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A _General Method for Dynamic_Analysis of Structures

I. Definition of the Term “Element”

An element is defined as any structural unit whose degrees of freedom (DOFS) can be categorized
as either interfacc DOFS or non-interface (internal) DOFS.

Interface DOFS are those DOFS through which the element is connected to one or more neigh-
boring elements. Non-interface DOFS are internal to the element and do not directly couple to
neighboring elements.

The term “element” then, has a rather broad meaning. An element could be a fundamental
structural unit such as a rod, a beam, a plate, etc. or it could be an entire structural componcnt.
Furthermore, the parameters of the element could be distributed or lumped. Figure 1 schematically
illustrates the element concept.

Any structural system can now be thought of as a composite of n such elements. The choice of
elements is totally arbitrary and is a matter of user convenience. In particular, the user does not
have to worry about the “size” of the element as is the case for example when using a standard
finite element approach. This means that in general n is relatively small and little bookkeeping is
necessary.

Spatial penodluty of structures can be taken into account in a natural manner. These important
advantages will be further clarified in the next few sections.

II. Modeling of an Element

Each element will be modeled using a set of assumed modes. In particular, a combination of
interface constraint modes (ICM) and a set of interface restrained normal modes (IRNM) can be
employed. Note that other types of assumed modes can be selected and should be investigated. The
above choice is motivated by the Craig/Bampton approach to component modes synthesis and has
several important advantages.

1. Interface Constraint Modes (ICM)

Let us assume the element has.g interface DOFS XI (7=42-.9)-The ICM corresponding to l)()l-’/\:r-
is defined as the static deformation pattern of the elemenL for Xp; and Xz; =0 (for all I..*] ).
Note that many “shape functions” used in the finite element metgod are actually {CM.

2. Interface Restrained Normal Modes {IRNM)
IRNM are the regular mass normalized mode shapes for the element with fixed interface DOFS.

3. Displacement of an_Element
The displacement vector of a discrete element can be partitioned as:

~X
X= {7 (1)
X
’ . . -
T'he non-interface displacement can be written as
X, =35 + X (2)
~N NI I "N
where the first term S X represents a static deformation due to the interface displacements. The
term X is best described as the difference
X = X, =S, X (3)

~N ~N NI ~xr
The displacement vector is now written as a lincar combination of the IRNM

e

éN-

@i

g, ()
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L= Ipterfacc
N = Non- inTe/face

Figure 1: A Schematic Representation of the Element Concept.

Figure 2:

zl

z2

Schematic Representation of

Three Elements
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where iN is a set of modal coordinates. ORIGINAL PAGE IS
The displacement vector x can now be written as OF POOR QUALITY

x
x=[t | 1°®,] Q-i (5)

N
with
t é[l ¢4 [0
Sl 7 I (6)

The columns of matrix € clearly represent the ICM of the element. The actual general form of the
matrix 5~ will be given shortly.
The elements of the vectors £ and 4,, will be the generalized coordinates used to model a

Equation (5) indicates why the elements can be chosen with a large degree of freedom. If the
matrices € and 79@, can be determined with enough accuracy then a legitimate element is found
regardless of its size. For example entire beams, rods and plates can be considered as one element.
Even large components could be considered as single elements as long as Eq. (5) can be adequately
written. As a consequence, a considerable amount of bookkeeping can be avoided, thereby reducing
the cost of the analysis.

In the next section we will introduce the element equations of motion.

[lI. The Element Equations of Motion

From here on we will work with discrete systems because relationships can be shown more
explicitly. [t should be kept in mind however, that all results are equally valid for distributed-
parameter systems.

The most general form of the element displacement vector X is:

2z
X -
Xra (7)
X = :
~ . —~4 = number of distinct
51-4 / interfaces of the element
’}'- For Example: -
~N A=3 forelement € '
with 2
~x/ 3| e
A
‘{I = ~rz
: (%)
X14
X can be written as: X
~e ~Tr
‘)S = - -
X v
~N

Because distinct interfaces by definition do not connect directly to each other, the element
stiffness matrix corresponding to vector X in kiq. (7) is:

... 0
K=| ¢ Kum S s (T (10)
0 0 ' Krp| Krey Xr4
L Rur Kuzzs -+ Kwzal iy 402 Xy J
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The mass matrix has a sitmilar form. AnotiQFiPRQBRPAIKTY to vector X in lq. (9) is:

Mea [”xx"xu] K-[K"- KIN] (11)
Mvz Mun / Knr K
with partitioning corresponding to Eq. (9). NI NN
The form of Eq. (10) suggcsts that

SnT s-K N , (12)
nd I}, NI/
" T o ce. 0
(/] I c e 0
X =l: 13)
0 0 . (
or, L Sz Sm o .o SNI«
L= Il i (14)
S| By
with .

where @ are [RNM and the partitions in Eq. (14) correspond to Eq. (13).
Using Eqgs. (11), (12) and (14) the mass and stiffness matrices for an element corresponding to

coordinates X 'q are:
P
{ prid } (16)
n

Ao (354
(53] {5

Me I

where -
My = Mep+ My S + STCMEL, +M,,S) (18)
My = (M::N + SW,W) Py (19)
Ky = Kzr (20}

and where we ma«lo use of me fact that
iﬁ. My Dy =T

IRNM orthonormality conditions (22)
By Knny By = a*

The approach followed Lo model the element reveals a unique perspective on a serious shortcom-
ing of the standard finite element techniques when used to construet element mass matrices, ludeed,
i is clear that a standard finite element mass matrix (consistent) represents a Guyan reduction in
which the internal degrees of freedom (non-inteeface) are eliminated, i.e. all coordinates aee
neglected. As will be seen later, such an approximation is valid only when the clements are “small”
enough so that indced the coordinates have no effect on the response of the structure.

In the next section we will discuss the formation of the system equations.

(21)
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V. The System Equations OF POOR QUALITY

1. Coupling of Two_Elements

In this section we will demonstrate how elements are assembled into global components. As an
example, consider the three elements in Figure 2. l',quat.mm (16-20) represent the general form of
the element equations, The displacement vector for element ¢ can be written as

-l 4 (23)
In general, the vector X! represents a set of local displacement coordinates. In order to enforce
displacement compa.tnblhty between the element mterfaces it is necessary to transform ,)5; into a set

of global coordinates Z . xc' )
z <r ar 07X,

7t [~ ¢ (24)
2w o (|14,
« where Q is a geometric transformation matrix. Note that no transformation is necessary for
because elements only connect through interfaces. Using equations of the type Eq. (24) we can
N . . .
rewrite Egs. (16-20) in the following form

= . L o 4 A (."')
My T ‘ 2
?’.‘
. ¢ ’
=L 0
K = [ a" _z] <> { & (26)
a; =(
oo ¢ In
whereM,,, M, and K,, are easily found.
The first step in the assembly process is to connect clement 1 to element 2 by requiring that

' 2
2£I = "'X'xl r for all times (27)

The uncounled equations of motion for the 1-2 component can be written as follows

- .l' -l ’
My Myl 0 (X, K, 0 0 (Xx
l OI' Ez
i "I I 0 O L { Z, —o (%)
“'f; "'ni m/i *KII + E"‘r e, O X;l -
m: m o o
37 33 \i: i o 0 5’-1. 1 aa.

-
where the damping and forcing terms are omitted since we are only interested in the cigenvalue
problem. Note that for clement 2 we have two interfaces and we denoted
L

M2 My, ‘“I: ME M” 3_ kll »
"=\ms wy |, n= , b A, 29)

Taking into account Eq. (27) we can write the coupled equations of motion for component -2 as

»
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Z 2 T | 2
m: wmE, o M ?%tz kaz Ky 0 0 (X
! 2 4
Mg My+mp My omy D-:-.g.r + /;,z K tles 02- g 2 (30)
- oM
o, M, I 0|y o A 917,
W;z m;, o I qk’ o a 0 Ez 2

At this point, element 3 should be connected to the 1-2 component. Before doing this, Equation
(30) will be manipulated into a form identical to Equations (16-17). This is an important feature of
the presented technique. Indeed, it will allow us to consider the 1-2 component as a standard element.
as defined in Section L. [n other words, the resulting equations will represent the dynamics of ¢lement
1-2. In addition, the equations will be in a form suitable to apply an escalator type eigensolver to be
discussed later.

2. Transformation of the Interface Displacement Vector
The first step in reducing the 1-2 component into a single element is to introduce the following
transformation

X’-:.S‘ Xz'f'j(-'

(31)
with
] -/
S:t.tz = - [l<” +k17] k/i (32)

This transformation is entirely equivalent to Eq. (2). The term 5",:3 X:.zrcpresents that part
of JS' which is due to the displacement of the interface I2. The term X% s the displacement of X
with respect to the interface [2 as seen by an absolute observer. Note that the matrix[K‘#lﬂis never
singular because it represents the stiffness matrix of a rigid body restrained system.
The displacement vector '_X.I' can be written as a linear combination of IRNM as follows
~

] L ]
zz‘ = 51. 9, (33)

where the eigenvalue problem solved is

&, [ +mi 1B = [+ 31 &

(34)
The following transformation - 2
( 2.{;2 T 0 o 0 ~I2
/ ’ 34
< x: = %rz 51 o 0 7; ("")
'
iu (o] o Ir o q:v
\Iy) Lo 0 0 I](7
can now be substituted into Fq. (30), yielding N 1 2
rMn M,y W, M,; X;z k,, /4 _0 0 Xaz
m . 2 - 26
2 I My oy, g 0, lo G, 0’- 0 1‘1 (536)
My, w3 1 0 ?‘-' 0 o @ 0 ‘:’
N
. -2 -
My myy, o0 I 114, 0 0 0 “2](q,

where My,Mpy w3 Moy and &, can be casily found.
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3. The IRNM FEigenvalue Problem
The second step in reducing Eq. (30) to a form identical to Eqs. (16-17) is the solution of the
eigenvalue problem

_a| T Mz My, Z 01 o -
My, o f =l o & o X Z (37)
Using the transformation
1
T -
7, 1=®1 (38)
2
in Eq. (36) yields 2
~ .3 q ~ X
ﬁlr M'l 2{-4172 -+ ’<" 0 ~I2\ = 2
[ —‘
g;‘ T 9 0 Z (39)

with —_
P
dy=my , Hy= [m, g Miy] P

R’ = k,/ (-10)
"

Equation (39) is now equivalent in form to Eqs. (16-17). It essentially represents the equations of
motion for the 1-2 component viewed as one single element. If along the way no modes are truncated
then Eq. (39) involves no unusual approximations. In particular, for the continuous cquivalent. the
equations corresponding to Eq. (39) are still “exact”.

The eigenvalue problem (37) has a very special form and an optimum solution will be discussed
in Section V.

An important aspect of the present technique is the truncation of the mode set @ according to a
preset frequency. This preset frequency must reflect the frequency content in an element necessary to
obtain the desired fidelity in the overall system model. How the “clement” cut-off frequency compares
to the “system” cut-off frequency is still a matter of rescarch or “experience™.

Once the appropriate truncation is performed, a third clement can be added through interface
(2. Note that the number of degrees of freedom is already reduced. The cigenvalue problem (37) is
small and can be solved very efficiently as will be shown.

It is also important to note that because of the transformation (31) we do not loose any accuracy
in the rigid body and static propertics of the system when modes are truncated.

4. Coupling of Element 1-2 and Element 3.
The next step is to couple element 3 to element 142, This process is very similar to the one
alrcady deseribed. From kigs. (25-26) we can obtain for £=3

3 3 _ 3 ' 3
P 3 [M;, Mu] Kig[/(n _ﬂ_z] <> f_% (8
M, T J / 0 w 7.

The uncoupled equations of motion for the 12-3 component can be written as
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[Pl . 1 g_gn s o1, 1(X., _ "
M, I gz L. |o &7 7 o -
, M\ X , K 0 <,}_g;,
I M, I | 72 ) | Vi zg’_ jz

where we used Egs. (39) and (11). Note that the interface 12 of element 3 is part of the model if no
other elements are to be connected. However, if other elements are to be connected, this interface
must be made explicit.
We now must impose the compatibility condition
3
X* =X
~I2 —~Zxi
Because this is the last element, no further transformations of the interface displacement vector is
necessary. Using Eq. (34) we can write

(43)

. 3 ~ 3 L | p o~ 3 -
He+M [, M (X)) [t 0 0 (XL,
LK z L
ﬂ;l I 0 ({9 }+ 0 w- 0 g =0
~ o~
M2, o I ||% a2l 7 (1)
X . L g 4 3 J "q'N
which represent the coupled equations for elements 1-2 and 3.
Next, we can solve the small eigenvalue problem.
2 >4 3 2 = 3 2 =
wi, L4, +M;] ?1 = [K,+ K] &! (45)
so that
3 > 2 .
X =& 42 (46)

Note that no “bar” is necessary over the above quantities, because if the system is [ree. the rigid
body properties will be incorporated in Eqs. (43) and (16).
' Incorporating Fq. (16) into Eq. (14) yields

5 - M ’?“/3 "_: Wez az o Q:
w,_.'._ T 0 5 r+| 0o @ 0 g =20 (47)
o~ 2 [ 4
: Wy 0 I Jdlzs o o U i’
with zN N
T~ -~ T 3
W = ¢ M. ,; M= ¢r Mz (1)

Finally, note the simple form of this system of equation (47). First, generally truncation will reduce
the size significantly. ln addition, the specific form will allow for application of the escalator algorithm
as discussed in Section V. This cigenvalue solver will yield a set of system (requencies D%und system
modcs$ with a minimum of effort and cost.
Before we discuss the special eigenvalue solver, remarks are in order:
(1) So far, we described how the clements are coupled together. It is a matter of repeating the
same procedure for cach added element. Each time truncation is used on the element lovel as
well as on the level of the current system. A series of relatively small cigenvalue problems is
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solved using a very cfficient eigenvalue problem solver. The entire system is gradually built
up, keeping only the necessary frequency fidelity at cach stage. Several interesting questions
arise, for example: (a) what is the ideal tradc-off between clement frequency truncation and
current system frequency truncation, and how do both relate to the overall desired fidelity? (b)
Which is the optimum way of solving the successive eigenvalue problems? Should we wait until
several elements are collected before a current system eigenvalue problem is solved? This is an
important question since it affects storage, cost and accuracy.

(2) The manner in which the elements are coupled together makes this technique ideally suited to
handle spatial periodicity. Indeed, Eq. (39) shows that each current system can be considered as
an “element”. If care is taken, it is possible to use the same element over again, without adding
significantly to the cost. For example, a periodic truss can be started with one element which
is truncated according to a desired frequency. This model can now be doubled and truncated
again. This truncated 2-element model can now be doubled again, to yield a t-element truss,
etc.

V. The Eigenvalue Problem Solver

In this section we will describe an eigenvalue problem solution technique which is particularly
suited for our purposes.
First, let us consider the following special eigenvalue problem:

1 m, V;t === Mp] (%o ko 0 ---0 ja
m, 1 ~=- 0 ---0

Mwo 1 Lo =] § (1)
wa0 0 ---41 1w ) b---'e,, &,

This problem has a diagonal stiffness matrix and a unit mass matrix except for the first row and
column. The #; values are such that the mass matrix is positive definite.
The characteristic equation of this problem can be written as follows

N t
2 m;
Cor Ak
This assumes implicitly that k.fk (forl.ﬁjand ‘,/ 4,4 and also that k #o. Ifkg; = then it can be
shown that there is a root 3 & . [t can also be shown that all roots satisfy the inequality

Ao € Ro< R €A gy €--. <Ay <Ry <Ay, Lkhpcdy (51

In other words, we have isolated the ecigenvalues of the system represented by Eq. (19). Note that
property (57) again shows that fork: kbccom(‘a a root of the system. Property {§7) allows us to use
for example the Newton-Raphson tec mquv to find the actual N{.,vmalm-s/\t This iteration scheme
converges quadratically provided a good initial value is found. Without going into detail, at this
point we can say that property 67) allows for a very accurate initial value for cach of the cigenvalues
. Therefore, convergence is extremely fast, often after two or three iterations.

Once the eigenvalues are determined, it is computationally a trivial matter to obtain the cor-
responding cigenvectors. Also, multiple roots are no problem. This algorithm was programumed b
not yet optimized. Nevertheless, on a VAX/T780, it requires only 10 seconds of CIPU time 1o solve
a problem with n - 150, which is a size far beyond our needs. As part of the presented dynamic
analysis technique this eigenvalue problem must be solved for cach interface dof.

VI. Summary and Conclusions

The presented rescarch deals with the development of a dynamic analysis method for structural
systems. The modeling approach is essentially a finite clement method in the sense that the structure
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is divided into n “clements”. An “clement” is defined as ahy structural unit whose dofs. can be
categorized as cither interface or non-interface dofs. The term “clement™ then, has a rather broad
meaning. An element could be a fundamental unit such as a rod, a beam, a plate etc. or it could be
an entire structural cormponent. Furthermore, the parameters for the element could be distributed or
lumped. The choice of elements is totally arbitrary and is a matter of user convenience. In particular,
issues of accuracy and convergence do not enter on the level of element choice as is the case in a
standard finite element method. This means for example that bookkeeping is reduced to a minimum.

Each element will be modeled using a set of interface constraint modes (ICM) combined with a
set of interface restrained normal modes (IRNM). If the [CM and [RNM can be found with enough
accuracy, then a legitimate “element” is defined. For example, entire beams, rods and plates can be
considered as one element. Entire components can be made into onec element in an off-line manner.
Moreover, the entire system can be modeled as if it was represented by partial differential equations.
Note that standard finite element techniques in general only use ICM (= shape functions) which
leads to very interesting and useful insights into important shortcomings of these techniques. In
particular, the problem of an accurate mass distribution is addressed by this new approach.

The element assembly process is essentially the same as in the standard finite element method.
However, each combination of elements is automatically converted into a single element. This pro-
cedure is based on static condensation without loss of accuracy. This feature is very important and
allows for each structural unit to be interpreted as an “eclement”. [t also allows for the stiffness
matrix to remain diagonal.

The next step is the solution of the system eigenvalue problem. The procedure calls for the
sequential solution of a number of small cigenvalue problems based on a truncation principle for
IRNM. In addition, the form of these eigenvalue problems is very simple such that an escalator type
of eigenvalue problem solver can be used which is extremely cost-effective and fast. The response.
loads. etc. calculations are rather standard, but also benefit from the approach in terins of accuracy
and cost-effectiveness. The groundwork for this technique is in place and is currently supported by
the AFWL/ARBH Kirtland AFB, NM. Some of the advantages of the new technique are: (1) The
problem of Order Reduction is believed to be solved. The technique implicitly reduces the system
order. Whenever an element is added only information necessary to obtain a prescribed fidelity in the
system model is retained. (2) Very accurate. [n fact, if desired, “exact” solutions in the distributed
parameter sense can be obtained for any structure. (3) Fast and cost-effective. This is duc to the
small number of elements; the solution of a serics of small eigenvalue problems instead of one large
problem; the special nature of these small eigenvalue problems combined with the cost-effectiveness
of the escalator eigenvalue problem solver. (1) Applicable in general. In particular, extremely large
structures do not pose a problem. Once a model is agreed upon, any number of modes and frequencies
with any degree of accuracy can be computed. (5) It is anticipated that Micro Computers can be used
to solve even the largest of problems. This is due to the small bookkeeping cifort and the sequential
nature of the solution. (6) Spatial periodicity can be taken into account in a natural manner. (7)
It is anticipated that this method will be useful in arcas like control optimization, identification
and possibly non-linear phenomena. The feasibility of this technique as well as several of the above
advantages have been demonstrated with several examples.
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