.9) in the dual. When a vk variable is dropped from the dual
formulation, the basis might become infeasible and this condition has
to be allowed for in the heuristic.

This definition and implementation of the arc segmentation problem
is only one of many that might be possible. There is no empirical
evidence that the switching heuristic performs satisfactorily on this

ormulation of the arc segZmentation problem. The socle purpose here is
to indicate problems relevant to satellite system synthesis that might

be solved using the switching heuristic.

6.2 The explicit allocation of frequency channels

The allocation of frequency channels to service areas, as part of
the system synthesis, has not been explicitly considered in the
solution methods considered so far. The solution techniques are based
on the assumption that either the full frequency spectrum is required
by all users, or that channel assignments are prespecif 1ed If channel

assignments are prespecified, then these frequency allocations can be
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taken into account in the computation of the /\S and /\¢@ matrices for
that scenario. In some situations, these assumptions might not be
acceptable. Tentative methods by which frequency allocation can be
included in satellite system synthesis with the switching heuristic are
suggested in this section.

One method, suggested by Reilly [1986b], is to fix the frequency

channels, and apply the switching heuristic to determine the satellite -

locations. Then keeping the satellite locations fixed, the switching
‘heuristic can be used to make other frequency assignments that improve
the objective function value. When the heuristic terminates in the
latter phase, the whole procedure can be repeated. This method
requires the determination of the functional relationship between the
separation required in frequency (/\f) and the separation required in
orbit location (/\S) in order to achieve a desired protection ratio.

An alternate method might involve defining a surrogate variable
that represents a particular orbit location and frequency combination,
and then formulating the location and frequency assignment problem in
terms of these surrogate variables. The switching heuristic or a
similar technique. could be applied to the reformulated model in the
surrogate variables.

An initial attempt at defining the relationship between /\f and

/\S for particular pairs of service areas has been made by Buyukudura
[1986].
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6.3 On the possible application of the switching heuristic to classes

of job scheduling problems.

The satellite location problem, as defined in Figure 2, is similar
to some categories of Jjob scheduling problems. For example,lthe
scheduling of Jjobs with the objective of meeting given due dates as
closely as possible, with processing and setup times for each Jjob, is
closely related to the satellite location problem where the objective
function is the minimization of maximum deviation. The due dates in
the scheduling problem correspond to the desired locations in the
satellite problem, the processing and setup times correspond to the
minimum required separations. The decision variables, the assigned
iocations in the satellite problem, are the job completion dates in the
scheduling problem. The processing and setup times required for a Jjob
added to the date a job becomes available for processing gives the
earliest possible completion date for the job, and this corresponds to
the lower limit on the feasible arc for a satellite in the satellite
location problem. If tardiness is not permitted in the scheduling
problem, then the due date is the upper limit on the job completion
date, and this corresponds to the upper limit on the feasible arc in
the satellite location problem.

If the formulation in Figure 2 represented a job scheduling
problem as described above, then the variable X; would represent the
completion date of job j, d; would be the due date for job j, E; the

earliest possible completion date for the Job, Wj the due date added to
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the maximum tardiness allowed. The /\Si;j would represent the sum of
processing and setup time for job j if it were scheduled after job i.
With this definition, /\Si; is not the same as /\S;i. However, when
the switching heuristic is wused, the ordering is always specified
before any dual formulation is solved. Therefore, the /\S values to be

used are known. If the Jjob scheduling problem is such that set up

times occur only between adjacent jobs (i.e. non-adjacent jobs do not .

interfere with one another), then eliminating redundancies in the
‘separation matrix will result in a primal formulation with n-1
separation constraints and the corresponding dual variables will also
number n-1, n being the number of jobs.

The switching heuristic has not been applied to job scheduling
problems of the type described above. The intention here is to
indicate the applicability of the switching heuristic in a more general
context with the expectation that the heuristic will perform as well in

the area of job scheduling as it did in satellite system synthesis.

6.4. Conclusions

In this manuscript, the satellite location problem in satellite
system synthesis has been examined. Four solution techniques have been
considered as candidate solution methods for the problem. An
experimental study was carried out on a set of test problems with the
four methods. The empirical results indicated that the switching
heuristic consistently outperformed the other three methods.

Variations in the satellite location problem were explored and the
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corresponding modifications required in the switching heuristic were
developed. Experimental results with these variations indicate that
the switching heuristic is well suited to these variations as well as
the original problem. Implementation of the switching heuristic on a
large real problem demonstrated that the heuristic can provide
acceptable solutions for such problems.

This research has been an intensive study of the satellite
location problem. The switching method developed, an interchange
heuristic coupled with an efficient implementation of linear
programming duality, has provided an effective tool for satellite
system systhesis. The techniques that were developed can be applied in
other areas, notably in job scheduling and sequencing. Finally, it has
been demonstrated that complex problems do not always require complex
solution techniques; a Jjudicious combination of an appropriate
formulation of the problem and a simple heuristic can be very

effective.



APPENDIX A
A DEMONSTRATION THAT LAGRANGEAN MULTIPLIERS FOR THE OPTIMUM SOLUTION

TO THE BENDERS’' MASTER PROBLEM MAY NOT EXIST

Consider a satellite location problem in which three satellites
are to be assigned locations. In the corresponding Benders’ master
problem (Figure 7), we have three satellites (indexed by i’s) and three
orbit positions (indexed by j’s). The constraints (3.23), (3.24) and
(3.25) in Figure 7 define a 3X3 assignment problem. Assume that there
are three Benders’ constraints, e,f, and g, and that the coefficients
of the variables in these three constraints are as follows :

VARIABLES

Xi1 X1z Xis Xa21 Xzz2 X223 Xax Xsz  Xas

- CONSTRAINTS
e 100 0 0 0 1 0 0 0 1
f 99 1 101 101 99 1 1 101 99
g 99 101 1 1 99 101 101 1 99
The s8ix possible assignments (denoted by A!,...,A¢) for this

problem are defined below. The decision variables in parentheses are
set to 1, and all the other decision variables are set to 0 in order to

obtain the assignments.
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X12
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X33
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By evaluating each constraint with each possible assignments, we

get the following table.

The solution to the master problem with each

assignment is the maximum of all the values in the column corresponding

to that assignment.

o g Ni= A TR
LAJIND L iN L

(1]

CONSTRAINT f
CONSTRAINT g

SOLN. VALUE IN
MASTER PROBLEM

[y
[ 3]

297

297

297

A2

(@]

303

303

ASSIGNMENTS
A3 A4 AS
¢ 100 1
3 201 201
303 201 201
303 201 201

[y

201

201

201

The assignments A4, A3, and A¢® provide alternate optimal solutions

to the master problem.

Lagrangean relaxation of the master problem

If A% is to be an optimum solution to the

(Figure 10), then the

solutions provided by all other assignments must not be any better than

the solution provided by AS.

following set of inequalities, (A.1l) to (A.5).

102 Le + 297 L¢ + 297 Lg

2 Le + 201 Le + 201 Lg

This condition is represented by the

(A.1)



116

OLe +303Le + 3 Lg 2 Le + 201 L¢ + 201 Lg (A.2)

OLe + 3Le+ 303 L¢ > Le+ 201 L¢e + 201 Lg (A.3)
100 Le + 201 L¢ + 201 Lg > Le + 201 L¢ + 201 Lg (A.4)

1 Le + 201 Le + 201 Lg > Le + 201 L¢ + 201 Lg (A.5)

( Li = the Lagrangean multiplier corresponding to constraint i. )
Adding (A.2) and (A.3), we obtain
0 Le + 306 L¢ + 306 Lg 2 2 Le + 402 L¢ + 402 Lg (A.6)

The constraints on the Lagrangean multipliers in the Lagrangean

relaxation are

Le + Lt + Lg

1 (A.7)
LQ y Lf ’ L‘

Iv

0 (A.8)

Clearly the system of equations and inequalities denoted by (A.6),(A.7)
and (A.8) is inconsistent. Therefore, there does not exist a set of
Lagrangean multipliers for which the solution to the Lagrangean
relaxation is the same as the optimal solution to the master problem ,
AS, The above exercise can be repeated for the other optimal
assignments A! and A¢. For this example, there does not exist a set of
Lagrangean multipliers for which the solution to the Lagrangean

relaxation is an optimal solution to the master problem.




APPENDIX B
IDENTIFICATION OF REDUNDANT /\S VALUES
ONCE THE SATELLITE ORDERING IS SPECIFIED

Once an ordering of the satellites is specified in the satellite
location problem, the resulting problem is a linear program. Further, a
large number of the minimum required separation values (/\S) beéome
redundant. The removal of these redundant values from the problem
reduces its size considerably, thereby reducing the computation time
required to solve the linear program. The reduction occurs in the
number of constraints in the primal problems (Figures 8,12, and 16) and
in the number of variables in the dual problems (Figures 9,13, and 17).
The method used to identify the redundant /\S values is described in
this appendix.

Define S; as the satellite in position i in the given ordering.
The minimum required separation between satellites S; and S; is denoted
by /\Sis, and /\M denotes the maximm value among all the /\Sij. Let n
be the number of satellites in the problem under consideration.

Consider a satellite S; in position j. The /\S values that are
redundant between S; and satellites in positions k (k=j+1,...n) need to
be determined.
Define
AT(G+1) = /NS, 541 (B.1)
/AT(k) = max { /\T(h) + /\Shx , /\Ssx }  j+1<h<k-1;

k=j+2,...n (B.2)
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By defining /\T(k) as indicated in equations B.l1 and B.2, the pairwise
separations that are required between all the satellites S;, Sj+1, ...,
Sx as well as the current ordering of satellites are used in
calculating the minimum separation that will occur between satellites
S; and Sk in any solution that satisfies the minimum separation
requirements with this ordering. The three conditions for identifying
redundant /\S;x values for the current ordering are the following.

1. If /ASsx =0 and k# j+l then /\S;x is redundant since no
nnm.mum separation is required between satellites S; and Sk. (If k =
j+1, then /\S;k is not redundant since the constraint corresponding to
this j,k pair has to be included in the formulation in order to ensure
that the given ordering is not violated).

2. If \S;x < /\T{k) then /\S;jx is redundant. For the current
ordering, in any solution that satisfies the minimum required
separations for all pairs of satellites between satellite S; and
satellite Sk, satellites S; and Sx will be separated by at least
/\T(k). Hence /\S;x is redundant.

3. If A\T(k) > /\M then /\S;n is redundant for h=k+l,...n. By
definition, /\T(h) > /\T(k) for h=k+1l,...n. .Sirice AT(h) > AT(k) >
/\M > /\S;n, by the second condition above, /\S;n is redundant for
h=k+1,...,n.

The above rules follow from the fact that if the sum of /\Sa» and
[\Sbc is greater than /\Sac, then /\Sac is always enforced when the
satellites are in the order a,b,c. Therefore an explicit constraint on

the minimum required separation between satellites a and c is

unnecessary.
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Application of this procedure prior to solving the linear program
results in a much smaller problem and correspondingly reduced
computational time in the Benders’ subproblem phase and also in the

switching technique.



APPENDIX C
ON AVOIDING THE REPETITION OF SATELLITE ORDERINGS

IN A MAJOR ITERATION

The procedure used to restrict any particular satellite ordering

to being evaluated only once in a major iteration of the switching
heuristic is presented as a theorem in this appendix. The reduction of
the number of evaluations performed in each major iteration with this
procedure is calculated.

Let n

number of satellites and number of orbit positions

k = number of satellites in a subgroup

S(j) = the satellite in position j

m = minor iteration

A minor iteration, m, consists of the evaluation of all satellite

orderings resulting from the permutation of satellites in positions {
m, m+l,...,mék-1 }, the satellites in positions {1,...,m-1} and in
positions {m+k,...,n} remaining in their respective positions. A major

iteration consists of the set of minor iterations {1,2,...,n-k+l1}.

Theorem C.1 :

If in each minor iteration m (m=2,...,n-k+1), only those satellite

orderings are considered where S(m+k-1) in minor iteration m-1 is not

in position mt+k-1, then every satellite ordering considered in a mejor
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iteration is different from all the other orderings considered in that
major iteration.

Proof :

Consider a minor iteration m. The satellites s(1) ,..., S(m-1) ,
S(m+k) ,..., S(n) do not switch positions in this minor iteration.
Therefore, in minor iterations 1 to m for this major iteration, the
same satellite has been in position m+k for all the satellite orderings
examined. Let this satellite be Z. Now consider minor iteration m+1.
The satellites being switched in this minor iteration are those in
positions m+1,...,m+k. Since all satellite orderings examined so far
have had Z in position mtk, any satellite ordering that does not have Z
in position m+k has not been evaluated in this major iteration. By
definition, all satellite orderings considered in this minor iteration,
mtl, do not have Z in position m+k. Therefore all satellite orderings
considered in minor iteration m+l are distinct from those considered
previously in this major iteration. Being permutations, they are
distinct among themselves. Extending the argument to all minor

iterations completes the proof.

Theorem C.2 :

If the procedure indicated in Theorem C.1 is used, then only
repetitions of orderings previously evaluated in the major iteration
are eliminated from consideration.

Proof :
Let Z be as defined in the proof for Theorem C.1. In iteration

m+1l, the orderings that are eliminated from consideration using the
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procedure of Theorem C.1 are those with Z in position m+k. The proof
is accomplished by showing that all these orderings that are eliminated
have been previously considered in the current major iteration.

At iteration m+l consider an ordering with Z in position m+k.
Assume it has not been previously examined in this major iteration.

Let this satellite ordering be @ = S(1) ,..., S(m+k-1) , Z , S(m+k+l)

yeesy S(n). By definition of the procedure, this ordering must have

been evaluated in minor iteration m, except if S(m+k-1) had been the
‘last satellite in the subgroup at the beginning of iteration h. A
recursion of the argument for iterations m-1,...,1 shows that if Q has
not been considered previously, then some permutations of the
satellites in positions 1,...,k at the start of the major iteration
have not been examined at minor iteration 1. This contradicts the
stated procedure which is that at the first minor iteration all
orderings which have permutations of satellites in positions 1,...,k
and other satellites fixed in position must be considered. Therefore
the assumption that Q has not been examined before is false, and the

proof is complete.

Calculation of the reduction in the number of evaluations when Theorem

C.1 is implemented.

A. Prior to the implementation of Theorem C.1

Number of evaluations per minor iteration k! -1

Total number of minor iterations

n-k+1
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Number of evaluations per major iteration = (k!-1)(n-k+1)

B. After the implementation of Theorem C.1
Number of evaluations eliminated per minor iteration = (k-1)!
Number of evaluations per minor iteration = k! - 1 - (k-1)!
Number of evaluations in minor iteration 1 = k! - 1
Number of evaluations per major iteration

= (k!-1) + ( k! - 1 - (k-1)!)(n-k)

C. Reduction in the number of evaluations is (k-1)! (n-k)



APPENDIX D

THE SEVEN TEST SCENARIOS

The seven test scenarios that are used in the experiments in
Chapters 4 and 5 are described in this appendix. The scenarios were
‘generated for service areas which are actual nations and for realistic
situations. The test points that define the service areas were taken
from an atlas, and chosen such that the polygon formed by joining the
test points covered the corresponding service area. The minimum
ellipses were calculated using the computer program developed by Akima
[1981]. The /\S matrices were obtained using the computer program
developed by Wang [1986]. The electrical system characteristics (e.g.,
antenna discrimination patterns, Earth station antenna gains, channel
bandwidth) used in the /\S calculations are those used by Wang for FSS
applications.

For each scenario the names of the countries in the scenario are
given along with a four character code for the name. The desired
location and the limits on the feasible arc for each satellite are
specified. These values are defined in degrees of longitude relative
to a stated longitude so that they are always non-negative.

The worst case minimum required separation for every pair of
satellites is specified as an element of the /\S matrix. The
separation is given in degrees of longitude. The /\S matrix is
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symmetric about the diagonal and hence only elements above the diagonal

are stated.
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SCENARTO 1 : S.AMERICA (13 SATELLITES - 12 SERVICE AREAS)
S/A NAME CODE DESIRED LOCATION LIMITS ON FEASIBLE ARC
ARGENTINA ARG1 10.00 5.00 15.00
BOLIVIA BOL1 17.50 12.50 22.50
BRAZIL BRZ1 0.00 0.00 10.00
CHILE CHL1 25.00 20.00 30.00
COLOMBIA CIM1 25.00 20.00 30.00
ECUADOR ECD1 30.00 25.00 35.00
GUYANA GUY1 7.50 2.50 12.50
PARAGUAY PRG1 7.50 2.50 12.50
PERU PRU1 27.50 22.50 32.50
SURINAM AND
FRENCH GUIANA SFG1 5.00 0.00 10.00
URUGUAY URG1 7.50 2.50 12.50
VENEZUELA VEN1 15.00 10.00 20.00
BRAZIL BRZ2 15.00 10.00 20.00

Desired locations and feasible arcs are defined relative to 60° W.lon.
Note : The service area BRAZIL has two satellites BRZ1 and BRZ2.
The two service areas SURINAM and FRENCH GUIANA share a
satellite SFG1.

THE /\S MATRIX :

ARG1 BOL1 BRZ1 CHL1 CLM1 ECD1 GUY1 PRG1 PRU1 SFG1 URG1 VEN1 BRZ2
ARGl ---- 4.33 4.92 4.66 0.54 0.47 0.49 4.41 1.41 0.47 4.55 0.51 4.92
BOL]l —=——e———e 4.71 4.39 0.63 0.52 0.48 4.45 4.84 0.46 0.99 0.52 4.71
BRZ1 4.33 5.13 3.14 5.02 4.59 5.29 4.35 4.61 4.24 6.00
CHL1 0.53 0.48 0.48 3.97 4.34 0.44 4.13 0.52 4.33
cm1 4.19 2.36 0.49 4.46 1.44 0.35 4.91 5.13
ECD1 0.09 0.00 4.69 0.00 0.00 1.35 3.14
GUY1 0.00 0.51 4.57 0.00 4.72 5.02
PRG1 1.46 0.00 2.46 0.00 4.59
PRU1 0.44 0.45 1.45 5.29
SFG1 0.00 3.86 4.35
URG1 0.00 4.61
VEN1 4.24
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SCENARIO 2 : E.FUROPE (12 SATELLITES - 12 SERVICE AREAS)

S/A NAME CODE DESIRED LOCATION LIMITS ON FEASIBLE ARC
FINLAND FIN1 24.00 9.00 39.00
BULGARIA BUL1 25.00 10.00 40.00
ROMANIA ROM1 25.00 10.00 40.00
GREECE -GRC1 27.00 12.00 42.00
ALBANTA ALB1 30.00 15.00 45.00
POLAND POL1 30.00 15.00 45.00
HUNGARY HUN1 30.50 15.50 45.50
YUGOSLAVIA YUG1 31.00 16.00 46.00
CZECHOSLOVAKIA CZH1 33.00 18.00 48.00
SWEDEN SWD1 33.00 18.00 48.00
AUSTRIA AUS1 37.00 22.00 52.00
E.GERMANY BGR1 38.00 23.00 53.00

Desired locations and feasible arcs are defined relative to 50° E.lon.

THE /\S MATRIX :

FIN1 BUL1 ROM1 GRC1 ALB1 POL1 HUN1 YUG1 CZH1 SWD1 AUS1 EGR1
FINl ---- 0.00 0.85 0.12 0.00 2.49 0.96 0.35 1.28 4.82 0.92 1.46
BULl] --—mmeeee 4.62 4.60 4.46 1.96 3.75 4.57 2.71 0.52 3.15 1.91
ROM1 3.38 3.63 3.84 4.60 4.43 4.11 1.25 4.12 3.18
GRC1 4.59 1.23 2.59 4.23 1.52 0.38 2.21 1.21
ALB1 1.29 2.44 4.69 1.53 0.22 2.73 1.26
POL1 4.53 3.47 4.55 3.89 3.92 4.64
HUN1 4.68 4.64 1.74 4.48 3.57
YUG1 4.11 1.19 4.62 3.30
CZH1 2.63 4.60 4.41
SWD1 1.76 3.95
AUS1 4.10
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SCENARIO 3 : W.EUROPE (12 SATELLITES - 12 SERVICE AREAS)
S/A NAME CODE DESIRED LOCATION LIMITS ON FEASIBLE ARC
ITALY ITL1 38.00 30.00 48.00
NORWAY NOR1 28.00 28.00 28.00
DENMARK DEN1 40.00 30.00 50.00
W.GERMANY WGR1 41.00 31.00 51.00
SWITZERLAND SWZ1 41.50 31.50 51.50
NETHERLANDS NTH1 45.00 35.00 55.00
BELGIUM BLG1 45.50 35.50 55.50
FRANCE FRA1 47.00 37.00 57.00
. UNITED KINGDOM UK_1 52.50 42.50 60.00
SPAIN SPN1 55.00 45.00 60.00
TRELAND IRL1 57.50 47.50 60.00
PORTUGAL POR1 58.50 48.50 60.00
Desired locations and feasible arcs are defined relative to 50°¢ E.lon.
THE /\S MATRIX :
ITL1 NOR1 DEN1 WGR1 SWZ1 NTH1 BLG1 FRA1 UK 1 SPN1 IRL1 POR1
ITLl] ---- 0.82 1.46 4.60 4.76 3.58 4.04 4.96 1.96 3.83 1.99 1.31
NORl -——=—eeem 3.86 2.95 0.98 2.15 1.32 1.00 3.05 0.39 0.40 0.00
DEN1 4,77 1.50 4.04 3.30 3.38 3.65 0.94 1.34 0.00
WGR1 4.66 4.64 4.51 4.65 3.77 2.20 2.37 1.19
SwzZ1 3.13 3.63 4.43 2.85 3.23 2.10 1.91
NTH1 4.46 4.67 4.57 1.84 2.93 1.25
BLG1 4.81 4.14 2.31 3.01 1.45
FRA1 4,38 4.48 3.98 3.03
UK_1 1.42 4.60 1.18
SPN1 1.29 4.45
IRL1 0.86




SCENARIO 4 : S.E.ASTA (10 SATELLITES ~ 10 SERVICE AREAS)

S/A NAME CODE DESIRED LOCATION LIMITS ON FEASIBLE ARC
PHILIPPINES PHP1 8.00 0.00 23.00
TAIWAN TWN1 9.00 0.00 24.00
INDONESIA IDN1 11.50 0.00 26.50
VIETNAM VM1 24.00 9.00 30.00
CAMBODIA CMB1 25.00 10.00 30.00
LACS LAO1 26.00 11.00 30.00
MALAYSIA MLY1 20.00 5.00 30.00
CHINA CHN1 25.00 10.00 30.00
THATLAND THL1 28.00 13.00 30.00
BURMA BRM1 30.00 15.00 30.00
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Desired locations and feasible arcs are defined relative to 130°¢ E.lon.

THE /\S

PHP1
TWN1
IDN1
VIM1
aB1
LAO1
MLY1
CHN1
THL1

MATRIX :

PHP1 TWN1 IDN1 VIM1 CMB1 LAO1 MLY1

-—— 2.21 4.06 1.73 1.70 1.30 4.31
————————— 0.36 1.82 0.03 1.05 0.00
3.84 3.50 1.06 4.64

4.59 4.67 3.94

4.59 2.72

0.77

CHN1 THL1 BRM1
1.99 1.03 0.45
3.50 0.94 0.29
0.64 4.20 3.14
4.17 4.74 4.29
1.37 4.58 4.10
4.11 4.75 4.57
0.52 4.61 1.75
4.07 4.711

4.84
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SCENARIO 5 : N.AFRICA (10 SATELLITES - 10 SERVICE AREAS)

S/A NAME CODE DESIRED LOCATION LIMITS ON FEASIBLE ARC
LIBYA LBY1 7.50 0.00 22.50
NIGER NGR1 17.50 2.50 30.00
MALI MAL1 29.00 14.00 30.00
MOROCCO MOR1 30.00 15.00 30.00
MAURITANIA MAU1 30.00 25.00 30.00
SUDAN SUD1 0.00 0.00 8.00
EGYPT BGP1 0.00 0.00 5.00
CHAD CHD1 6.00 0.00 21.00

" TUNISIA TNS1 15.50 0.50 30.00
ALGERIA ALG1 23.00 8.00 30.00

Desired locations and feasible arcs are defined relative to 30°¢ E.lon.

THE /\S MATRIX :

LBY1 NGR1 MAL1 MOR1 MAU1 SUD1 EGP1 CHD1 TNS1 ALG1
LBYl --——-4.71 1.43 1.10 0.55 4.66 4.56 4.67 4.99 4.88
NGR1 --—-=----—- 4.93 0.89 2.41 1.57 1.38 4.79 0.67 4.58
MAL1 4.67 4.88 0.50 0.47 1.56 1.16 4.60
MOR1 5.04 0.39 0.34 0.42 2.23 5.08
MAU1 0.46 0.39 0.47 0.94 4.42
SuD1 4,27 4.81 0.45 0.55
EGP1 3.50 1.37 1.32
CHD1 1.21 3.27
TNS1 4.62
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SCENARIO 6 : EUROPE _ (26 SATELLITES -~ 26 SERVICE AREAS)

S/A NAME CODE DESIRED LOCATION LIMITS ON FEASIBLE ARC
USSR USR1 10.00 0.00 18.00
FINLAND FIN1 24.00 9.00 39.00
BULGARIA BUL1 25.00 10.00 40.00
ROMANTA ROM1 25.00 10.00 40.00
GREECE GRC1 27.00 12.00 42.00
ALBANTA ALB1 30.00 15.00 45.00
POLAND POL1 30.00 15.00 45.00
HUNGARY HUN1 30.50 15.50 45.50
YUGOSLAVIA YUG1 31.00 16.00 46.00
CZECHOSLOVAKIA CZH1 33.00 18.00 48.00
SWEDEN SwD1 33.00 18.00 48.00
AUSTRIA AUS1 37.00 22.00 52.00
E.GERMANY EGR1 38.00 23.00 53.00
ITALY ITL1 38.00 30.00 48.00
NORWAY NOR1 28.00 28.00 28.00
DENMARK DEN1 40.00 30.00 50.00
W.GERMANY WGR1 41.00 31.00 51.00
SWITZERLAND Swzl 41.50 31.50 51.50
NETHERLANDS NTH1 45.00 35.00 55.00
BELGIUM BLG1 45.50 36.50 55.50
FRANCE FRA1 47.00 37.00 57.00
UNITED KINGDOM UK_1 52.50 42.50 60.00
SPAIN SPN1 55.00 45.00 60.00
IRELAND IRL1 57.50 47.50 60.00
PORTUGAL POR1 58.50 48.50 60.00
ICELAN ICL1 70.00 55.00 75.00

Desired locations and feasible

THE /\S MATRIX :

USR1 FIN1
ITL1 NOR1

USR1 -—-- 4.50
1.37 4.51

0.43 4.39
BUL1

BUL1
DEN1

3.73
3.57
0.00
2.00

3.77 0.00
ROM1

1.09

ROM1
WGR1

4.89
2.91
0.85
1.23
4.62
2.16

3.09 0.53

2.18

3.17
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POL1
BLG1

4.56
1.32
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USR1 FIN1 BUL1 ROM1 GRC1 ALB1 POL1 HUN1 YUG1 CZH1 SWD1 AUS1 EGR1
ITL1 NOR1 DEN1 WGR1 SWZ1 NTH1 BLG1 FRA1 UK_1 SPN1 IRL1 POR1 ICL1
GRC1 4.59 1.23 2.59 4.23 1.52 0.38 2.21 1.21
3.95 0.12 0.38 1.33 2.32 1.11 1.22 1.27 0.27 0.51 0.00 0.00 0.00
ALB1 1.29 2.44 4.69 1.53 0.22 2.73 1.26
4.67 0.00 0.00 1.98 2.83 1.34 1.56 1.54 0.24 1.06 0.00 0.00 0.00
POL1 4.53 3.47 4.55 3.89 3.92 4.64
3.45 2.28 4.45 4.34 2.92 3.46 2.77 2.99 1.41 1.20 0.45 0.00 0.00
HUN1 4.68 4.64 1.74 4.48 3.57
4.02 0.90 2.34 3.85 2.98 3.07 3.11 2.95 1.09 1.71 0.25 0.00 0.00
YUG1 4.11 1.19 4.62 3.30
4.53 0.52 1.33 4.25 4.19 3.19 3.56 3.55 1.33 0.82 1.02 0.00 0.00
czH1 2.63 4.60 4.41
\ 4.29 1.33 3.05 4.52 3.73 4.19 3.44 3.75 1.83 1.99 1.04 0.21 0.00
SWD1 1.76 3.95
1.20 4.59 4.61 3.89 1.35 2.18 1.53 1.39 1.64 0.51 0.37 0.17 0.00
AUS1 : 4.10
4.86 1.24 2.21 4.72 4.46 3.48 3.65 4.20 2.07 2.66 1.52 0.62 0.00
EGR1
3.09 2.58 4.65 4.65 3.34 4.46 3.80 4.11 2.73 1.38 1.29 0.82 0.00
ITL1
---- 0.82 1.46 4.60 4.76 3.58 4.04 4.96 1.96 3.83 1.99 1.31 0.27
NOR1
--------- 3.86 2.95 0.98 2.15 1.32 1.00 3.05 0.39 0.40 0.00 0.00
DEN1
4.77 1.50 4.04 3.30 3.38 3.65 0.94 1.34 0.00 0.00
WGR1
4.66 4.64 4.51 4.65 3.77 2.20 2.37 1.19 0.19
Swz1
3.13 3.63 4.43 2.85 3.23 2.10 1.91 0.00
NTH1
4.46 4.67 4.57 1.84 2.93 1.25 0.00
BLG1
4.81 4.14 2.31 3.01 1.45 0.00
FRA1
4.38 4.48 3.98 3.03 0.72
U K1
1.42 4.60 1.18 2.97
SPN1
1.29 4.45 0.32
IRL1
0.86 2.05
POR1
0.00




133

LIMITS ON FRASIBLE ARC

50.00
50.00
50.00

19.50
15.00
19.00
24.00
23.00
20.50
28.50
31.50
28.00
36.00
39.50
40.00
43.00
44.50
49.00
50.00
50.00
50.00
50.00
50.00
38.50

42.00.

SCENARIO 7 : NCS AMERICA _ (26 SATELLITES - 26 SERVICE AREAS)
S/A NAME CODE DESTRED LOCATION

UsA uUsal 46.00 31.00
MEXICO MEX1 48.00 33.00
CANADA CAN1 50.00 38.00
SURINAM &

FRENCH GUIANA SFG1 4,50 0.00
CARIBBEAN CRB1 0.00 0.00
BRAZIL BRZ1 4.00 0.00
GUYANA GUY1 9.00 0.00
PARAGUAY PRG1 8.00 0.00
URUGUAY URG1 5.50 0.00
ARGENTINA ARG1 13.50 0.00
VENEZUELA VEN1 16.50 1.50
BOLIVIA BOL1 13.00 0.00
CHILE CHL1 21.00 6.00
COLOMBIA CmMl 24.50 9.50
PERU PRU1 25.00 10.00
ECUADOR ECD1 28.00 13.00
CUBA CUB1 29.50 14.50
COSTA RICA CTR1 34.00 19.00
NICARAGUA NCG1 35.00 20.00
HONDURAS HND1 36.00 21.00
BELIZE BLZ1 38.50 23.50
EL SALVADOR SLV1 39.00 24.00
GUATEMALA GmM1 40.00 25.00
HAITI HTI1 23.50 8.50
JAMAICA JMC1 27.00 12.00
PANAMA PNR1 30.00 16.00

Desired locations and feasible arcs

THE /\S MATRIX :

USA1 MEX1 CAN1
CIM1 PRU1 ECD1

USA1 —-——- 4.39 4.77
0.53 0.53 0.49
MEX] -———m——em 0.55
3.49 0.53 0.49
CAN1

0.50 0.44 0.37

SFG1 CRB1 BRZ1

CUB1 CTR1 NCG1
0.47 4.64 0.65
3.75 0.43 0.46
0.43 3.91 0.62
4.23 1.86 3.79
0.33 0.52 0.59
0.51 0.32 0.38

45.00

are defined relative to 50° W

GUY1
HND1

0.48
0.47
0.47
4.04
0.36
0.44

PRG1
BLZ1

0.47
0.98
0.00
4.20
0.35
0.38

URG1
SLV1

0.42
0.38
0.00
3.88
0.30
0.24

VEN1
HTI1

0.51
0.43
0.54
2.08
0.41
0.44

BOL1
JMC1

0.51
0.39
0.35
3.32
0.41
0.40

.lon.

CHL1
PNR1

0.53
0.46
0.43
0.94
0.41
0.36




SFG1
CRB1
BRZ1
GuY1
PRG1
URG1
" ARG1
VEN1
BOL1
CHL1
cIM1
PRU1
ECD1
CUB1
CTR1
NCG1
HND1
BLZ1
SLV1
o1
HTI1

JMC1
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USA1 MEX1 CAN1 SFG1 CRB1 BRZ1 GUY1 PRG1 URG1 ARG1 VEN1 BOL1 CHL1
CIM1 PRU1 ECD1 CUB1 CTR1 NCG1 HND1 BLZ1 SLV1 GIM1 HTI1 JMC1 PNR1
1.07 4.35 4.57 0.00 0.00 0.47 3.86 0.46 0.44

1.44 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.70 2.71 0.00 0.00 0.49 4.30 0.44 0.52

4.11 0.53 0.46 4.77 1.15 2.96 2.95 2.20 1.07 1.42 4.43 4.57 1.41
5.02 4.59 4.61 4.92 4.24 4.71 4.33

5.13 5.29 3.14 0.48 0.43 0.46 0.47 0.39 0.37 0.46 0.42 0.37 1.06
: 0.00 0.00 0.49 4.72 0.48 0.48

2.36 0.51 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.46 4.41 0.00 4.45 3.97

0.49 1.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4.55 0.00 0.99 4.13

0.35 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.51 4.33 4.66

0.54 1.41 0.47 0.00 0.37 0.34 0.29 0.00 0.00 0.08 0.00 0.00 0.41
0.52 0.52

4.91 1.45 1.35 0.49 1.86 1.38 0.95 0.37 0.68 0.41 1.07 1.09 3.31
4.39

0.63 4.84 0.52 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34
0.52 4.41 0.48 0.45 0.41 0.46 0.42 0.36 0.31 0.40 0.41 0.37 0.43
---—- 4.46 4.19 1.52 3.56 4.83 3.60 1.84 2.94 2.45 1.87 2.74 4.45
--------- 4.69 0.48 0.43 0.46 0.45 0.39 0.37 0.44 0.40 0.34 0.44
0.00 0.42 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.97

0.00 1.27 1.82 2.21 0.95 1.79 4.43 3.56 0.00

4.55 2.67 1.25 2.53 2.13 0.00 0.51 4.56

4.38 3.12 3.79 3.39 1.36 2.28 3.46

4.41 4.50 4.25 1.52 2.33 1.54

3.10 4.56 1.14 1.64 0.74

4.70 0.80 1.26 1.42

0.85 1.68 1.29

3.90 0.00

0.00




APPENDIX E

THE REGION 2 SCENARIO

The introductory paragraphs of Appendix D apply here also, with
the following exception. It has been assumed that, in order to
accomodate 25 U.S.A satellites, the U.S.A. Earth station antenna
diameters have been increased so as to allow 2° satellite separations
of these satellites without exceeding the single-entry interference
threshold. However, the /\S and /\@d calculations involving U.S.A. and
other administraetions are made with Wang’s parameters, i.e., 4.5 m
(dia.) Earth station antennas with a half power beam width of 1.17
degrees. With respect to interference between the U.S.A. and other
administrations, the calculation is therefore overly conservative.

In the /\S matrix, for service areas with more than one
satellite,the minimum required separation to avoid self interference is

given as the diagonal element of the matrix.
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Desired locations and feasible arcs are defined relative to 0° lon.

LIMITS ON FEASIBLE ARC

SCENARIO REGION 2 (59 SATELLITES - 28 SERVICE AREAS)
S/A NAME CODE # OF DESIRED
SATS. LOCATION
usa UsAl 25 96.00 62.00
MEXICO MEX1 3 102.00 50.00
CANADA CAN1 3 103.00 88.00
SURINAM &
FRENCH GUIANA SFG1 2 54.00 0.00
CARIBBEAN CRB1 1 73.00 16.00
BRAZIL BRZ1 3 55.00 4.00
GUYANA GUY1 1 56.00 0.00
- PARAGUAY PRG1 1 58.00 0.00
URUGUAY URG1 1 56.00 0.00
ARGENTINA ARG1 1 68.00 14.00
VENEZUELA VEN1 1 68.00 14.00
BOLIVIA BOL1 1 62.00 0.00
CHILE CHL1 1 639.00 14.00
COLOMBIA CiM1 1 69.00 14.00
PERU PRU1 1 74.00 10.00
ECUADOR ECD1 1 78.00 10.00
CuBA CUB1 1 80.00 16.00
COSTA RICA CTR1 1 84.00 16.00
NICARAGUA NCG1 1 85.00 18.00
HONDURAS HND1 1 86.00 20.00
BELIZE BLZ1 1 89.00 20.00
EL SALVADOR SLvV1 1 89.00 20.00
GUATEMALA GmMi1 1 90.00 22.00
HAITI HTI1 1 73.00 6.00
JAMAICA JMC1 1 78.00 10.00
PANAMA PNR1 1 80.00 12.00
BAHAMAS BAH1 1 76.00 0.00
TRINIDAD TRD1 1 70.00 0.00

130.00
154.00

- 118.00

122.00
130.00
106.00
122.00

122.00 -

120.00
122.00
122.00
126.00
124.00
124.00
138.00
146.00
144.00
152.00
152.00
152.00
158.00
158.00
158.00
140.00
146.00
148.00
152.00
140.00
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ECD1
CUB1
CTR1
NCG1
HND1
BLZ1
SLVI
GTM1
HTI1
JMC1
PNR1

BAH1
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USA1 MEX1 CAN1 SFG1 CRB1 BRZ1 GUY1 PRG1 URGl ARGl VEN1 BOL1 CHL1
CLM1 PRU1 ECD1 CUBL CTR1 NCG1 HND1 BLZ1 SLV1 GIM1 HTI1 JMC1 PNR1

BAH1 TRD1
0.00 0.42 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.97

0.00 0.16
0.00 1.27 1.82 2.21 0.95 1.79 4.43 3.56 0.00

4.40 0.00
4.55 2.67 1.25 2.53 2.13 0.00 0.51 4.56

0.31 1.23
4.38 3.12 3.79 3.39 1.36 2.28 3.46

0.99 0.79
4.41 4.50 4.25 1.52 2.33 1.54

1.52 0.00
3.10 4.56 1.14 1.64 0.74

2.87 0.00
4.70 0.80 1.26 1.42

0.70 0.00
0.85 1.68 1.29

1.73 0.00
3.90 0.00

3.45 0.00
0.00

2.45 0.00

0.00 2.30

———= 0.00
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