MANEUVERING AND VIBRATION CONTROL OF FLEXIBLE SPACECRAFT*

by

L. Meirovitch & R. D. Quinn

Virginia Polytechnic Institute & State University

Department of Engineering Science & Mechanics

Blacksburg, Virginia 24061

Supported by the NASA Research Grant NAG-1-225 sponsored by the Spacecraft Control Branch, Langley Research Center. *

brought to you by **CORE**

.

EQUATIONS OF MOTION

 $\tilde{R}_{S} = \tilde{R} + \tilde{r}$, $\tilde{R}_{S} = \tilde{R} + \tilde{w} \times \tilde{r}$ Position and Velocity of Point S:

Position and Velocity of Point A: $\mathbb{R}_{A} = \mathbb{R} + \mathbb{A} + \mathbb{U}$, $\mathbb{R}_{A} = \mathbb{R} + \mathbb{W} \times (\mathbb{A} + \mathbb{U}) + \mathbb{U}$ \tilde{R} , $\tilde{\omega}$ = translational and angular velocities of frame $x_0y_0z_0$

u = \$q = elastic displacement vector

Lagrange's Equations: $\frac{d}{dt} \left(\frac{\partial T}{\partial \hat{R}}\right) + \frac{\partial V}{\partial \hat{R}} = c^T F$, $\frac{d}{dt} \left(\frac{\partial T}{\partial \hat{\alpha}}\right) - \frac{\partial T}{\partial \hat{\alpha}} + \frac{\partial V}{\partial \hat{\alpha}} = D^T \tilde{M}$

$$\frac{d}{dt} \left(\frac{aT}{a\dot{g}}\right) - \frac{aT}{ag} + \frac{aV}{ag} = Q$$

C = transformation matrix from XYZ to $x_0y_0z_0$

D = matrix of Euler's angles α_1 , α_2 , α_3 ($\omega = D(\alpha)\dot{\alpha}$)

$\mathbf{\Sigma}$
Ó
Ē
F
R
a a
\mathbf{H}
S
_
Ы
ROL
TROL
NTROL
DNTROL
CONTROL

Rigid-body motions are relatively large.

Elastic deformations are relatively small.

... Design a maneuver strategy as if the structure were rigid.

Then, design feedback control to suppress elastic deformations and deviations from the rigid-body maneuver. Use a perturbation approach to separate the zero-order terms (rigid-body maneuver) from the first-order terms (elastic vibration and deviations from the rigid-body maneuver).

PERTURBATION METHOD

 \tilde{g} = small angular deflection vector expressed in $x_0y_0z_0$ components Perturbed Angular Velocity Vector: $\tilde{w} = \tilde{w}_0 + \tilde{w}_1 \cdot \tilde{w}_1 = \tilde{w}_0\tilde{B} + \tilde{B}$ First-Order Perturbation: $R = R_0 + R_1$, $\alpha = \alpha_0 + \alpha_1$ Zero-Order Equations (Rigid Structure):

$$\begin{split} \tilde{m}_{R0}^{\tilde{n}} + C_0^{\tilde{n}} \tilde{S}_{0\underline{\tilde{\omega}}0}^{\tilde{\omega}} + C_0^{\tilde{n}} \tilde{U}_0^{\tilde{n}} S_{0\underline{\tilde{\omega}}0}^{\tilde{\omega}} + \frac{Gm_e}{|\tilde{g}_0|^3} [m_R^{\tilde{m}}_0 + (I - 3\tilde{R}_0\tilde{R}_0^{T})C_0^{\tilde{n}} S_0^{\tilde{n}}] = C_0^{\tilde{L}} \tilde{E}_0 \\ \tilde{S}_0^{\tilde{n}} \tilde{C}_0 \tilde{R}_0 + \frac{Gm_e}{|\tilde{g}_0|^3} \tilde{S}_0^{\tilde{n}} C_0 \tilde{R}_0 + I_0 \tilde{\omega}_0 + \tilde{\omega}_0^{\tilde{1}} I_0 \tilde{\omega}_0 = \tilde{M}_0 \\ \tilde{S}_0^{\tilde{n}} \tilde{C}_0 \tilde{R}_0 + \frac{Gm_e}{|\tilde{g}_0|^3} \tilde{S}_0^{\tilde{n}} C_0 \tilde{R}_0 + I_0 \tilde{\omega}_0 + \tilde{\omega}_0^{\tilde{n}} I_0 \tilde{\omega}_0 = \tilde{M}_0 \\ \tilde{S}_0^{\tilde{n}} \tilde{L}_0 = \frac{1}{|\tilde{g}_0|^3} \tilde{S}_0^{\tilde{n}} \tilde{L}_0 = I_0 \tilde{M}_0 + \tilde{L}_0^{\tilde{n}} \tilde{L}_0 = \tilde{L}_0 \\ \tilde{S}_0^{\tilde{n}} \tilde{L}_0 = \tilde{L}_0^{\tilde{n}} \tilde{L}_0 = \tilde{L}_0^{\tilde{n}} \tilde{L}_0 + I_0 \tilde{\omega}_0 + \tilde{L}_0^{\tilde{n}} \tilde{L}_0 = \tilde{L}_0^{\tilde{n}} \tilde{L}_0 = \tilde{L}_0^{\tilde{n}} \\ \tilde{L}^* = [\tilde{E}_1^{\tilde{n}} \tilde{L}_1 \tilde{Q}_0^{\tilde{n}} + \tilde{Q}_1^{\tilde{n}}]^{\tilde{n}} = perturbation vector \\ \tilde{E}^* = [\tilde{E}_1^{\tilde{n}} \tilde{M}_1^{\tilde{n}} \tilde{Q}_0^{\tilde{n}} + \tilde{Q}_1^{\tilde{n}}]^{\tilde{n}} = perturbing force vector \end{split}$$

871

RIGID-BODY MANEUVER

Rigid-body maneuver is designed independently of vibration control. Strategy: single-axis, minimum-time maneuver.

Maneuver Force Distribution Producing Rigid-Body Motion Only:

$$F_{1}(p,t) = x(p)m(p)\dot{\theta}^{2}(t)$$

$$F_{2}(p,t) = -z(p)m(p)\overset{.}{\theta}(t)$$

$$F_{3}(p,t) = y(p)m(p)\overset{.}{\theta}(t)$$

x(p), y(p), z(p) = coordinates of p relative to center of rotation

QUASI-MODAL EQUATIONS

Coordinate Transformation: $\tilde{x}(t) = Xu(t)$

Quasi-Modal Equations: $\tilde{u}(t) + G(t)\tilde{u}(t) + [n + K(t)]u(t) = \tilde{f}(t)$ X = rectangular matrix of lower premaneuver eigenvectors

u(t) = vector of quasi-modal coordinates

 $f(t) = \chi^T f^*(t) = vector of quasi-modal forces$

_____G(t) = X^TG(t)X = reduced-order gyroscopic matrix Λ = X^TK₀X = matrix of premaneuver eigenvalues As maneuver velocity decreases, time-varying terms decrease and equations approach an uncoupled form.

 $K(t) = X^{T}K_{t}(t)X = reduced-order stiffness matrix$

VIBRATION CONTROL

Modal Equations:
$$\ddot{u}_{r}(t) + \omega_{r}^{2}u_{r}(t) = f_{r}(t) + f_{dr}(t)$$

 $f_r(t) = modal control force$

 $f_{dr}(t)$ = modal disturbance and maneuver control force (to be neglected)

Actuator Dynamics: $\tilde{F}(t) = a\tilde{F}(t) + b\tilde{F}_{C}(t)$

 $\tilde{F}_{C}(t) = command force vector$

Modal Actuator Dynamics: $f_r(t) = af_r(t) + bf_{cr}(t)$

Modal State Equations: $\dot{z}_{r}(t) = A_{r}z_{r}(t) + bf_{Cr}(t)$

$$z_r = [u_r \dot{u}_r \ddot{u}_r]^T$$
, $\tilde{b} = [0 \ 0 \ b]^T A_r = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

IBRATION CONTROL (CONT'D) • <u>Optimal Control</u> . Performance Index: $J = \sum_{r=1}^{\infty} \int_{0}^{\infty} (z_{r}^{T} q_{r} z_{r} + R_{r} f_{cr}^{2}) dt$ $q_{r} = diag [q_{r} 1 1]$ eedback Control Law: $f_{cr} = -\frac{1}{R_{f}} \tilde{b}^{T} k_{r} z_{r} = -g_{rl} u_{r} - g_{r} 2 \dot{u}_{r} - g_{r} 3 \dot{u}_{r}$	odal Gains: $g_{r1} = bk_{r13}/R_r$, $g_{r2} = bk_{r23}/R_r$, $g_{r3} = bk_{r33}/R_r$ i. <u>Pole Allocation</u> : Closed-Loop Poles: $s_{r1} = \alpha_r + i\beta_r$, $s_{r2} = \alpha_r = i\beta_r$, $s_{r3} = \gamma_r$	Modal Gains: $g_{r1} = \frac{1}{b} \begin{bmatrix} z & z \\ -x^{r} & z^{r} \\ \alpha^{r} & \gamma^{r} \end{bmatrix}$, $g_{r2} = \frac{1}{b} \begin{bmatrix} 2y_{r}\alpha_{r} + \alpha^{2}_{r} + \beta^{2}_{r} - \omega^{2}_{r} \end{bmatrix}$, $g_{r3} = \frac{1}{b} (a - 2\alpha_{r} - \gamma_{r})$ i. <u>Direct Feedack Control</u> : $\int_{c} z = -M(g_{1}x + g_{2}x + g_{3}x)$ ains for Uniform Damping: $g_{1} = -\alpha^{2}/b$, $g_{2} = (2\alpha + \alpha^{2})/b$, $g_{3} = -2\alpha/b$
--	--	--

Figure 3. Comparison of Maneuver Strategies

Time-Lapse Plot of 30° Roll Maneuver (Uniform Damping Using 10 Actuators)

Figure 7. Comparison of Various Vibration Control Implementation Procedures for 30° Roll Maneuver

Figure 12. Implementation of 180° Maneuver with Various Numbers of Actuators